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Abstract: Background: Vitamin D’s role in COVID-19 management remains controversial. This meta-
analysis aimed to evaluate the efficacy of vitamin D supplementation in patients with SARS-CoV-2
infection, focusing on mortality, intensive care unit (ICU) admissions, intubation rates, and hospital
length of stay (LOS). Methods: A systematic review of PubMed/MEDLINE, Scopus, Cochrane,
and Google Scholar databases was conducted. Randomized controlled trials (RCTs) and analytical
studies investigating vitamin D supplementation in COVID-19 patients were included. The meta-
analysis was performed using STATA MP 18.5, employing random-effect or fixed-effect models
based on heterogeneity. Results: Twenty-nine studies (twenty-one RCTs, eight analytical) were
analyzed. Vitamin D supplementation significantly reduced ICU admissions (OR = 0.55, 95%
CI: 0.37 to 0.79) in RCTs and analytical studies (OR = 0.35, 95% CI: 0.18 to 0.66). Intubation rates were
significantly reduced in RCTs (OR = 0.50, 95% CI: 0.27 to 0.92). Mortality reduction was significant
in analytical studies (OR = 0.45, 95% CI: 0.24 to 0.86) but not in RCTs (OR = 0.80, 95% CI: 0.61 to
1.04). Subgroup analyses revealed more pronounced effects in older patients and severe COVID-19
cases. LOS showed a non-significant reduction (mean difference = −0.62 days, 95% CI: −1.41 to
0.18). Conclusions: This meta-analysis suggests potential benefits of vitamin D supplementation in
COVID-19 patients, particularly in reducing ICU admissions. However, the evidence varies across
outcomes and patient subgroups. Discrepancies between RCTs and analytical studies highlight the
need for further large-scale, well-designed trials accounting for baseline vitamin D status, standard-
ized supplementation protocols, and patient characteristics to inform clinical guidelines for vitamin
D use in COVID-19 management.
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1. Introduction

Vitamin D is widely recognized for its essential role in bone metabolism; however,
its potential implications extend far beyond skeletal health [1,2]. Recent research showed
the broader functions of vitamin D, particularly through its interaction with the vitamin D
receptor (VDR), a ligand-dependent transcription regulator [3–6]. This receptor, which is
expressed by nearly all nucleated human cells, influences the expression of approximately
4% of the human genome. Consequently, the effects of vitamin D encompass a diverse array
of physiological cellular processes via induction or repression of gene transcription [6–8].

Over the years, numerous studies have explored the extraskeletal roles of vitamin
D [9,10], which has been theorized to be implicated in muscle metabolism [11,12], cancer
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incidence and prevention [13,14], diabetes prevention [15], cardiovascular function [16],
and immune response to both self-antigens and pathogens [17–19], such as Mycobacterium
tuberculosis [20]. In the infectious disease field, vitamin D supplementation has been shown
to promote sputum conversion in patients with smear-positive tuberculosis, although
it seems to not significantly impact mortality or primary infection prevention [21–23].
While evidence for a reduction in the incidence of upper respiratory infections (URIs) with
vitamin D supplementation is lacking [24,25], some benefits have been observed in reducing
exacerbations of chronic obstructive pulmonary disease (COPD) in patients with severe
vitamin D deficiency (levels below 10 ng/mL) [26]. Additionally complicating analysis,
specific thresholds for vitamin D levels (and consequently, appropriate dosages) have not
yet been established for extraskeletal health [27].

The onset of the SARS-CoV-2 pandemic has prompted further investigation into the
potential role of vitamin D in infectious disease management [28–31]. Although definitive
evidence is still lacking, preliminary data suggest that vitamin D supplementation may
reduce the risk or severity of COVID-19 in some patients [32].

The mechanisms through which vitamin D may influence COVID-19 outcomes are mul-
tifaceted. Vitamin D exerts immunomodulatory effects through several pathways: (1) regu-
lation of pro-inflammatory cytokines, particularly reducing IL-6 and TNF-α levels; (2) en-
hancement in antimicrobial peptide production, including cathelicidin and β-defensins;
(3) improvement in epithelial barrier integrity; and (4) modulation of T-cell responses and
enhancement in regulatory T-cell function. These mechanisms may be particularly relevant
in preventing the hyperinflammatory state characteristic of severe COVID-19.

This meta-analysis aims to evaluate whether vitamin D can serve as a protective
agent in patients with SARS-CoV-2 infection, focusing on its therapeutic role rather than a
prophylactic one. The goal is to assess the efficacy of vitamin D within a comprehensive
treatment regimen that includes antiviral, corticosteroid, and anticoagulant therapies
aligned with current clinical guidelines.

Through this meta-analysis, we seek to provide a clearer understanding of the po-
tential benefits of vitamin D in the management of SARS-CoV-2 infections, contributing
to the optimization of treatment protocols and patient outcomes in the ongoing fight
against COVID-19.

2. Materials and Methods

This systematic review and meta-analysis were conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guide-
lines, ensuring adherence to current standards for reporting systematic reviews [33]
(Supplementary Materials File S1). The research question was formulated using the PICO
framework. The population of interest comprised patients, particularly those in the ICU,
who received vitamin D supplementation following a COVID-19 diagnosis. The primary
outcomes evaluated were mortality, ICU admissions, intubation, and the length of hospital
stay (LOS). The study protocol was registered in the PROSPERO database (registration
number CRD42023469826).

2.1. Data Sources and Search Strategy

An exhaustive search was carried out using a combination of keywords (“COVID-19”
OR “SARS- CoV-2” OR “coronavirus” OR “2019-nCoV”) AND (“vitamin D” OR “chole-
calciferol” OR “calcitriol”) across the PubMed/MEDLINE, Scopus, Cochrane, and Google
Scholar databases up to February 2024. The National Center for Biotechnology Information
(NCBI) nomenclature and guidelines were followed when using Medical Subject Heading
(MeSH) terminology, with the addition of wildcards when necessary.

2.2. Studies Selection

The inclusion criteria consisted of (1) studies providing relevant quantitative data on
the association between Vit D supplementation after a COVID-19 diagnosis and significant
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clinical outcomes and (2) randomized controlled trials (RCTs), cohort studies, or quasi-
experimental research designs.

The exclusion criteria included: (1) studies not directly related to the search query;
(2) studies lacking sufficient data on the impact of vitamin D supplementation post-
COVID-19 diagnosis and relevant outcomes; (3) studies not adhering to the PICOS criteria,
defined as:

• P: Patients, including ICU patients, diagnosed with COVID-19;
• I: Patients receiving vitamin D supplementation post COVID-19 diagnosis;
• C: Patients receiving standard treatment, a lower dose of vitamin D, no treatment, or

a placebo;
• O: outcome including mortality, ICU admission, intubation, and hospital length of

stay (LOS) associated with vitamin D intake;
• S: RCTs, cohort studies, and quasi-experimental studies.

Studies that did not satisfy these criteria were excluded. No restrictions were applied
regarding the publication date or language. Detailed information on the search strategy
can be found in Table 1.

Table 1. Search strategy adopted in the present systematic review and meta-analysis.

Search Strategy Details

Search string (“COVID-19” OR “SARS-CoV-2” OR “coronavirus” OR “2019-nCoV”) AND (“vitamin D” OR
“cholecalciferol” OR “calcitriol”)

Inclusion criteria

P (patients/population): Patients with COVID-19 diagnosis

I (intervention/exposure): Patients with COVID-19 infection supplemented with
Vitamin D

C (comparisons/comparators): Patients diagnosed with COVID-19 who received
standard therapy, lower dose, no therapy or placebo

O (outcome): Mortality, ICU admission, intubation, and hospital
length of stay

S (study design) RCT, cohort, and quasi-experimental studies
were considered

Databases PubMed/MEDLINE, Scopus, Cochrane, and Google Scholar

Exclusion criteria Items not directly pertinent to the query string; studies did not have sufficient information and data
available to be analyzed; articles not meeting the PICOS criteria

Time filter None (from inception)

Language filter None (any language)

2.3. Data Extraction and Risk of Bias Assessment

Four authors independently conducted the initial literature screening. Any discrepan-
cies that emerged were resolved through discussion until a consensus was achieved. After
the full-text review, studies selected for inclusion proceeded to data extraction.

Data for the meta-analysis were collected from the reviewed studies using a standard-
ized extraction form. Essential details gathered included the first author’s last name, year
and country of publication, study design, counts of deaths, ICU admissions, intubations,
hospital length of stay, enrollment period, the severity of the patient’s condition related
to COVID-19, baseline vitamin D status, age and sex of participants, and comparison
type in each study. The comparisons included groups such as vitamin D supplementation
versus no treatment, high-dose versus low-dose vitamin D supplementation, vitamin D
versus placebo, intervention duration, the amount of vitamin D given to the treated group
(and to the control group if available), number of participants enrolled, and distributions
across subgroups.
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Effect measures calculated comprised Odds Ratios (ORs) with 95% confidence intervals
(CIs) for binary outcomes and Mean Difference for continuous outcomes, such as the
duration of hospital stay. For studies reporting continuous outcomes in terms of medians
and interquartile ranges, the corresponding mean and standard deviation were estimated
using the methods provided by Luo et al. [34] and Wan et al. [35]. Quality and potential bias
in the studies were assessed independently by four researchers, employing tools tailored to
each study type. For RCTs, the National Institutes of Health (NIH) quality assessment tool
for controlled intervention studies was utilized, while the NIH quality assessment tool for
observational cohort and cross-sectional studies was applied to cohort and cross-sectional
studies [36]. The JBI critical appraisal tool for quasi-experimental studies was used to assess
quasi-experimental studies [37].

During the quality assessment, researchers concluded that for RCTs, the criterion
“Were the outcome assessors blinded to participants’ group allocation?” had limited ap-
plicability. This was due to the fact that, in typical medical practice, outcomes are usually
unaffected solely by vitamin D administration. As such, it could reasonably be assumed
that clinical decision making in the RCTs was not significantly impacted by the partici-
pant assignment to vitamin D supplementation groups. Any residual disagreements were
addressed by reaching a consensus.

Of the included studies, 21 were identified as having a “Low risk of bias” [38–58],
while eight were classified as having a “Moderate risk of bias” [59–66]. Results were
displayed graphically using the Traffic Light Plot (Figure 1a,b) and a Summary Plot for
RCTs and cohort studies (Supplementary Materials Figure S1a,b), respectively.
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Figure 1. Traffic light plots of Risk of Bias for RCT (a) and for analytical studies (b). (a) D1: Was
the study described as randomized, a randomized trial, a randomized clinical trial, or an RCT? D2:
Was the method of randomization adequate (i.e., use of randomly generated assignment)? D3: Was
the treatment allocation concealed (so that assignments could not be predicted)? D4: Were study
participants and providers blinded to treatment group assignment? D5: Were the people assessing
the outcomes blinded to the participants’ group assignments? D6: Were the groups similar at baseline
in terms of important characteristics that could affect outcomes (e.g., demographics, risk factors,
comorbid conditions)? D7: Was the overall drop-out rate from the study at the endpoint 20% or
lower than the number allocated to treatment? D8: Was the differential drop-out rate (between
treatment groups) at endpoint 15 percentage points or lower? D9: Was there a high adherence to the
intervention protocols for each treatment group? D10: Were other interventions avoided or similar
in the groups (e.g., similar background treatments)? D11: Were outcomes assessed using valid and
reliable measures implemented consistently across all study participants? D12: Did the authors report
that the sample size was sufficiently large to detect a difference in the main outcome between groups
with at least 80% power? D13: Were outcomes reported or subgroups analyzed prespecified (i.e.,
identified before analyses were conducted)? D14: Were all randomized participants analyzed in the
group to which they were originally assigned (i.e., did they use an intention-to-treat analysis)? (b) D1:
Was the research question or objective in this paper clearly stated? D2: Was the study population
clearly specified and defined? D3: Was the participation rate of eligible persons at least 50%? D4:
Were all the subjects selected or recruited from the same or similar populations (including the same
time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied
uniformly to all participants? D5: Was a sample size justification, power description, or variance
and effect estimates provided? D6: For the analyses in this paper, were the exposure(s) of interest
measured prior to the outcome(s) being measured? D7: Was the timeframe sufficient, such that one
could reasonably expect to see an association between exposure and outcome if it existed? D8: For
exposures that can vary in amount or level, did the study examine different levels of the exposure
as related to the outcome (e.g., categories of low exposure or exposure measured as a continuous
variable)? D9: Were the exposure measures (independent variables) clearly defined, valid, reliable,
and implemented consistently across all study participants? D10: Was the exposure(s) assessed
more than once over time? D11: Were the outcome measures (dependent variables) clearly defined,
valid, reliable, and implemented consistently across all study participants? D12: Were the outcome
assessors blinded to the exposure status of participants? D13: Was the loss to follow-up after baseline
20% or less? D14: Were key potential confounding variables measured and adjusted statistically for
their impact on the relationship between exposure(s) and outcome(s)?

2.4. Statistical Analysis

Two researchers undertook a synthesis of both qualitative and quantitative data. Any
discrepancies or inconsistencies identified during this process were addressed through
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open discussion and consensus within the research team. For conducting the meta-analysis,
we used the STATA MP 18.5 software (StataCorp LLC, College Station, TX, USA), known
for its comprehensive statistical capabilities. Heterogeneity among studies was rigorously
evaluated using the I2 statistic and the χ2 test, considering heterogeneity statistically
significant when p < 0.1 for the χ2 test. We interpreted I2 values at 25%, 50%, and 75% as
indicative of low, moderate, and high heterogeneity levels, respectively. In cases where
moderate to high heterogeneity was observed, a random-effect model was applied to the
meta-analysis, while a fixed-effect model was selected when heterogeneity was low. The
outcomes of the study are summarized as effect measures.

In the meta-analyses, odds ratios (ORs) were regarded as statistically significant if
their confidence intervals did not contain the value “1”, indicating reduced imprecision
when compared to individual studies.

To examine sources of variability, stratified analyses were performed according to
study quality. Sensitivity analyses were also conducted to assess the robustness of the
pooled estimates by sequentially removing individual studies. Publication bias was as-
sessed visually with a funnel plot, and if asymmetry was detected, further analyses using
the trim-and-fill method were undertaken to explore and correct for bias. Moreover, Egger’s
linear regression test was applied to detect potential publication bias, with a threshold
p-value of <0.05 indicating possible bias.

3. Results

A total of 29 publications were included in the analysis (Figure 2). Of these, 21 were
randomized controlled trials (RCTs) [38–40,42–44,46–51,53–58,64–66], while the remaining stud-
ies were classified as analytical studies [41,45,52,59–63]. Mortality was assessed in nineteen
RCTs [38–40,42–44,46–51,53–57,64,65] and seven analytical studies [41,45,52,60–63], ICU admis-
sions in fourteen RCTs [40,42–44,46,48–50,53–55,57,65,66] and five analytical studies [41,45,52,59,61],
hospital length of stay (LOS) exclusively in RCTs [42–44,46,48–51,53,54,56–58,64–66] and intuba-
tion rates in nine RCTs [42–44,47,50,53,54,57,64] and three analytical studies [60,62,63].

The main features of the studies included in the meta-analysis are reported in
Supplementary Material (Supplementary Material Table S1). The main aspects, such as
study design, setting, participant demographics, and details on vitamin D supplementation,
are highlighted. In addition, information on the number of participants, age (reported as
mean ± standard deviation or median and interquartile range (IQR)), and sex distribution
(absolute numbers and percentages) are given.

More precise information on the regimens of vitamin D administered and the types of
comparison used between the treatment arms of each study are reported in Supplementary
material (Supplementary Material Table S2). Vitamin D dosages varied considerably, as
the regimens included daily, weekly, and monthly doses. For example, in the study by
Annweiler C et al. 2020 [38], 80,000 IU/day of vitamin D3 was used in the intervention
group, while the control group received no vitamin D supplementation. In contrast, the
study by Entrenas Castillo M et al. 2020 [40] used calcifediol with an initial dosage of
21,280 IU/day, followed by a maintenance dose of 10,640 IU/day, compared to a placebo
administered in the control group.

In these studies, outcomes of all-cause mortality, intensive care unit admission, and
intubation are reported, with event rates reported as percentages and absolute numbers
(n/N) for both the intervention and control groups. For example, in the study by Giannini
S et al. 2021 [61], in the intervention group that received 200,000 IU/day of cholecalciferol,
the mortality rate was 30.56% compared to 20% in the control group that did not receive
vitamin D supplementation.

As shown in Table S1, overall mortality was assessed in most of the studies, while
intensive care unit admissions and intubations were assessed less frequently. Table S2 shows
that the most common dosing regimens were high doses of cholecalciferol or calcifediol,
while calcitriol supplementation was the least frequent.
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3.1. ICU Admission

The analysis of ICU admission rates provides some of the most compelling evidence for
the potential benefits of vitamin D supplementation in COVID-19 patients. This outcome is
particularly important as ICU admissions not only reflect the severity of the disease but also
have significant implications for healthcare resource utilization and patient outcomes. Our
meta-analysis examined this crucial endpoint using data from both randomized controlled
trials (RCTs) and analytical studies, offering a comprehensive view of the potential impact
of vitamin D supplementation on ICU admission rates.

The meta-analysis of 14 RCTs [40,42–44,46,48–50,53–55,57,65,66] yielded an odds ratio
of 0.55 (95% CI: 0.37 to 0.79, p = 0.001) for ICU admission (Supplementary Material Table S3).

This result indicates a statistically significant 45% reduction in the odds of ICU
admission associated with vitamin D supplementation. A high vitamin D supplemen-
tation regimen was found to be more protective than a low regimen (OR = 0.37, 95%
CI: 0.20 to 0.68, p = 0.001). To further elucidate the nuances of this effect, we conducted
several subgroup analyses.

When stratified by age, both younger (≤65 years) and older (>65 years) patients
showed significant benefits from vitamin D supplementation. The odds ratio for patients
aged 65 years or younger was 0.56 (95% CI: 0.32 to 0.98), while for those over 65, it was
0.43 (95% CI: 0.26 to 0.71). These results suggest that vitamin D supplementation may
have a protective role against ICU admission across age groups, with a potentially more
pronounced effect in older patients (Figure 3).
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* We used a Fixed Effect Mantel-Haenszel model for age > 65 years [40,42–44,46,48–50,53–55,57,65,66].

Another critical subgroup analysis was based on COVID-19 severity. Interestingly, vita-
min D supplementation showed significant protective effects in non-severe cases (OR = 0.67,
95% CI: 0.51 to 0.88). This effect was not observed in cases of SARS-CoV-2 infection with
severe presentation (OR = 0.22, 95% CI: 0.02 to 2.07).

Regarding the analytical studies, we find further support for the protective effect of
vitamin D supplementation against ICU admission. The meta-analysis of five analytical
studies [41,45,52,59,61] showed an even more pronounced effect than the RCTs, with an
odds ratio of 0.35 (95% CI: 0.18 to 0.66, p = 0.001). This result suggests a 65% reduction in
the odds of ICU admission associated with vitamin D supplementation (Figure 4).
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3.2. Mortality

The analysis of mortality outcomes reveals a complex picture with discrepancies between
RCTs and analytical studies. The meta-analysis of nineteen RCTs [38–40,42–44,46–51,53–57,64,65]
showed a decreased mortality with vitamin D supplementation (OR = 0.80, 95% CI: 0.61 to 1.04),
but this effect did not reach statistical significance (Supplementary Material Table S3).

In contrast, the analysis of seven analytical studies [41,45,52,60–63] demonstrated a
significant protective effect of vitamin D supplementation on mortality (OR = 0.45, 95%
CI: 0.24 to 0.86, p = 0.02) (Figure 5).
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Figure 5. Forest plot of Impact of Vitamin D supplementation on mortality for analytical
studies [41,45,52,60–63].

This discrepancy between RCTs and analytical studies is intriguing and could be
attributed to various factors. Analytical studies may be more susceptible to confounding
variables and selection bias, potentially leading to an overestimation of the treatment
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effect. Conversely, the more rigorous design of RCTs might provide a more accurate, albeit
conservative, estimate of the true effect.

Subgroup analyses of the RCTs offer additional nuance to these findings. When
stratified by age, older patients (>65 years) patients showed significant reductions in
mortality (OR = 0.58, 95% CI: 0.39 to 0.86). In contrast, the effect was not reported for
patients younger than 65 years of age (OR = 1.05, 95% CI: 0.73 to 1.53).

This is particularly noteworthy given that the overall RCT analysis did not reach statistical
significance, suggesting that age-specific effects may be masked in the aggregate analysis.

Moreover, when vitamin D was supplemented, mortality was reduced more in the
early pandemic period (February 2020–May 2020) compared to later periods.

The subgroup analysis based on COVID-19 severity revealed a marked difference in
the effect of vitamin D supplementation. In patients with severe COVID-19, there was a
significant reduction in mortality (OR = 0.50, 95% CI: 0.31 to 0.82). However, in non-severe
cases, no benefit was observed (OR = 0.99, 95% CI: 0.71 to 1.38). This finding suggests that
the potential mortality benefit of vitamin D supplementation may be most pronounced in
critically ill COVID-19 patients.

The divergent results between overall RCT findings and subgroup analyses highlight
the complexity of interpreting mortality data in this context. The primary analysis of the
RCT suggests a potential benefit that, however, is not statistically significant, while the
subgroup analyses indicate significant protective effects in specific patient populations,
particularly older individuals and those with severe COVID-19.

3.3. Intubation

The analysis of intubation rates provides further evidence for the potential bene-
fits of vitamin D supplementation in COVID-19 patients. The meta-analysis of nine
RCTs [42–44,47,50,53,54,57,64] demonstrated a significant reduction in intubation rates
associated with vitamin D supplementation (OR = 0.50, 95% CI: 0.27 to 0.92, p = 0.03)
(Figure 6).
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The analysis of analytical studies, which was limited to three studies [60,62,63] focus-
ing on non-severe COVID-19 patients aged 65 years and older, indicates a reduction in
intubation rates with vitamin D supplementation (OR = 0.65, 95% CI: 0.39 to 1.08, p = 0.09)
(Supplementary Material Table S3). However, this result did not reach statistical signif-
icance. The discrepancy in statistical significance between RCTs and analytical studies
warrants careful interpretation. The analytical studies were limited to a specific subgroup
of patients, which may explain the difference in results. Additionally, the smaller number
of analytical studies compared to RCTs could have reduced the statistical power to detect a
significant effect.

Despite these differences, both RCTs and analytical studies indicate a potential pro-
tective effect of vitamin D supplementation against the need for intubation in COVID-19
patients. This finding aligns with the results observed for ICU admission rates, suggest-
ing that vitamin D supplementation might help reduce the need for intensive respiratory
support in COVID-19 patients.

The consistency of results across different study designs, despite variations in statistical
significance, strengthens the potential role of vitamin D in mitigating severe respiratory
complications in COVID-19 patients. However, the observed variation suggests that the
magnitude of this effect may vary depending on factors not captured in this analysis, such
as baseline vitamin D status, timing of supplementation, or specific patient characteristics.

These results, while promising, underscore the need for further research to clarify the
precise impact of vitamin D supplementation on intubation rates in different subgroups of
COVID-19 patients. Further well-designed, stratified studies considering relevant factors
could help to refine our understanding of this potential benefit and inform clinical guide-
lines for vitamin D use in COVID-19 management, including optimal dosing regimens and
target patient population.

3.4. Hospital Length of Stay

The meta-analysis of 16 randomized controlled trials (RCTs) [42–44,46,48–51,53,54,56–
58,64–66] examining the effect of vitamin D supplementation on hospital length of stay
in COVID-19 patients showed a reduction in LOS, with a mean difference of −0.62 days
[95% CI −1.41 to 0.18] (Supplementary Material Table S4). Subgroup analyses provided further
insights into the potential moderating factors of this effect. When stratified by age, the analysis
revealed a more pronounced effect in patients over 65 years (mean difference = −1.54 days, 95%
CI: −1.42 to 0.18) compared to those 65 years and younger (mean difference = −0.29 days, 95%
CI: −0.90 to 0.32). Although the difference between these age subgroups was not statistically
significant, it suggests that older patients might derive greater benefit from vitamin D
supplementation in terms of reduced hospital stay.

Perhaps the most striking finding emerged from the subgroup analysis based on COVID-19
severity. In patients with non-severe COVID-19, vitamin D supplementation was associated
with a statistically significant reduction in hospital stay (mean difference = −0.95 days, 95%
CI: −1.69 to −0.21) (Figure 7).

Conversely, in severe cases, there was a non-significant increase in LOS (mean differ-
ence = 2.59 days, 95% CI: −0.90 to 6.08). The difference between these severity subgroups
approached statistical significance (p = 0.05), highlighting the potential importance of
disease severity in modulating the effect of vitamin D supplementation.

These results present a nuanced picture of the impact of vitamin D supplementation
on hospital length of stay. While the overall trend suggests a potential benefit, the high
heterogeneity between studies and lack of statistical significance in the primary analysis
call for cautious interpretation. The subgroup analyses, particularly regarding disease
severity, provide valuable insights that could guide future research and inform clinical
decision-making.
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4. Discussion

This meta-analysis provides a comprehensive evaluation of the effects of vitamin D
supplementation on key clinical outcomes in COVID-19 patients. The study’s findings
suggest potential benefits of vitamin D supplementation, particularly in reducing ICU
admission rates and possibly intubation rates. The evidence for effects on hospital length
of stay and mortality showed mixed results, with analytical studies indicating signifi-
cant benefits for mortality and subgroup analyses revealing potential benefits in specific
patient populations.

A crucial consideration in interpreting these results is the pharmacokinetic differences
between vitamin D supplementation forms. Several analytical studies utilized calcifediol
rather than cholecalciferol, which offers more rapid increases in serum 25(OH)D concentra-
tions. This pharmacokinetic advantage may be particularly relevant in the acute setting
of COVID-19, where rapid improvement in vitamin D status could be beneficial. Further-
more, emerging evidence suggests that serum 25(OH)D concentrations tend to decrease
during COVID-19 infection, as demonstrated by Karonova et al. [66] in unsupplemented
patients. This decline suggests active vitamin D consumption during the immune response
against SARS-CoV-2, potentially supporting the rationale for supplementation during
acute infection.

One of the strengths of this meta-analysis is the inclusion of both randomized con-
trolled trials (RCTs) and analytical studies, providing a broad evidence base, consistent
findings across different study designs for some outcomes, particularly ICU admission
rates, detailed subgroup analyses that offer insights into the differential effects of vitamin
D supplementation based on factors such as age and disease severity and finally a large
pooled sample size, enhancing the statistical power of the analysis.

However, several limitations should be considered when interpreting these results.
First, the high heterogeneity in some analyses, particularly for hospital length of stay,
indicates substantial variability in effects across studies. Second is the ever-present potential
publication bias, as studies with positive findings may be more likely to be published. Third,
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the variability in vitamin D dosing regimens, timing of supplementation, and baseline
vitamin D status across studies may influence the observed effects. In particular, most
studies did not report the duration of symptoms before hospital admission, a factor that
could significantly influence both disease severity at presentation and baseline vitamin D
status. However, this limitation is partially mitigated by our analysis of different treatment
settings. Following standard clinical guidelines and local healthcare protocols, patients
were typically allocated to different care settings based on disease severity—with more
severe cases admitted to ICU and less severe cases to regular wards. This systematic triage
process provides an indirect standardization of disease severity across studies, helping
to partially control for variations in pre-admission disease progression. Nevertheless,
the information gap regarding pre-admission symptom duration still limits our ability
to determine optimal timing for vitamin D supplementation. Finally, the discrepancies
between RCT and analytical study results for some outcomes, such as mortality, warrant
careful interpretation.

Comparing our results with recent meta-analyses, we found concordance with the
results reported by Kow et al. [67] and Argano et al. [68], who found a reduction in mortality
associated with vitamin D supplementation. However, our analysis offers a more nuanced
perspective, highlighting how the effect can vary significantly among different patient
subgroups and disease severity levels. Yang et al.’s meta-analysis [69] reported similar
results to ours regarding ICU admission and the need for mechanical ventilation, showing
a reduced risk associated with higher vitamin D levels. However, they found a stronger
association with mortality than our analysis. Bignardi et al.’s work [70] emphasized the
importance of adjusting for confounding factors, a point that our analysis also highlights.
When we analyzed studies with and without adjustment for confounders separately, only
those without adjustment showed a significant association. This suggests that confounding
factors may play a crucial role in determining this association, a nuance not captured in
some other meta-analyses. Argano et al. [68] employed trial sequential analysis (TSA) to
evaluate the robustness of the evidence. Their TSA concluded that the association between
vitamin D supplementation and reduced risk of ICU admission is conclusive, while further
studies are needed to confirm the effect on mortality. This aligns with our findings of
stronger evidence for ICU admission reduction compared to mortality benefits.

In conclusion, while this meta-analysis suggests potential benefits of vitamin D sup-
plementation in COVID-19 patients, particularly in reducing ICU admissions, the evidence
varies across outcomes and patient subgroups. The differing effects based on age, disease
severity, and possibly baseline vitamin D status highlight the need for a nuanced approach
to vitamin D supplementation in COVID-19 management.

These findings underscore the need for further large-scale, well-designed, randomized
controlled trials that account for baseline vitamin D status, use standardized supplementa-
tion protocols, and examine a comprehensive range of clinically relevant outcomes. Future
studies should also explore the efficacy of different vitamin D dosing regimens and the
timing of supplementation. Such research would help clarify the role of vitamin D supple-
mentation in COVID-19 treatment and potentially inform clinical guidelines for its use in
this context, particularly in specific patient subgroups.

5. Conclusions

This comparative analysis of RCTs and analytical studies on vitamin D supplementa-
tion in SARS-CoV-2 patients reveals a complex picture of potential benefits across various
clinical outcomes. The most consistent finding across study types is a significant reduction
in ICU admissions. Results for mortality and intubation rates are less conclusive, with
discrepancies between RCTs and analytical studies highlighting the importance of study
design. Hospital length of stay shows non-significant trends towards reduction, with
subgroup analyses suggesting potential benefits in specific patient populations. These
varied results underscore the need for further well-designed RCTs that account for factors
such as baseline vitamin D status, supplementation regimens, and patient characteristics.
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While the evidence suggests potential benefits of vitamin D supplementation, particularly
in reducing ICU admissions, the varying strength of evidence across outcomes necessitates
a nuanced approach to its use in COVID-19 management and guideline development.

This comparative analysis of RCTs and analytical studies on vitamin D supplementa-
tion in SARS-CoV-2 patients reveals a complex picture of potential benefits across various
clinical outcomes. The most consistent and robust finding across study types is a signifi-
cant reduction in ICU admissions, with RCTs showing a 45% reduction (OR = 0.55, 95%
CI: 0.37–0.79) and analytical studies demonstrating an even stronger effect (OR = 0.35, 95%
CI: 0.18–0.66). Results for mortality and intubation rates present a more nuanced picture,
with notable discrepancies between RCTs and analytical studies. This disparity may be
attributed to differences in study design, patient populations, and timing of intervention.
Importantly, subgroup analyses revealed that older patients (>65 years) and those with
severe COVID-19 showed more pronounced benefits, suggesting that targeted supplemen-
tation strategies may be more effective than a one-size-fits-all approach. Hospital length of
stay showed non-significant trends toward reduction in the overall analysis but demon-
strated significant benefits in specific subgroups, particularly in patients with non-severe
COVID-19 (mean difference = −0.95 days, 95% CI: −1.69 to −0.21). This finding suggests
that early intervention with vitamin D supplementation may be more effective than later
treatment in severe cases.

In clinical practice, these findings suggest that vitamin D supplementation may be
most beneficial when implemented early in the disease course, particularly in high-risk
populations such as older adults and those with vitamin D deficiency. However, supple-
mentation protocols should be tailored to individual patient characteristics and disease
severity, with careful consideration of timing and dosage.
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