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Abstract: Neovascular age-related macular degeneration (nAMD) is one of the major causes of vision
impairment that affect millions of people worldwide. Early detection of nAMD is crucial because, if
untreated, it can lead to blindness. Software and algorithms that utilize artificial intelligence (AI) have
become valuable tools for early detection, assisting doctors in diagnosing and facilitating differential
diagnosis. AI is particularly important for remote or isolated communities, as it allows patients to
endure tests and receive rapid initial diagnoses without the necessity of extensive travel and long
wait times for medical consultations. Similarly, AI is notable also in big hubs because cutting-edge
technologies and networking help and speed processes such as detection, diagnosis, and follow-up
times. The automatic detection of retinal changes might be optimized by AI, allowing one to choose
the most effective treatment for nAMD. The complex retinal tissue is well-suited for scanning and
easily accessible by modern AI-assisted multi-imaging techniques. AI enables us to enhance patient
management by effectively evaluating extensive data, facilitating timely diagnosis and long-term
prognosis. Novel applications of AI to nAMD have focused on image analysis, specifically for the
automated segmentation, extraction, and quantification of imaging-based features included within
optical coherence tomography (OCT) pictures. To date, we cannot state that AI could accurately
forecast the therapy that would be necessary for a single patient to achieve the best visual outcome.
A small number of large datasets with high-quality OCT, lack of data about alternative treatment
strategies, and absence of OCT standards are the challenges for the development of AI models
for nAMD.

Keywords: neovascular age-related macular degeneration; artificial intelligence; deep learning;
retinal biomarkers; therapy prediction

1. Introduction

Currently, we categorized age-related macular degeneration (AMD) into two subsets:
wet AMD, also known as neovascular AMD (nAMD), and dry AMD [1]. nAMD is typi-
cally characterized by the onset of new blood vessels, namely neovascularization, in the
subretinal or intraretinal layers. If unchecked, neovessels can cause bleeding, edema, and
eventually blindness [2]. The conventional therapy for nAMD consists of administering
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intravitreal injections of anti-vascular endothelial growth factor (VEGF) medicines for a
long time to inhibit and reduce the formation of these newly formed blood vessels [3].
Different treatment regimens, such as regular intervals of 4-7 treatments, as-needed basis
Pro-re-nata (PRN) injections, and treat-and-extend (T&E) injections, are used based on the
retreatment approach. Usually, the further treatment plan is determined after three first
injections, with an increasing tendency to employ the T&E approach in order to minimize
vision impairment caused by relapse [4]. Nevertheless, the use of T&E may include the
potential danger of excessive treatment depending on the patient’s condition.

AI is a comprehensive term that includes many computing methods, such as machine
learning (ML), which pertains to algorithms that derive insights from data, and deep
learning (DL), a subset of ML that employs deep neural networks for intricate pattern
recognition in data [5].

2. Treatments for Neovascular Age-Related Macular Degeneration

Administered on a fixed treatment schedule, several anti-VEGF intravitreal therapies
(IVT), such as bevacizumab, ranibizumab, brolucizumab, aflibercept have become widely
accepted treatments for nAMD [6]. To achieve an ideal outcome, it is necessary to provide
multiple injections into the eye at scheduled time intervals. In clinical studies, the average
improvement in vision from the starting point was around 7 to 11 letters after one year,
accomplished with a total of approximately 7.5 to 12 injections of IVT. However, the average
patients in real-world clinical practice are not reaching these visual outcomes [7]. Several
causes have been linked to this, with notable emphasis on disparities between patient
demographics in real-world settings and those in clinical trials, as well as variations in
treatment frequency. The point is that the intervals and frequency at which a dose is
administered are consistently linked to vision outcomes (Figure 1). Real-world studies have
reported an average vision improvement from 0 to 3 letters after one year, accomplished
with approximately 5 to 7 injections of IVT [8].
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Figure 1. Methods to treat neovascular age-related macular degeneration.

Multiple investigations have found that baseline visual acuity is a reliable indicator of
long-term visual outcomes [9]. It is commonly believed to have a sort of correlation with
the severity of the disease and the anatomical alterations in the neurosensory retina. Several
anatomical characteristics have been linked to poorer vision outcomes, including choroidal
neovascularization (CNV), interruption of the external limiting membrane, disruption of
the ellipsoid zone, intraretinal fluid (IRF), subretinal fluid (SRF), and increased choroidal
thickness [10]. During the first year of fixed monthly/bimonthly dosing, patients with
occult CNV, presence of retinal fluid, and fluorescein leakage were less likely to reach every
12-week dosing in the second year of treatment frequency [11].
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In the clinic, physicians make decisions regarding the course of care for each patient
despite the fact that treatment paradigms are typically established based on the average
treatment response of a cohort. The primary concern is the identification of the most effec-
tive treatment plan for each individual, with a focus on the least amount of inconvenience
and the highest prospective visual improvement [7]. This continues to be unpredictable
and difficult because of the necessity of multiple IVTs and the variable response to various
anti-VEGF molecules in real-world scenarios. In the HARBOR clinical trial, patients who
were adhering to a PRN regimen were administered a treatment regimen that included a
range of injections, from 3 to 24, over a two-year period. The distribution of the quantity of
injections was nearly uniform. During the second year of the VIEW clinical study, more
than 50% of patients had PRN treatment intervals of at least 12 weeks. The eyesight out-
comes of these patients were comparable to those of those who required more frequent
therapy [12]. Although conventional analyses that are predicated on conventional imaging
evaluations offer valuable insights at the population level, they have not had a substantial
influence on the treatment decisions of individual patients.

The field of diagnosing and treating retinal maladies has made substantial progress
as a result of the application of AI, which has led to a plethora of research discoveries. A
predictive model has been developed to predict whether the injection interval for adminis-
tering T&E using anti-VEGF medications for nAMD treatment will be less than 5 weeks
(indicating a high treatment burden) or more than 10 weeks (indicating a low treatment
burden) [13]. Anticipating the individuals who will require urgent T&E treatment due
to the recurrence of nAMD within three months of receiving their three initial injections,
identifying those who can tolerate a longer interval between treatments, and identifying
those who may opt for PRN treatment after three months will aid in the planning of treat-
ment [14]. The future is the development of an AI model that can predict which group
of nAMD-naïve patients will experience a recurrence within three months of confirming
dryness following the first injections.

3. Artificial Intelligence Strategies

Machine learning (ML) is a subfield of AI that comprises training a machine to identify
specific patterns within an extensive dataset because of the utilization of a wide range of
interconnected algorithms layered together, with each algorithm dedicated to identifying
specific traits [15]. This system is known as a neural network because it tries to replicate
the functioning of neurons in the human brain. Deep learning (DL) is a branch of ML that
involves the use of many artificial neural networks (ANNs) arranged in layers to more
accurately imitate the processing skills of the human brain. Convolutional neural networks
(CNNs) are specific types of ANNs that are extensively employed with the aim of analyz-
ing videos and images. The programs’ successful data interpretation can be quantified
using measures such as specificity, sensitivity, or a receiver operating characteristic (ROC)
curve [16]. The ROC curve represents the relationship between the true positive rate and
the false positive rate. Over the last twenty years, there has been a significant increase in
the use of AI-driven solutions in the medical field [17].

AI and ML algorithms are commonly trained using digital photos and numerical
data. Largely used in healthcare for quick analysis of imaging, DL is highly effective
in handling high-dimensional data without the need for manual feature engineering.
DL has demonstrated promise in identifying referable age-related macular degeneration
(AMD), with research studies indicating satisfactory diagnosis accuracy. Although many
DL systems have undergone training and testing using extensive datasets such as AREDS,
additional research is needed to validate and generalize their performance across diverse
populations and imaging modalities. Within the field of OCT imaging, deep learning
has facilitated the automatic categorization of AMD and the precise division of retinal
structures with exceptional precision [18]. The utilization of DL frameworks such as U-Net
has enhanced the process of boundary and feature-level segmentation, making it easier to
detect disorders such as choroidal neovascularization and macular edema.
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AI has the potential to offer numerous benefits in the management of nAMD. In terms
of accuracy, AI methods (CNNs, DL, and ML), particularly CNNs and DL algorithms, have
demonstrated a high degree of precision in the identification of early macular changes
from imaging techniques such as fundus photographs and OCT scans. AI models have
achieved AUCs, sensitivities, and specificities that exceed 90%, as evidenced by a multitude
of research studies. Despite the fact that retinal imaging is well-established, its precision
may be affected by the patient’s compliance and the examiner’s expertise. AMD is often
detected at a later stage of the disease, after significant damage has already occurred,
using conventional methods. In terms of efficiency, AI models demonstrate exceptional
efficiency in the processing of extensive imaging data, which enables the expedition of
diagnoses without the need for tedious manual evaluations. AI has the potential to reduce
the workload of physicians significantly and enable the earlier detection of nAMD by
automating standard screening procedures. In a matter of seconds, AI-driven systems can
assess fundus photographs or OCT scans, all while simultaneously providing reproducible
and dependable results. This facilitates improved scalability, particularly in the context of
extensive screening initiatives and telemedicine. Conventional methods and traditional
nAMD detection techniques, such as OCT and angio-OCT assessments and manual imaging
analysis, are more time-consuming. Additionally, the duration of diagnosis and care is
often extended by the necessity of retesting for validation in traditional procedures.

4. AI-Driven Identification of Retinal Biomarkers

This section examines the function of artificial intelligence in detecting essential
retinal biomarkers, including IRF, subretinal fluid (SRF), and pigment epithelial detach-
ment (PED), which are vital for diagnosing and tracking the progression of age-related
macular degeneration.

It is anticipated that the global prevalence of nAMD will experience a significant
increase by 2050, affecting approximately 300 million individuals [19]. The demand for oph-
thalmology services is currently exceeding the financial and personnel resources required to
maintain high-quality and long-lasting services, resulting in unprecedented capacity issues.
The development of more effective and secure methods for diagnosing and treating AMD is
imperative because of an increase in patient demand and the constraints of physicians [20].
This is essential to guarantee that patients receive the necessary treatment, prevent the
superfluous progression of the illness, and, in the end, prevent vision loss.

Artificial neural networks (ANNs) are algorithms that assist in the identification
of patterns and intricate structures in vast datasets derived from retinal imaging. The
ability of convolutional neural networks (CNNs) to adapt and improve based on prior
experiences is a critical characteristic. This allows them to become sophisticated instruments
for forecasting and categorization by accepting a variety of inputs. By incorporating AI
technology into ophthalmology services, the anticipated burden on public hospitals and
health services can be alleviated [21].

In the field of ophthalmology, research has demonstrated that AI is capable of iden-
tifying retinal disease from OCT retinal images with a level of sensitivity and specificity
that is comparable to that of a physician. The reported accuracy rates range from 90%
to 95%. AI models are capable of accurately categorizing retinal images that exhibit a
variety of conditions, including AMD, drusen, mottling RPE, choroidal neovascularization,
and healthy retinas, with an accuracy rate of over 90%. Nevertheless, the diagnosis and
monitoring of AMD are not adequately addressed by relying solely on OCT retinal images.
Clinicians would be significantly aided in their monitoring approach by the precise identifi-
cation of retinal biomarkers that indicate disease activity in AMD [22]. The optimization of
treatment regimens and the prediction of therapy response remain significant challenges
for patients with nAMD. Instruments that are currently available have the potential to
enhance confidence in the clinical development of novel therapies, facilitate the creation of
individual prognostic forecasts, and ultimately provide information that is highly beneficial
for treatment decisions during clinics, all of which are powered by AI.



Pharmaceuticals 2024, 17, 1440 5 of 14

5. Artificial Intelligence Models

This section examines DL algorithms, a category of ML, and their utilization in OCT
image analysis for forecasting therapeutic response in nAMD.

The following are the examples of AI, DL, and ML models discussed hereby:

• CNNs: extensively employed in numerous studies for the analysis of imaging data,
including fundus pictures and OCT scans, exhibiting significant sensitivity and speci-
ficity in identifying macular alterations;

• Random Forests and Support Vector Machines (SVMs): these models are frequently
employed for classification tasks, distinguishing between healthy and eyes affected by
AMD based on certain clinical criteria, including the thickness of the retinal neuroep-
ithelium or the presence of intra- or subretinal fluid;

• Bayesian Networks: utilized in various instances to amalgamate several diagnostic
tests and clinical data, yielding probabilistic results to evaluate macular exudation risk;

• Deep Learning Algorithms: models utilizing fundus imaging and OCT have demon-
strated efficacy in the early detection and ongoing monitoring of AMD;

• Explainable Artificial Intelligence (XAI): this is becoming an essential method for
improving the interpretability of AI models, hence rendering clinical decision-making
more transparent and reliable for practitioners.

Deep learning is a subset of artificial intelligence where many resources are now
invested to try to identify predictive indicators for individualized outcomes. Neverthe-
less, the majority of progress in the recent intensive use of AI for nAMD has focused on
creating models that support eye specialists in image analysis [4]. These algorithms are de-
signed to implement and automate the process of segmenting, extracting, and quantifying
imaging-based features from the imaging acquisition starting from the optical coherence
tomography (OCT). Typically, the process of training, fine-tuning, and testing AI algo-
rithms necessitates the use of extensive and high-quality datasets [23]. With comparatively
few datasets, several research groups have created AI-based algorithms for nAMD. No-
tably, among these datasets, the Moorfields Eye Hospital real-world AMD database and
HARBOR stand out in the literature [24]. The phase 3 HARBOR study (NCT00891735)
evaluated the effectiveness of ranibizumab in 1097 patients with treatment-naïve nAMD.
The trial compared two different dosages of the drug and two treatment regimens: monthly
and PRN treatment. Significantly, HARBOR was the initial prominent clinical trial for
nAMD to employ spectral-domain OCT, enabling precise extraction of high-sensitivity
features [25]. Moorfields Eye Hospital, a specialized retinal center in the United Kingdom,
has a comprehensive database of electronic medical records and OCT images. This database
includes information from patients with AMD who have received at least one injection of
ranibizumab or aflibercept between 2008 and 2018 and have been followed up for at least
1 year [26]. The Moorfields AMD dataset has a total of 8174 eyes belonging to 6664 patients.
A de-identified version of the segmentation results is publically accessible to the research
community [27,28].

Using a DL-based framework with two independent networks, De Fauw and col-
leagues developed a critical model for OCT image segmentation and disease classifica-
tion [28]. This model is used to conduct automated diagnosis of retinal diseases on OCT
scans. This approach has been used to study imaging biomarkers and visual outcomes [29].
Subsequently, a different group created an innovative automatic segmentation model utiliz-
ing CNNs [30]. The construction of this model involved the utilization of a substantial and
authentic dataset derived from electronic medical records in the United Kingdom. This
dataset was meticulously annotated by clinical specialists, who identified and labeled the
most prevalent biomarkers associated with AMD on OCT scans. The retinal biomarkers
comprise pigment epithelial detachment (PED), intraretinal fluid (IRF), and subretinal fluid
(SRF) [30]. The Notal OCT Analyzer and the Medical University of Vienna AI-based Fluid
Monitor are advanced instruments that can automatically detect and measure fluids in
OCT images [31,32]. In particular, these have helped to more accurately measure and map
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changes in IRF and SRF over time, as well as to conduct quantitative measurements across
several big datasets and to investigate questions about retinal fluid measures and visual
outcomes [33,34].

For example, when the Notal OCT Analyzer was used on a real-world dataset, it
showed that higher changes in some measurements (IRF, SRF, PED, central subfield thick-
ness, and total fluid) during the anti-VEGF maintenance phase were linked to poorer visual
acuity after 2 years [34,35]. Some preliminary investigations utilizing the AI-powered Fluid
Monitor demonstrated distinct effects of SRF and IRF on visual outcomes. In both the
FLUID and HARBOR trials, higher volumes of IRF, but not SRF, were found to have a
negative correlation with visual acuity [24]. Specifically, for every 100 nanoliter increase in
IRF volume, visual acuity decreased by an average of -4.00 and -2.84 letters, respectively.
On the other hand, an increase in SRF volume by 1.10 and 1.43 (which was not statistically
significant) did not have a significant impact on visual acuity. The range of numbers is from
32 to 33, inclusive. Using the approach used by De Fauw, the Moorfields AMD database
revealed a more significant correlation between IRF and visual acuity compared with
SRF [28]. Additional research has utilized AI models to analyze OCT images for various
research purposes. These include predicting visual acuity from OCT, extracting advanced
features such as ellipsoid zone integrity and subretinal hyperreflective material volume,
enabling correlation analysis among multiple OCT features, comparing different types
of eye conditions, and grouping patients based on characteristics related to CNV using
unsupervised ML.

6. Artificial Intelligence and the Therapy Prediction

This part explores AI models developed to forecast individualized therapy needs and
response rates, utilizing OCT biomarkers previously revealed in the article, building upon
the uses of AI in diagnosis and prognosis.

Algorithms for forecasting therapy response and required treatment frequency have
been started to be developed by several research groups. Different studies have taken
distinct strategies providing their analysis of treatment response. Some investigations
examined the anatomical response to anti-VEGF treatment using OCT, others utilized
CNNs employing data from a real-world cohort. It has been observed that the efficacy of
anti-VEGF treatment for CNV or cystoid macular edema may be anticipated by analyzing
baseline OCT pictures with an area under the curve of 0.81 [36]. In another study, a condi-
tional generative adversarial network (GAN) was employed to create a DL model trained
on the retrospective dataset that can generate post-treatment OCT pictures [37]. It is aimed
to generate OCT pictures that depict the condition of a patient one month after completing
three monthly anti-VEGF loading dosages. A comprehensive model that incorporates base-
line OCT, fluorescein angiography, and indocyanine green angiography pictures, instead
of relying just on OCT images, demonstrated superior predictive performance for each of
PED, SRF, IRF, and subretinal hyperreflective material [38].

Some authors employ DL to analyze the Moorfields AMD database in order to inves-
tigate the prediction capacity of quantitative OCT parameters on post-treatment visual
outcomes [39]. The combination of baseline visual acuity and OCT characteristics accurately
predicted the outcomes at 3 months and 12 months after the initial injection, with R2 values
of 0.49 and 0.38, respectively. However, when past treatment response (incremental visual
acuity and OCT changes) was taken into account, the predictive accuracy significantly
improved to R2 values of 0.79 and 0.63, respectively. A group of researchers successfully
created a comprehensive DL model to anticipate the treatment needs of patients who are
obtaining anti-VEGF on a PRN regimen based on the investigator’s judgment. However,
the precise group of patients was not specified [40]. The OCT pictures were examined using
established models to measure the amount of fluid. Patients were excluded if there was a
disagreement between the model and the investigator on more than three non-injection
occurrences over a period of two years [41]. The algorithm classified patients into three
categories on the basis of longitudinal images: ‘low’ treatment requirement (up to 5 IVT),
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‘mid’ treatment requirement (5 to 15 IVT), and ‘high’ treatment requirement (≥16 IVT).
The model showed suboptimal performance in categorizing patients in the second group.
However, it attained an area under the curve of 0.85 and 0.81 in binary classifications of
low versus all or high vs. all treatment requirements [40]. Nevertheless, this study did
not finally establish a direct relationship between these therapy criteria and the resulting
eyesight outcomes (Figure 2).

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 7 of 14

Some authors employ DL to analyze the Moorfields AMD database in order to inves-

tigate the prediction capacity of quantitative OCT parameters on post-treatment visual 

outcomes [39]. The combination of baseline visual acuity and OCT characteristics accu-

rately predicted the outcomes at 3 months and 12 months after the initial injection, with 

R2 values of 0.49 and 0.38, respectively. However, when past treatment response (incre-

mental visual acuity and OCT changes) was taken into account, the predictive accuracy

significantly improved to R2 values of 0.79 and 0.63, respectively. A group of researchers 

successfully created a comprehensive DL model to anticipate the treatment needs of pa-

tients who are obtaining anti-VEGF on a PRN regimen based on the investigator’s judg-

ment. However, the precise group of patients was not specified [40]. The OCT pictures 

were examined using established models to measure the amount of fluid. Patients were 

excluded if there was a disagreement between the model and the investigator on more 

than three non-injection occurrences over a period of two years [41]. The algorithm clas-

sified patients into three categories on the basis of longitudinal images: ‘low’ treatment 

requirement (up to 5 IVT), ‘mid’ treatment requirement (5 to 15 IVT), and ‘high’ treatment 

requirement (≥16 IVT). The model showed suboptimal performance in categorizing pa-

tients in the second group. However, it attained an area under the curve of 0.85 and 0.81 

in binary classifications of low versus all or high vs. all treatment requirements [40]. Nev-

ertheless, this study did not finally establish a direct relationship between these therapy 

criteria and the resulting eyesight outcomes (Figure 2).

Figure 2. Artificial intelligence models for therapy prediction assessing the anatomical response to 

antiVEGF.

Research has mostly focused on investigating the response to anti-VEGF treatment. 

This has been performed either indirectly by examining the relationship between OCT 

parameters and vision outcomes or directly by investigating whether treatment response 

can be anticipated using retinal pictures [42]. An established concern in the field of ML is 

that AI models tend to mirror the biases present in the datasets they are trained on. Re-

grettably, there are rather few extensive datasets, including top-notch spectral-domain 

OCT data in nAMD, and these are employed by many research groups for the well-known 

purposes of training, fine-tuning, and testing AI models. Clinical trial populations, char-

acterized by strict inclusion and exclusion criteria, tend to be more homogeneous and less 

• OCT

• CNNs (convolutional neural networks) 
Machine 
learning

• GAN (generative adversarial network)

• baseline visual acuity

• OCT changes

Deep 
learning

Figure 2. Artificial intelligence models for therapy prediction assessing the anatomical response
to antiVEGF.

Research has mostly focused on investigating the response to anti-VEGF treatment.
This has been performed either indirectly by examining the relationship between OCT pa-
rameters and vision outcomes or directly by investigating whether treatment response can
be anticipated using retinal pictures [42]. An established concern in the field of ML is that
AI models tend to mirror the biases present in the datasets they are trained on. Regrettably,
there are rather few extensive datasets, including top-notch spectral-domain OCT data in
nAMD, and these are employed by many research groups for the well-known purposes of
training, fine-tuning, and testing AI models. Clinical trial populations, characterized by
strict inclusion and exclusion criteria, tend to be more homogeneous and less demograph-
ically varied compared with real-world populations. On the other hand, patient groups
in real-world settings, such as the Moorfields AMD database, exhibit greater diversity
in terms of demographics, disease condition, and severity, treatment methods, and the
schedule and protocols for OCT imaging [26]. An additional major obstacle to both model
building and evaluating a model’s predictive power for treatment needs is the absence of
counterfactual data. Each patient features distinct characteristics in terms of the onset of
disease, first clinical manifestation, and individualized response to the therapy. Since it is
not possible to replicate a specific pre-treatment condition, it is definitely challenging to
evaluate the potential outcome of a different treatment strategy for that patient or even
forecast their visual outcomes.

The lack of OCT data standards ultimately affects the availability of high-quality
datasets for the creation of AI models and the capacity of these models to be used broadly.
Consequently, the models developed so far are typically limited to specific devices, which
hinders their wider usage in clinical practice where several OCT devices are utilized. To be
practical in clinical settings, AI technologies must be specifically developed to be functional
and interpretable beyond confined research environments [43].

The goal of obtaining the optimal visual outcome for each individual patient can be
achieved through the use of AI-based nAMD therapy predictions in research as well as
clinical practice. AI models have the potential to enhance various aspects of clinical trial
design, such as patient identification, randomization, selection, and trial analysis adjust-
ments. AI has the potential to enhance standardization and efficiency in picture grading,
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allowing for analysis on a broader detailed level compared with present technology. AI has
the ability to generate ‘synthetic’ treatment arms, which are hypothetical and simulated
comparator arms. These arms can be utilized to represent other patient populations or
alternative therapies for clinical trials, including sham arms [44].

When it comes to treating nAMD, physicians are restricted in their choices by the best
treatment plans that offer the greatest visual improvements while minimizing the burden
of treatment. Physicians who adhere to a monthly treatment plan would lack a strong
incentive to utilize an artificial intelligence-driven prediction model as an exaggerated
illustration. Nevertheless, in the next years, the intricacy of treatment choices is anticipated
to rise as the nAMD treatment options expand to potentially encompass novel modes of
action, extended-release delivery alternatives, and gene therapy [45].

DL, with thorough OCT image processing, helps doctors determine each patient’s
needs as fast and precisely as possible, which will improve patient care in a number of ways.
AI can enhance clinicians’ ability to analyze images more effectively, hence increasing the
amount of information accessible for therapeutic decision-making, such as identifying tiny
features in fundus photographs. For instance, a DL model was created to generate OCT
angiography-like images from structural OCT.

7. Outcome Prediction Using Artificial Intelligence

Numerous AI techniques have been employed to forecast how patients with nAMD
will respond to anti-VEGF treatment. The primary focus of investigations was to forecast
the visual outcome after therapy and to anticipate the OCT features following treatment [46].
Rohm et al. utilized ML techniques to make predictions about visual acuity (VA) at 3 and
12 months. The 3-month VA forecast had a mean absolute inaccuracy ranging from 5.5 to
9 letters when compared with the ground truth. Yeh et al. assessed the precision of a new
CNN in predicting visual outcomes after 12 months in patients with nAMD. The reported
accuracy was 0.936 [47].

Liu et al. utilized GAN to forecast OCT pictures following anti-VEGF therapy for
nAMD. According to their research, 92% of the artificial OCT images met the necessary
standards for clinical analysis. The predictive accuracy for determining the macular status
as either wet or dry was 0.85 [48]. Zhao et al. made an effort to forecast whether patients
with nAMD will respond or not respond to short-term anti-VEGF treatment using OCT
images [49]. A unique sensitive structure-guided network was utilized, resulting in an
84.6% accuracy in predicting the reaction. The accuracy of this method was comparatively
superior to both DL-based systems and experienced ophthalmologists. The work conducted
by Lee et al. utilized GAN to make predictions of post-treatment OCT pictures. The
inclusion of baseline fluorescein angiography and indocyanine green angiography images
resulted in an enhancement of accuracy to a range of 80.7–96.3% [37].

Moon and coworkers specifically examined the variations in fluid levels after therapy
among individuals who were administered different anti-VEGF drugs. Two crucial steps
are choosing the anti-VEGF molecule and monitoring the fluid status after first loading
injections as a significant predictor of long-term effectiveness. In fact, patients showing
retinal fluid after the initial loading injection were more likely to have poor long-term
visual outcomes and needed more frequent and intensive long-term injections compared
with those with no retinal fluid [50]. While both ranibizumab and aflibercept are effective,
there are some variations in their efficacy. Aflibercept demonstrated a somewhat higher
effectiveness in terms of anatomical improvement, and also a higher rate of clearance of
polypoidal lesions, and a bigger decrease in retinal thickness compared with ranibizumab.
Shifting from ranibizumab to aflibercept can provide some pros for some people affected
by treatment-resistant nAMD, particularly in resolving fluid following the initial loading
injections [51]. However, aflibercept has some possible cons. Upon intravitreal injection,
a portion of the anti-VEGF drug penetrates the bloodstream, leading to systemic VEGF
levels decreasing. Anyway, there is disagreement on whether this distinction (aflibercept
vs. ranibizumab) actually results in a medically important effect [52].
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Personalized medicine entails tailoring treatment to an individual patient by consider-
ing the patient’s characteristics and the nature of the ailment. When evaluating the safety of
treating older people with nAMD, ranibizumab may be preferred due to its good systemic
risk profile. However, if it is anticipated that ranibizumab treatment would not yield satis-
factory results in a patient, aflibercept may also be taken into consideration. When making
decisions similar to these, it is crucial to include a highly thorough forecast of the reaction
to the treatment. While various biomarkers linked to the response to anti-VEGF medication
have been identified, there is currently no established biomarker that can accurately predict
the difference in effectiveness between ranibizumab and aflibercept. We are certain that
our AI system can assist in predicting the effectiveness of the two medications and so aid
in selecting the most suitable anti-VEGF agents for patients (Table 1).

Table 1. Machine learning and deep learning models for macular degeneration.

Authors Model Dataset

Bogunovic et al. [53] ML, Random forest classifier 317 eyes from nAMD patients undergoing PRN treatment
Pfau et al. [54] ML, NGBoost 99 eyes from nAMD patients

Gallardo et al. [55] ML, Random forest classifier 377 eyes from nAMD patients undergoing T&E treatment
Zheng et al. [56] DL, U-net DL segmenter, ResNet, iPredict, DenseNet 877 eyes from nAMD patients

Ma et al. [56] DL, ResNet-34 73 eyes from patients with polypoidal choroidal vasculopathy
Romo Bucheli et al. [40] DL, DenseNet, RNN trained end to end 350 eyes from nAMD patients undergoing PRN treatment

ML = machine learning; nAMD = neovascular age-related macular degeneration; PRN = pro re nata; T&E = treat
and extend; DL = deep learning.

AI has been used to anticipate post-treatment OCT images to detect suitable patients
for delivering newly launched medicines to treat nAMD. Ongoing research is being carried
out to produce novel drugs for nAMD. Brolucizumab, a novel drug that blocks VEGF-A,
was released in 2019. The FDA approved faricimab in 2022. Faricimab is a medication
that inhibits VEGF-A and angiopoietin-2. At now, there are ongoing efforts to develop
new drugs, such as OPT-30242 and aflibercept 8.0 mg, that can enhance the effectiveness of
treating nAMD.

8. Future Directions

AI systems can offer enduring cost reductions, particularly in high-volume screening
contexts, when cost-effectiveness is taken into account after training and implementation.
AI enhances overall resource efficiency by reducing the need for recurrent visits and
protracted diagnostic procedures through the automation of the detection process. In
addition, AI’s ability to detect nAMD in its initial stages can facilitate the development of
timely therapies, thereby reducing the long-term costs associated with the management of
advanced conditions. The initial costs of AI systems, which include software, infrastructure,
and training, may be substantial; however, these costs are offset by reduced labor costs and
improved efficiency as time progresses. Although conventional AMD detection procedures
are initially less expensive, they may result in substantial costs over time as a result of the
need for frequent follow-up appointments, repetitive examinations, and extended periods
for physicians to analyze results. Additionally, traditional methods may result in delayed
diagnoses, which could lead to a rise in long-term treatment costs as the disease progresses
to more severe stages. The availability of sophisticated diagnostic apparatus may serve as
a constraint in resource-constrained environments, thereby rendering AI a more scalable
and economically viable option over time.

AI methodologies offer significant advantages over nAMD detection methods in terms
of economic viability, efficiency, and precision. AI is an invaluable asset in the management
of AMD at the population level and in clinical practice due to its ability to identify early-
stage macular changes and automate extensive screening accurately. While AI systems may
incur substantial upfront installation costs, their long-term benefits in resource optimization
and improved diagnostic precision render them superior to traditional methods.
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Cutting-edge technology facilitates the acquisition of a significant amount of imaging
data. Consequently, it is expected that AI will progress among the majority of healthcare
practitioners across several medical disciplines. The accurate acquisition and evaluation of
images are essential for achieving an accurate diagnosis and identifying the most appro-
priate treatment plan. Advancements in computational resources and machine learning
algorithms may improve the clinical practice of physicians and human experts. This may
result in a diagnostic technique that is very accurate, reliable, and consistent, exhibiting
a high degree of specificity and sensitivity. The expected increase in the availability of
medical imaging resources and the reduction in computer technology costs make AI aid
essential. Moreover, the extensive variability in the interpretation of imaging results by
various examiners, along with the ensuing discrepancies in consensus among retinal spe-
cialists, is another factor deserving attention [4]. We are assured that the opportunity to
integrate artificial intelligence into routine clinical practice is promising. Deep learning
is anticipated to impact clinical practice significantly. Recent research in ophthalmology
has demonstrated the validity and accuracy of deep learning algorithms for the early iden-
tification, continuous monitoring, and focused therapy of retinal illnesses [57]. Recently
developed molecules typically exhibit comparable or even superior results when compared
with current agents, but they also might have unforeseen negative occurrences. Therefore,
some physicians may adopt a cautious stance towards the utilization of novel medica-
tions if the efficacy of existing treatments is deemed satisfactory for treating the ailment.
Ranibizumab and aflibercept are currently the two most often utilized FDA-approved
drugs for the treatment of nAMD.

Historically, AI has been progressively applied to various areas of ophthalmology,
including personalized medicine, to assist in tasks such as selecting appropriate treatments
and determining optimal dosage levels. This pattern is anticipated to be adopted in the field
of ophthalmology [58]. Some researchers aimed to forecast the variation in post-treatment
OCT pictures based on the specific anti-VEGF type, and AI algorithms were applied to
forecast alterations in each fluid retinal compartment. Moon conducted a study utilizing
horizontal and vertical OCT scan images and employing GAN models, such as cycle GAN
and spatial GAN. Additional research will be required to determine the most effective
artificial intelligence model for accurately forecasting the treatment outcomes of anatomical
conditions, taking into account the individual characteristics of each anti-VEGF medication.

Studies have demonstrated that natural language processing models effectively gen-
erate adequate answers to medical questions asked by patients affected by AMD. In a
recent study, Johnson et al. demonstrated that the responses generated by Chat-Generative
Pre-Trained Transformer (Chat-GPT) were deemed to be very accurate and thorough, with
mean scores of “almost completely correct” and “complete and comprehensive” corre-
spondingly [59]. Although still in its early stages, the use of GANs, which are composed of
two competing types of deep neural networks, a discriminator and a generator, is showing
promising potential applications in ophthalmology, as detailed in an interesting review from
You et al. These techniques, including conversion, artifact removal, denoising, and database
expansion, can be used in AMD imaging to assist in diagnosis and interpretation [60].

9. Conclusions

Models that are based on AI have the potential to improve research and clinical practice
in the field of nAMD by allowing for the greatest visual outcomes while minimizing the
amount of treatment load for each individual patient. The analysis of OCT, along with
other retinal multimodal imaging, having been made possible by the innovative application
of AI, has led to a better knowledge of the nAMD and the potential therapeutic responses.
Also, there are several modalities by which AI can be utilized in the process of developing,
analyzing, and carrying out clinical studies. These applications have the potential to
enhance clinical development across the board and boost decision-making confidence,
especially in the case of early-stage clinical trials. Additionally, given the complexity of
nAMD therapy options, AI may yield formidable tools to guide point-of-care treatment
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decisions. Anyway, to date, there is still a significant difference between the use of AI
for research and for information about clinical practice treatment decisions. The lack of
large, reliable datasets reflecting patient variability, pathology, and treatment response is
the major obstacle to achieving this goal.
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14. Waldstein, S.M.; Vogl, W.D.; Bogunović, H.; Sadeghipour, A.; Riedl, S.; Schmidt-Erfurth, U. Characterization of drusen and

hyperreflective foci as biomarkers for disease progression in age-related macular degeneration using artificial intelligence in
optical coherence tomography. JAMA Ophthalmol. 2020, 138, 740–747. [CrossRef] [PubMed]

15. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
16. Ting, D.S.W.; Lin, H.; Ruamviboonsuk, P.; Wong, T.Y.; Sim, D.A. Artificial intelligence, the internet of things, and virtual clinics:

Ophthalmology at the digital translation forefront. Lancet Digit. Health 2020, 2, e8–e9. [CrossRef]
17. Rashidi, H.H.; Tran, N.K.; Betts, E.V.; Howell, L.P.; Green, R. Artificial intelligence and machine learning in pathology: The

present landscape of supervised methods. Acad. Pathol. 2019, 6, 2374289519873088. [CrossRef]
18. Grassmann, F.; Mengelkamp, J.; Brandl, C.; Harsch, S.; Zimmermann, M.E.; Linkohr, B.; Peters, A.; Heid, I.M.; Palm, C.;

Weber, B.H.F. A Deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular
degeneration from color fundus photography. Ophthalmology 2018, 125, 1410–1420. [CrossRef]

19. Li, J.Q.; Welchowski, T.; Schmid, M. Prevalence and incidence of age-related macular degeneration in Europe: A systematic
review and meta-analysis. Br. J. Ophthalmol. 2020, 104, 1077–1084. [CrossRef]

20. Mitchell, P.; Liew, G.; Gopinath, B. Age-related macular degeneration. Lancet 2018, 392, 1147–1159. [CrossRef]
21. Bahr, T.; Vu, T.A.; Tuttle, J.J.; Iezzi, R. Deep learning and machine learning algorithms for retinal image analysis in neurodegenera-

tive disease: Systematic review of datasets and models. Transl. Vis. Sci. Technol. 2024, 13, 16. [CrossRef]
22. Vujosevic, S.; Parra, M.M.; Hartnett, M.E. Optical coherence tomography as retinal imaging biomarker of neuroinflamma-

tion/neurodegeneration in systemic disorders in adults and children. Eye 2023, 37, 203–219. [CrossRef] [PubMed]
23. Al-Khersan, H.; Hussain, R.M.; Ciulla, T.A.; Dugel, P.U. Innovative therapies for neovascular age-related macular degeneration.

Expert. Opin. Pharmacother. 2019, 20, 1879–1891. [CrossRef] [PubMed]
24. Ferrara, D.; Newton, E.M.; Lee, A.Y. Artificial intelligence-based predictions in neovascular age-related macular degeneration.

Curr. Opin. Ophthalmol. 2021, 32, 389–396. [CrossRef] [PubMed]
25. Ho, A.C.; Busbee, B.G.; Regillo, C.D. HARBOR Study Group. Twenty-four-month efficacy and safety of 0.5 mg or 2.0 mg

ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 2014, 121, 2181–2192.
[CrossRef]

26. Fasler, K.; Moraes, G.; Wagner, S. One- and two-year visual outcomes from the Moorfields age-related macular degeneration
database: A retrospective cohort study and an open science resource. BMJ Open 2019, 9, e027441. [CrossRef]

27. Moraes, G.; Fu, D.J.; Wilson, M. Quantitative analysis of OCT for neovascular age-related macular degeneration using deep
learning. Ophthalmology 2021, 128, 693–705. [CrossRef]

28. De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat.
Med. 2018, 24, 1342–1350. [CrossRef]

29. Fu, D.J.; Faes, L.; Wagner, S.K.; Moraes, G.; Chopra, R.; Patel, P.J.; Balaskas, K.; Keenan, T.D.L.; Bachmann, L.M.; Keane, P.A.
Predicting incremental and future visual change in neovascular age-related macular degeneration using deep learning. Ophthalmol.
Retin. 2021, 5, 1074–1084. [CrossRef]

https://doi.org/10.1371/journal.pone.0133628
https://www.ncbi.nlm.nih.gov/pubmed/26214804
https://doi.org/10.3390/jpm14070690
https://www.ncbi.nlm.nih.gov/pubmed/39063944
https://doi.org/10.3389/fmed.2022.958469
https://doi.org/10.3390/molecules27165089
https://doi.org/10.1111/ceo.14294
https://doi.org/10.1001/jamaophthalmol.2022.1091
https://doi.org/10.1016/j.ophtha.2021.09.016
https://doi.org/10.2147/PROM.S162802
https://doi.org/10.3238/arztebl.2020.0513
https://doi.org/10.1016/j.oret.2021.12.007
https://www.ncbi.nlm.nih.gov/pubmed/34922038
https://doi.org/10.1016/j.xops.2023.100319
https://www.ncbi.nlm.nih.gov/pubmed/37304043
https://doi.org/10.1001/jamaophthalmol.2020.1376
https://www.ncbi.nlm.nih.gov/pubmed/32379287
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1016/S2589-7500(19)30217-1
https://doi.org/10.1177/2374289519873088
https://doi.org/10.1016/j.ophtha.2018.02.037
https://doi.org/10.1136/bjophthalmol-2019-314422
https://doi.org/10.1016/S0140-6736(18)31550-2
https://doi.org/10.1167/tvst.13.2.16
https://doi.org/10.1038/s41433-022-02056-9
https://www.ncbi.nlm.nih.gov/pubmed/35428871
https://doi.org/10.1080/14656566.2019.1636031
https://www.ncbi.nlm.nih.gov/pubmed/31298960
https://doi.org/10.1097/ICU.0000000000000782
https://www.ncbi.nlm.nih.gov/pubmed/34265783
https://doi.org/10.1016/j.ophtha.2014.05.009
https://doi.org/10.1136/bmjopen-2018-027441
https://doi.org/10.1016/j.ophtha.2020.09.025
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1016/j.oret.2021.01.009


Pharmaceuticals 2024, 17, 1440 13 of 14

30. Liefers, B.; Taylor, P.; Alsaedi, A. Quantification of key retinal features in early and late age-related macular degeneration using
deep learning. Am. J. Ophthalmol. 2021, 226, 1–12. [CrossRef]

31. Chakravarthy, U.; Goldenberg, D.; Young, G.; Havilio, M.; Rafaeli, O.; Benyamini, G.; Loewenstein, A. Automated identification
of lesion activity in neovascular age-related macular degeneration. Ophthalmology 2016, 123, 1731–1736.
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