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Abstract: Gyros/star sensor integration provides a potential method to obtain high-accuracy spatial
orientation for turntable structures. However, it is subjected to the problem of accuracy loss when
the measurement noises become non-Gaussian due to the complex spatial environment. This paper
presents an event-driven maximum correntropy filter based on Cauchy kernel to handle the above
problem. In this method, a direct installation mode of gyros/star sensor integration is established
and the associated mathematical model is derived to improve the turntable’s control stability. Based
on this, a Cauchy kernel-based maximum correntropy filter is developed to curb the influence of
non-Gaussian measurement noise for enhancing the gyros/star sensor integration’s robustness.
Subsequently, an event-driven mechanism is constructed based on the filter’s innovation information
for further reducing the unnecessary computational cost to optimize the real-time performance. The
effectiveness of the proposed method has been validated by simulations of the gyros/star sensor
integration for spatial orientation. This shows that the proposed filtering methodology not only
has strong robustness to deal with the influence of non-Gaussian measurement noise but can also
achieve superior real-time spatial applications with a small computational cost, leading to enhanced
performance for the turntable’s spatial orientation using gyros/star sensor integration.

Keywords: maximum correntropy filter; spatial orientation; gyros/star sensor integration; non-
Gaussian noise; Cauchy kernel

1. Introduction

The turntable structure can realize the orientation motion of the payload (camera,
radar and so on) independently of the spacecraft platform. It plays a vital role for the
space tracking and detection system in the aerospace field [1,2]. A two-dimensional
turntable is one of the most widely used structures in the above systems. It consists of
two rotating platforms, in which their shafting is perpendicular to each other [1,3]. The
highly precise orientation measurement of the two-dimensional turntable is an important
prerequisite for achieving high stability and enhancing the stability of the space tracking
and detection system.

Spatial orientation accuracy refers to the error between the ideal spatial orientation
and the actual spatial orientation associated with the inner frame of the turntable after the
rotation and transformation of each axis. Due to the inevitable control error, the installation
error and other factors in the practical application of the system, there is a deviation
between the actual orientation and the ideal orientation of the turntable, which significantly
affects the control stability of the turntable [4,5]. Therefore, highly precise orientation
measurements of the turntable are particularly important.
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Currently, in spatial orientation applications, the star sensor is a commonly used mea-
surement device that can provide high-precision attitude and orientation information [6,7].
However, the operating frequency of the star sensor is quite low and it is easily limited
by the time and environmental conditions [7,8]. In contrast, gyros, as an autonomous
inertial measurement method, can continuously output high-frequency angular/attitude
information with good real-time performance [9,10]. However, gyros have the weakness of
error drifts, leading to poor long-term attitude/orientation accuracy [11]. It can be seen that
the above two sensors have a good complementary characteristic in terms of attributes, so
the gyros/star sensor integration scheme can use the high-precision attitude or orientation
information obtained from the star sensor to compensate for the drift of the gyros, achieving
high-precision turntable orientation information [12,13].

When the gyros/star sensor integration is implemented for the two-dimensional
turntable’s spatial orientation, there are usually two schemes: one is the strap-down
installation mode and the other is the direct installation mode [13,14]. In the former, both
the gyros and star sensor are installed on the fixed base of the turntable, while in the latter,
the gyros are installed in the inner frame of the two-dimensional turntable and firmly
connected with the load camera/radar, and the star sensor is installed on the fixed base of
the turntable. It should be noted that in many applications, due to the limited space, the
star sensor is hardly installed in the inner frame of the turntable because of its large size. In
the strap-down installation mode, the turntable’s control stability is easily affected by the
turntable error since the gyros/star sensor integration cannot directly perceive the turntable
angle. Thus, the direct installation mode has gained increasing attention by scholars in
recent years. The research of this paper is also based on the direct installation mode of
gyros/star sensor integration.

Nowadays, the data fusion of gyros/star sensor integration is mostly achieved based
on Kalman filtering [15,16]. Under the assumption of linear and Gaussian noise models,
Kalman filtering can obtain the optimal estimation of a system state [15,16]. However,
due to the influence of the spatial light environment, the measurement of star sensors will
be contaminated. This makes the measurement noise of gyros/star sensor integration no
longer follow a Gaussian distribution, resulting in non-Gaussian noise. In this situation,
the performance of Kalman filtering will be significantly deteriorated [17,18].

Research efforts have been dedicated to dealing with non-Gaussian noise involved
in the dynamic system. Farahmand et al. proposed a doubly robust smoothing method
to provide double robustness that enhances the accuracy and reliability of estimations,
particularly in the presence of bias measurement noise covariance and model misspeci-
fication [18]. However, the smoothing method is not suitable for a real-time application.
Further, Soken et al. established a robust Kalman filter by using a scalar factor to adjust the
measurement noise covariance for curbing the influences of inaccurate measurement noise
covariances [19]. However, its improvement is very limited since the scalar factor is chosen
empirically. Particle filter (PF) and Gaussian sum filter (GSF) are also two typical forms of
non-Gaussian filtering [20,21]. Kim et al. developed PF to further extend the non-Gaussian
capabilities of filtering by employing sampling and resampling techniques to approximate
posterior distributions [20]. Sorenson et al. constructed a GSF by using random sampling to
obtain the global approximation of the system state’s posterior probability density, which is
not limited to Gaussian noise [21]. However, global approximation requires a large amount
of computation, making the above filters difficult to apply for the spatial orientation [22].

As an emerging filtering theory, information theoretic learning has garnered attention
for its optimization criteria, which rely on information theoretic measures such as maximum
correntropy criterion (MCC) derived directly from data, instead of conventional second-
order statistical metrics [23,24]. It exhibits an excellent robustness to handle non-Gaussian
noise since it uses the signals’ high-order moments rather than the second-order moments
in the minimum mean square error principle. Chen et al. [23] first established the maximum
correntropy Kalman filter by using the maximum correntropy criterion. It has superior
performance to resist the influences of outliers and non-Gaussian noise for a linear system.
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Compared to PF and GSF, the filter based on the MCC shows a quite low computational
burden. Further, Mohammadi et al. [24] presented a maximum–minimum correntropy
criterion for robust and stable gene selection. Gao et al. [25] developed the theory of MCC
to handle outliers and non-Gaussian noise to improve the performance of spectral redshift
estimation for spectral redshift navigation. In the traditional maximum correntropy (MC)
filter, the Gaussian kernel is always used to define the distance between distinct vectors.
Nevertheless, it may not always be an optimal selection for the kernel function. An issue
arises when the measurement is affected by multi-dimensional non-Gaussian noise, such as
heavy-tailed noise in real-world applications. In such cases, the aforementioned MC filters
may fail due to the occurrence of singular matrices, causing certain characteristics of the
noise to be overlooked and resulting in reduced estimation accuracy [26,27].

To address the drawbacks of Gaussian kernel-based MC filters, a novel Cauchy kernel-
based MCC filter is proposed [27,28]. It uses the Cauchy kernel instead of the original
Gaussian kernel to describe the distance between different vectors. The Cauchy kernel
originated from the Cauchy distribution. Its function curve has a long tail, indicating that
the kernel function is very broad and can be used for data with high dimensions. Because
of the above reason, the Cauchy kernel-based MC filter shows a superior performance
when handling multi-dimensional non-Gaussian noise. It also behaves in a consistently
stable manner when a different Cauchy kernel bandwidth is selected [28,29]. Unfortunately,
the existing MC filters or Cauchy kernel-based MC filters mostly utilize the fixed-point
iteration method to update the estimates of the state, which will burden the computational
efficiency [27,30]. For the application of spatial orientation, the real-time performance is a
very important property index. Thus, if the MCC is used for the whole filtering process
of gyros/star sensor integration, it will increase the unnecessary computational burden,
leading to a deteriorated real-time performance. This is because in the time point without
measurement fault, i.e., non-Gaussian measurement noise does not exist, the Kalman filter
can obtain the optimal estimation result with a lower computational cost than MC filters,
while MC filters need to use the fixed-point iteration to update the estimates of the state,
requiring a large computational cost.

To address the above problem for a spatial orientation application, this paper presents
a novel method of a Cauchy kernel-based maximum correntropy filter that is event-driven
to curb the influence of non-Gaussian measurement noise on the solution of gyros/star sen-
sor integration. It first establishes a direct installation mode of gyros/star sensor integration
to achieve a high turntable control stability and then derives its associated mathemati-
cal model. Further, an event-driven maximum correntropy filter based on the Cauchy
kernel is proposed to handle the non-Gaussian noise involved in the measurement of
gyros/star sensor integration caused by the complex spatial environment. It also con-
structs an event-driven mechanism according to the innovation information to reduce the
redundant computational cost for the optimization of the filter’s real-time performance.
The proposed methodology can achieve robustness to curb the influence of non-Gaussian
measurement noise with a superior computational cost compared to the existing MC filters.
Simulations and a comparison analysis based on the gyros/star sensor integration for a
two-dimensional turntable’s spatial orientation have been carried out to comprehensively
evaluate the effectiveness of the proposed filtering method.

2. Model of Gyros/Star Sensor Integration for Spatial Orientation

The direct installation mode is used for the integration of the gyros and star sensor,
which is described in Figure 1. It can be seen from Figure 1 that the gyros are installed
in the inner frame of the two-dimensional turntable and firmly connected with the load
camera/radar, and the star sensor is installed on the fixed base of the turntable.
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Figure 1. The direct installation mode of the gyros/star sensor integration.

Based on the direct installation mode, the framework of the gyros/star sensor integra-
tion used for the spatial orientation is illustrated in Figure 2, which has two loops: a filtering
loop and error calculation loop. In the filtering loop, the gyros’ measurement information,
the turntable control quantities, and the attitude of the star sensor serve as the input of filter
for the error state estimation of gyros/star sensor integration. Then, the estimated gyros’
attitude error is fed back to correct the gyros and the gyros’ attitude is updated for the next
time step. In the error calculation loop, the orientation error between the tracking vector
(the normalized vector between the spacecraft and target) and the attitude reference of
the spacecraft is calculated by using the turntable’s control quantities and the spacecraft’s
attitude at each time step to reflect the tracking accuracy.
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Figure 2. Framework of gyros/star sensor integration for spatial orientation. The different colored
lines in the global orientation error plot represent the orientation error curves of multiple repeat tests.

It should be noted that as shown in Figures 1 and 2, the star sensor realizes the
three-dimensional attitude information of turntable base. Since the rotation angles of the
turntable’s inner frame and outside frame are known through the pitch and azimuth code
discs, the three-dimensional attitude information of the turntable base can be transformed
into the turntable’s inner frame (E-frame) and inertial frame (I-frame). Based on this
attitude information, the measurements and measurement model for the gyros/star sensor
integration are established. Further, combining the process model with the measurement
model, gyros’ platform misalignment angle can be estimated through the filtering process.
This estimation will be fed back to the gyros to correct the attitude error. Thus, the star
sensor can restrain and correct the gyros’ drift and further enhance the turntable’s spatial
orientation accuracy.

Based on the above, the model of gyros/star sensor integration can be further derived
and established, which includes the process and measurement models.
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2.1. Process Model

Denote the inertial frame as the I-frame, body frame as the B-frame, turntable’s base
frame as the G-frame, turntable’s outside frame as the A-frame, turntable’s inner frame as
the E-frame and gyros’ composite frame as the P-frame.

The I-frame is chosen as the navigation frame; thus, the angular relation between the
I-frame and P-frame can be expressed by the attitude matrix [31,32]

.
C

I
P = CI

P

(
ωP

IP×
)

(1)

where CI
P is the attitude matrix from the P-frame and I-frame,

.
C

I
P is the differential form of

CI
P, ωP

IP represents the gyros’ output, and
(
ωP

IP×
)

stands for the skew symmetric matrix of
ωP

IP, which can be calculated as [33]

(
ωP

IP×
)
=

 0 −ωP
IPz ωP

IPy
ωP

IPz 0 −ωP
IPx

−ωP
IPy ωP

IPx 0

 (2)

where ωP
IPi (i = x, y, z) represents the components of ωP

IP in the directions of x, y and z.
Considering the measurement error, the above attitude matrix should be written as

CI′
P , and the I′-frame and I-frame have a platform misalignment angle. Thus, we have the

following relationship [32,34]

CI′
P = CI′

I CI
P =

(
I − ϕI×

)
CI

P (3)

where ϕI stands for the platform misalignment angle.
Further, according to the definition of platform misalignment angle ϕI in [35], it has a

differential relation with the gyros’ zero-bias error, which can be described as follows. The
specifics can be seen in [35].

.
ϕ

I
= −CI

PεP (4)

where εP is the gyros’ zero-bias error.
It can be seen that the attitude update of the gyros diverges with time due to the

existence of gyros’ zero-bias error; thus, we can use the star sensor’s output to estimate and
correct the gyros’ attitude errors.

Denote the system state of gyros/star sensor integration as

X =
[
(ϕI)

T
(εP)

T
]T

(5)

Based on (5), the process model of gyros/star sensor integration can be described as

.
X =

[
03×3 −CI

P
03×3 03×3

]
X +

[
wP

03×1

]
(6)

Discretizing (6), we can obtain

Xk =

[
ϕI

k
εP

k

]
=

[
I3×3 −CI

P
03×3 I3×3

][
ϕI

k−1
εP

k−1

]
+

[
I3×3
03×3

]
Wk−1 (7)

2.2. Measurement Model

In the direct installation mode, there is a turntable angle between the gyros and the
star sensor. Thus, according to Figure 1, the error matrix can be constructed based on the
output of the star sensor

MZb = C̃
Pi
I C̃

I
BCB

GCG
ACA

E = C̃
Pi
E (8)
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where C is the rotation matrix from one frame to another frame.
In the real application, since the installation angle can be calibrated to compensate

for its error, the E-frame can be seen coincident with the P-frame. Further, by using the
Rodrigues formula [34], (8) can be further written as

MZb = C̃
Pi
E = C̃

Pi
P = (C̃

P
Pi
)T

=

(
I + sin ϕP

ϕP (ϕP×) + 1−cos ϕP

(ϕP)
2

(
ϕP)2

)T
≈
(
I + (ϕP×)

)T
=
(
I − (ϕP×)

) (9)

where ϕP = [ϕP
x ϕP

y ϕP
z ]

T
is the platform misalignment angle between the P-frame and

Pi-frame computed by the output of star sensor, which can be seen as a small amount;
ϕP =

∣∣ϕP
∣∣ represents its modulus.

According to the definition of the skew symmetric matrix [33], we have

(
ϕP×

)
=

 0 −ϕP
z ϕP

y
ϕP

z 0 −ϕP
x

−ϕP
y ϕP

x 0

 (10)

Thus, expanding (9) yields

MZb = I −

 0 −ϕP
z ϕP

y
ϕP

z 0 −ϕP
x

−ϕP
y ϕP

x 0

 =

 1 ϕP
z −ϕP

y
−ϕP

z 1 ϕP
x

ϕP
y −ϕP

x 1

 (11)

Then, the measurement of gyros/star sensor integration can be constructed as

Zk = −1
2

M32 − M23
M13 − M31
M21 − M12

 =

ϕP
x

ϕP
y

ϕP
z

 = ϕP (12)

where Mij represents the ith row and jth column element of the matrix MZb.
Using the relationship ϕP = CP

I ϕI , the measurement model can be established by

Zk =
1
2

M32 − M23
M13 − M31
M21 − M12

 =
[
CP

I 03×3
]
Xk + Vk (13)

where Vk is the measurement noise.
Thus, the model of gyros/star sensor integration for spatial orientation, including the

process and measurement models, is achieved.

3. Event-Driven Maximum Correntropy Filter Based on Cauchy Kernel

As discussed previously, the star sensor’s measurement is subject to the spatial envi-
ronment’s interference due to low light intensity. This will make the measurement noise
of gyros/star sensor integration in (12) no longer adhere to a Gaussian distribution. In
this situation, the traditional Kalman filtering has no ability to deal with the non-Gaussian
measurement noise, leading to divergent filtering results. This may cause ineffective correc-
tion for the gyros by using the star sensor. Thus, this section establishes an event-driven
maximum correntropy filter based on the Cauchy kernel to address the above problem.

3.1. Maximum Correntropy Filter Based on Cauchy Kernel
3.1.1. Maximum Correntropy Criterion

In information theory, correlation entropy is often defined as a statistic that describes
the similarity between two random variables. Cross-correlation entropy (correntropy) is an
extension of the correlation between random variables. It is not only used to measure the
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second-order information of the joint probability density function but can also measure
higher-order moments.

Firstly, the correntropy between the random variables X and Y is defined as [23]

C(X, Y) = E[Gσ(X, Y)] =
∫

Gσ(X, Y)dFXY(x, y) (14)

where E[ · ] represents the calculation of expectation, Gσ(·) is a shift-invariant Mercer
kernel, FXY(x, y) stands for the joint probability distribution of variables X and Y, and

∫
·

represents the integral operation.
The Gaussian kernel is the most widely used kernel function in Mercer theory, and it

is described as [29]

Gσ(X, Y) = Gσ(X − Y) = exp

(
−∥X − Y∥2

2σ2

)
(15)

where σ > 0 represents the bandwidth of the Gaussian kernel.
However, the Gaussian kernel may not always be an optimal selection due to the

appearance of singular matrices, making the filter break down. In this paper, we use the
Cauchy kernel instead of the Gaussian kernel as the kernel function for the correntropy to
better capture the heavy-tailed features in the noise. The Cauchy kernel has merits such
as being less sensitive to kernel bandwidth and having better stability compared to the
Gaussian kernel. It is defined as [27]

Gσ(X, Y) = Gσ(X − Y) =
1

1 + ∥X − Y∥2/σ
(16)

where σ > 0 is the bandwidth of the Cauchy kernel, which is used to adjust the degree of
influence of the kernel function on non-Gaussian noise.

In real applications, the true joint distribution function of random variables is usu-
ally inaccessible; thus, the sample mean estimation of correntropy is often calculated to
approximate the true joint distribution function [28]

Ĉ(X, Y) =
1
N

N

∑
i=1

Gσ(xi, yi) (17)

where N is the sample number, and xi and yi are the sample data of the random variables
X and Y.

Correntropy can capture the higher-order moment information of the observed signal,
which can be described by the Taylor series expansion of the kernel function [28]

Ĉ(X, Y) =
∞

∑
n=0

(−1)n

σn E
[
(X − Y)2n

]
(18)

It can be seen from (15) and (16) that when X = Y, the correntropy of two random
variables reaches its maximum, indicating the strongest similarity between them, which
is the core principle of the maximum correntropy criterion. In addition, it can be seen
from (18) that the correntropy is a weighted sum of the even-order moments of X − Y.
Unlike the minimum mean square error criterion in Kalman filtering, only the second-order
moment is considered. Thus, the maximum correntropy criterion can be used to handle the
influence of non-Gaussian noises.

Further, from (15) and (16), we can see that the Gaussian kernel gets exponentially
closer to 0 as X − Y increases, which leads to an increase in the possibility of matrix
singularity. As a comparison, the Cauchy kernel approaches zero much more slowly.
Thus, it can effectively reduce the probability of matrix singularity. This is the reason why
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the Cauchy kernel instead of the Gaussian kernel is used as the kernel function for the
correntropy in this paper.

3.1.2. Process of the Maximum Correntropy Filter Algorithm Based on Cauchy Kernel

According to the above-described maximum entropy criterion based on the Cauchy
kernel in Section 3.1.1, we can further combine it with Kalman filtering to establish the
maximum correntropy filter based on the Cauchy kernel.

As shown in (7) and (13), the system process and measurement models of gyros/star
sensor integration can be summarized as the following form{

Xk = Fk/k−1Xk−1 + Wk
Zk = HkXk + Vk

(19)

where

Fk/k−1 =

[
I3×3 −CI

P
03×3 I3×3

]
(20)

The calculation procedure of traditional Kalman filter can be described as
Step 1: Initialization parameter.{

X̂0 = E[X0]
P0 = E[(X0 − X̂0)(X0 − X̂0)

T]
(21)

Step 2: Time update. Using the previous state estimate and its error covariance matrix
in time k − 1, the state prediction and its error covariance matrix are calculated as [17]

X̂k/k−1 = Fk/k−1X̂k−1 (22)

Pk/k−1 = Fk/k−1Pk−1FT
k/k−1 + Qk−1 (23)

where Fk/k−1 is the state transition matrix described by (20); X̂k/k−1 and Pk/k−1 are the state
prediction and its error covariance at time k; X̂k−1 and Pk−1 are the state estimation and its
error covariance at the previous time k − 1; and Qk−1 is the process noise covariance.

Step 3: Measurement update. The processes for measurement updates are as fol-
lows [17]

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk)
−1

(24)

X̂k = X̂k/k−1 + Kk
[
Zk − HkX̂k/k−1

]
(25)

Pk = (I − KkHk)Pk/k−1 (26)

where Rk is the measurement noise covariance; Kk is the filtering gain; and Hk is the
measurement matrix.

However, due to the weak light environment in space, the star sensor’s measurement
information is subject to be disturbed, leading to the occurrence of non-Gaussian measure-
ment noise. This further reduces the estimation accuracy of the Kalman filtering and may
even cause divergence, resulting in the loss of its ability to correct the gyros.

According to the maximum correntropy criterion based on the Cauchy kernel, we
construct a new filtering method to modify the measurement update process of Kalman
filtering to handle the influence of non-Gaussian measurement noise. Firstly, based on the
system model shown in (19), we have[

X̂k/k−1
Zk

]
=

[
I

Hk

]
Xk + Ak (27)

where

Ak =

[
X̂k/k−1 − Xk

Vk

]
, and E

[
AkAT

k

]
=

[
Pk/k−1 0

0 Rk

]
= BkBT

k (28)
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where Bk is the Cholesky decomposition of E
[
AkAT

k
]
.

Multiplying both sides of (27) by B−1
k yields

Yk = MkXk + Ek (29)

where Yk = B−1
k

[
X̂k/k−1

Zk

]
, Mk = B−1

k

[
I

Hk

]
, and Ek = B−1

k Ak.

Then, a correntropy cost function can be established as

J =
1
L

L

∑
i=1

Gσ

(
Ei

k

)
=

1
L

L

∑
i=1

Gσ

(
yi

k − mi
kXk

)
(30)

where L = n + m represents the dimension of Yk, and m and n are the dimensions of Zk and
Xk, respectively; Ei

k and yi
k represent the ith elements of Ek and Yk; and mi

k is the ith row
of Mk.

The optimal state estimation can be obtained using the following equation.

∂J
∂Xk

=
2
σ

1
L

L

∑
i=1

Gσ(Ei
k)

2
mi,T

k

(
yi

k − mi
kXk

)
= 0 (31)

After simplification, it is evident that the following result can be obtained [36]

Xk =

(
L
∑

i=1
Gσ(Ei

k)
2mi,T

k mi
k

)−1( L
∑

i=1
Gσ(Ei

k)
2mi,T

k yi
k

)
=
(
MT

k DkMk
)−1(MT

k DkYk
) (32)

where Dk =

[
Dx

k 0
0 Dz

k

]
with

Dx
k = diag

(
Gσ(E1

k)
2 , . . . , Gσ(En

k )
2
)

= diag

( (
1

1+(X̂1
k/k−1−m1

kX̂k)
2
/σ

)2
, . . . ,

(
1

1+(X̂n
k/k−1−mn

k X̂k)
2
/σ

)2
)

(33)

Dz
k = diag

(
Gσ(En+1

k )
2

, . . . , Gσ(En+m
k )

2
)

= diag

( (
1

1+(Z1
k−mn+1

k X̂k)
2
/σ

)2
, . . . ,

(
1

1+(Zm
k −mn+m

k X̂k)
2
/σ

)2
)

(34)

where X̂i
k/k−1(i = 1, 2, · · · , n) and Zi

k(i = 1, 2, · · · , m) are the ith elements of X̂k/k−1 and
Zk.

By expanding (32), we can obtain

Xk =
(
MT

k DkMk
)−1(MT

k DkYk
)

=

((
BP,T

k

)−1
Dx

k
(
BP

k
)−1

+ HT
k

(
BR,T

k

)−1
Dz

k
(
BR

k
)−1Hk

)−1

((
BP,T

k

)−1
Dx

k
(
BP

k
)−1X̂k/k−1 + HT

k

(
BR,T

k

)−1
Dz

k
(
BR

k
)−1Zk

) (35)

where BP
k and BR

k are the Cholesky decomposition of Pk/k−1 and Rk.

Applying the matrix inversion lemma ((A + BD−1C)−1
= A−1 − A−1B(D+

CA−1B)−1CA−1), (35) can be become

X̂k = X̂k/k−1 + Kk
[
Zk − HkX̂k/k−1

]
(36)
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where
Kk = Pk/k−1HT

k (HkPk/k−1HT
k + Rk)

−1
(37)

where Pk/k−1 = BP
k
(
Dx

k
)−1BP,T

k , Rk = BR
k
(
Dz

k
)−1BR,T

k . The specific derivation from (35)–(37)
can be found in [36].

To estimate the system state through (36), it is necessary to compute the filter gain K̃k
in (35) firstly. The calculation of the gain inherently relies on the posterior state estimate
X̂k, which is involved in (33) and (34). This clearly indicates an iterative process for
state estimation. Therefore, we outline the measurement update process of the maximum
correntropy filter based on the Cauchy kernel as follows:

(i) Let the iteration index t = 1 and X̂1
k = X̂k/k−1, X̂t+1

k can be achieved by the following
process

X̂t+1
k = X̂t

k + K̃k

[
Zk − HkX̂t

k

]
(38)

K̃k = P̃k/k−1HT
k (HkP̃k/k−1HT

k + R̃k)
−1

(39)

P̃k/k−1 = BP
k

(
D̃

x
k

)−1
BP,T

k (40)

R̃k = BR
k

(
D̃

z
k

)−1
BR,T

k (41)

where D̃
x
k = diag

(
Gσ(Ẽ1

k)
2, . . . , Gσ(Ẽn

k )
2
)

and D̃
z
k = diag

(
Gσ(Ẽn+1

k )2, . . . , Gσ(Ẽn+m
k )2

)
; Ẽi

k

is the element of Ẽk and Ẽk = Yk − MkX̂t
k.

(ii) Compare the posterior estimation from the current iteration X̂t+1
k with those from

the previous iteration X̂t
k. If it satisfies the following condition, the iterative process is

terminated; otherwise, set the final state estimation X̂k = X̂t+1
k and return to Step (i).∥∥∥X̂t+1

k − X̂t
k

∥∥∥∥∥∥X̂t
k

∥∥∥ ≤ ε (42)

where ε is a relatively small number.
(iii) Compute the posterior error covariance matrix as

Pk = (I − K̃kHk)Pk/k−1 (43)

At this time, the measurement update process at time k of the maximum correntropy
filter based on the Cauchy kernel can be terminated.

It can be seen from (33) to (37) that as the bandwidth σ → ∞ , Dx
k and Dz

k will tend to
unity matrices. In this case, the maximum correntropy filter based on the Cauchy kernel
will be degraded to the Kalman filter and its robustness will gradually vanish. If σ → 0 ,
Dx

k and Dz
k will become 0, the calculation of filter gain K̃k will be out of operation and

the filter will be disabled. Thus, an appropriate kernel bandwidth is vital to affect the
performance of the maximum correntropy filter based on the Cauchy kernel. Currently,
it is usually determined by prior information or a multiple test computation prior to the
filtering solution.

3.2. Event-Driven Conditions

From the above filtering algorithm process, it can be seen that multiple iterations are
involved. This means it needs a large computational cost for the filtering calculation at
each time. Thus, in the times without non-Gaussian measurement noise, the maximum
correntropy filter based on the Cauchy kernel will involve too many redundant calculations.
Due to this reason, this section establishes an adaptive event-driven mechanism to effec-
tively recognize the non-Gaussian measurement noise, which can significantly improve the
computational efficiency of the maximum correntropy filter based on the Cauchy kernel.
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The constructed event-driven conditions are related to the filter’s innovation vector
information, which is calculated as [37]

Z̃k = Zk − HkX̂k/k−1 (44)

In the normal case, the innovation Z̃k should adhere to a Gaussian distribution and its
covariance is [37]

PZZ,k/k−1 = HkPk/k−1HT
k + Rk (45)

Consider that PZZ,k/k−1 is a positive matrix, we can construct a unitary matrix Lk to
make the following relationship hold

LT
k PZZ,k/k−1Lk = Σk (46)

where Σk = diag
{

λk1, λk2, . . . , λkni

}
∈ ni × ni, λk1, λk2, . . . , λkni

are the eigenvalues of
PZZ,k/k−1 and ni represents the number of eigenvalues.

Further, define Fk = LkΣ−1/2
k , the innovation vector can be normalized as

Zk = FT
k Z̃k (47)

Equation (47) is called Mahalanobis transformation. The elements of Zk should be
uncorrelated and obey the standard Gaussian distribution [22,37]. Thus, the event-driven
conditions for the detection of the non-Gaussian measurement noise can be constructed as

τk =

{
1 κβ ≤

∥∥Zk
∥∥

∞ ≤ κα

0 Otherwise
(48)

where
∥∥Zk

∥∥
∞ represents the infinity norm of Zk, i.e.,

∥∥Zk
∥∥

∞ = max
{

Zk,1, Zk,2, . . . , Zk,q

}
;

κβ and κα are the lower threshold and the higher threshold, respectively.
Based on (48), there are three cases that will appear:
Case 1:

∥∥Zk
∥∥

∞ < κβ and τk = 0. This case considers that the integration of the
gyros/star sensor can be predictable and the measurement does not need to be applied to
update the estimation. The purpose of this case is to reduce the communication burden
between the gyros and star sensor so as to decrease the whole system’s computational cost.

Case 2: κβ ≤
∥∥Zk

∥∥
∞ ≤ κα and τk = 1. This case considers that the measurement is

normal and the non-Gaussian noise is not involved;
Case 3:

∥∥Zk
∥∥

∞ > κα and τk = 0. This case considers that the measurement is deviant
and the non-Gaussian noise is involved.

It should be noted that the selection of thresholds κβ and κα is very important for the de-
tection of the non-Gaussian measurement noise. κβ is chosen to balance the communication
burden and estimation performance, which can be set according to the required communi-
cation rate. κα is always set according to the confidence level. Through the simulation test,
a 97.5% confidence level can obtain a relatively satisfactory detection performance.

3.3. Algorithm Description

Based on the maximum correntropy Kalman filter based on the Cauchy kernel de-
scribed in Section 3.1 and event-driven conditions constructed in Section 3.2, we can
establish the algorithm of the event-driven maximum correntropy Kalman filter based
on the Cauchy kernel, whose computational process is illustrated in Algorithm 1. It can
balance the computational efficiency and robustness of the filter, reducing unnecessary
computational load while ensuring the algorithm’s anti-interference performance.
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Algorithm 1. Event-driven- maximum correntropy filter based on Cauchy kernel (ED-MCFCK)

1 Initialization: x̂0, P0
2 For k = 1,2,. . .

{
3 Compute X̂k/k−1 and Pk/k−1 as (22) and (23) of Kalman filtering procedures;

4
Calculate filter’s innovation vector as well as its covariance as (44) and (45), and further

construct the normalized innovation vector as (47).
5 Compute and conduct the event driven condition by (48).

6
If
∥∥Zk

∥∥
∞ < κβ and τk = 0, set the state prediction X̂k/k−1 and Pk/k−1 as the final state

estimation.

7
If κβ ≤

∥∥Zk
∥∥

∞ ≤ κα and τk = 1, execute (24)–(26) to obtain system state esti-mation X̂k
and Pk.

8
If
∥∥Zk

∥∥
∞ > κα and τk = 0, (indicating the presence of non-Gaussian noise in the

measurement information), the MCFCK is driven.
{

9 Let the iteration index t = 1 and X̂1
k = X̂k/k−1;

10
Compute P̃k/k−1 and R̃k according to (40) and (41), and further calcu late filter gain

K̃k by (39).
11 Compute X̂t

k by (38) and test the Condition (42);
12 If Condition ≥ ε

13 Let t = t + 1 (iterations) and X̂k = X̂t+1
k , and conduct the next iteration.

14 Else, the iterative process is terminated and X̂k = X̂t
k.

}
15 Compute the posterior error covariance matrix by (43).

}

4. Simulation Evaluations and Discussions

Simulation evaluations have been conducted to comprehensively validate the ef-
ficacy of the proposed event-driven maximum correntropy filter based on the Cauchy
kernel (ED-MCFCK) for a two-dimensional turntable’s spatial orientation using the gy-
ros/star sensor integration. A comparison analysis of the proposed ED-MCFCK with the
Kalman filter and MCF based on the Gaussian kernel (abbreviated as MCF) as well as
MCFCK is also conducted in this section for the handling of non-Gaussian noise involved
in the measurements.

As shown in Figure 3, a trajectory of spacecraft is designed according to its actual flight
process, which is a classical parabolic curve motion. Further, the attitude of the spacecraft
at every time step, including yaw, pitch, and roll is depicted in Figure 4. The initial attitude
of the spacecraft was (142.16◦, −89.78◦, 63.16◦) and the total simulation time was 3600 s.
Accordingly, a two-dimensional turntable was installed on the spacecraft, and the tracking
vector between the spacecraft and the target star is also shown in Figure 3.

For the filtering loop shown in Figure 2, the gyros’ sampling rates are both 20 Hz, the
star sensor’s sampling rate is 1 Hz, and the other simulation parameters are listed in Table 1.
The initial state and its error covariance, as well as the initial process noise covariance, are
set as 

X0 = [06×1]
T

P0 = diag[ (1rad)2 (1rad)2
(1rad)2 (1′′)2 (1′′)2 (1′′)2 ]

Q0 = diag[ (0.01◦/
√

h)
2

(0.01◦/
√

h)
2

(0.01◦/
√

h)
2 ]

(49)



Sensors 2024, 24, 7164 13 of 20

Sensors 2024, 24, x FOR PEER REVIEW 13 of 21 
 

 

4. Simulation Evaluations and Discussions 

Simulation evaluations have been conducted to comprehensively validate the effi-

cacy of the proposed event-driven maximum correntropy filter based on the Cauchy ker-

nel (ED-MCFCK) for a two-dimensional turntable’s spatial orientation using the gy-

ros/star sensor integration. A comparison analysis of the proposed ED-MCFCK with the 

Kalman filter and MCF based on the Gaussian kernel (abbreviated as MCF) as well as 

MCFCK is also conducted in this section for the handling of non-Gaussian noise involved 

in the measurements. 

As shown in Figure 3, a trajectory of spacecraft is designed according to its actual 

flight process, which is a classical parabolic curve motion. Further, the attitude of the 

spacecraft at every time step, including yaw, pitch, and roll is depicted in Figure 4. The 

initial attitude of the spacecraft was (142.16°, −89.78°, 63.16°) and the total simulation time 

was 3600 s. Accordingly, a two-dimensional turntable was installed on the spacecraft, and 

the tracking vector between the spacecraft and the target star is also shown in Figure 3. 

 

Figure 3. Trajectory and tracking vector of the spacecraft in I-frame. The spacecraft’s trajectory is 

plotted using the endpoint of the tracking vector, so this trajectory is unitless. The black solid arrows 

represent the spacecraft’s attitude, the green dashed and purple solid arrows represent the tracking 

vector, and the black dashed arrows represent the spacecraft’s direction of motion. 

 

Figure 4. Attitude change of the spacecraft. 

Figure 3. Trajectory and tracking vector of the spacecraft in I-frame. The spacecraft’s trajectory is
plotted using the endpoint of the tracking vector, so this trajectory is unitless. The black solid arrows
represent the spacecraft’s attitude, the green dashed and purple solid arrows represent the tracking
vector, and the black dashed arrows represent the spacecraft’s direction of motion.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 21 
 

 

4. Simulation Evaluations and Discussions 

Simulation evaluations have been conducted to comprehensively validate the effi-

cacy of the proposed event-driven maximum correntropy filter based on the Cauchy ker-

nel (ED-MCFCK) for a two-dimensional turntable’s spatial orientation using the gy-

ros/star sensor integration. A comparison analysis of the proposed ED-MCFCK with the 

Kalman filter and MCF based on the Gaussian kernel (abbreviated as MCF) as well as 

MCFCK is also conducted in this section for the handling of non-Gaussian noise involved 

in the measurements. 

As shown in Figure 3, a trajectory of spacecraft is designed according to its actual 

flight process, which is a classical parabolic curve motion. Further, the attitude of the 

spacecraft at every time step, including yaw, pitch, and roll is depicted in Figure 4. The 

initial attitude of the spacecraft was (142.16°, −89.78°, 63.16°) and the total simulation time 

was 3600 s. Accordingly, a two-dimensional turntable was installed on the spacecraft, and 

the tracking vector between the spacecraft and the target star is also shown in Figure 3. 

 

Figure 3. Trajectory and tracking vector of the spacecraft in I-frame. The spacecraft’s trajectory is 

plotted using the endpoint of the tracking vector, so this trajectory is unitless. The black solid arrows 

represent the spacecraft’s attitude, the green dashed and purple solid arrows represent the tracking 

vector, and the black dashed arrows represent the spacecraft’s direction of motion. 

 

Figure 4. Attitude change of the spacecraft. Figure 4. Attitude change of the spacecraft.

Table 1. Simulation parameters of gyros/star sensor integration.

Information Sources Simulation Parameters Values

Gyros

Gyros’ constant drift 0.1◦/h
Gyros’ random walk coefficient 0.01◦/

√
h

Scale factor error 100 PPM
Misalignment error 5′′

Star sensor Goniometric error 5′′ (3σ)

A. Accuracy Evaluation and Analysis

To verify the accuracy and robustness of the proposed ED-MCFCK in the presence of
non-Gaussian measurement noise, two typical non-Gaussian measurement noise scenarios
were considered, i.e., non-Gaussian noise with outliers in measurements and α stable noise
in measurements.

By using the trial and error method [38], the bandwidth parameters σ in the above-
mentioned maximum correntropy filters were determined to be 13. For the designed
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event-driven conditions, the confidence level is set as 97.5% (α = 0.025) with 3 degrees of
freedom (m = 3).

(1) Non-Gaussian noise with outliers in measurements

To simulate this situation, a random noise with Gaussian distribution was directly
injected into the measurement during the time interval (1500 s, 2500 s) with a probability of
ρ = 0.5. Thus, the measurement becomes the following

Zk =

{
Zk, others
(1 − ρ)Zk + ρ[Zk + N(0, (4 × 10−4rad)2

)], (1500s, 2500s)
(50)

It can be seen that the measurement noise in (50) is mixed Gaussian, which is a
non-Gaussian and strong impulsive noise (outliers).

For the case of non-Gaussian noise with outliers in measurements, Figures 5 and 6
illustrate the orientation errors in azimuth and pitch achieved by the above-mentioned
Kalman filter, MCF, MCFCK and ED-MCFCK, respectively. Further, the corresponding 3σ
error boundary for the ED-MCFCK, which is calculated based on the 10 runs of Monte Carlo
simulations as in [39], is also provided in Figures 5 and 6. As shown in Figures 5 and 6,
during the time interval (1500 s, 2500 s) with non-Gaussian noise, the Kalman filter has no
ability and fails to handle the abnormal non-Gaussian noise. This further deteriorates the
obtained state estimate during the filtering measurement update process, resulting in a
significant degradation in orientation accuracy. The orientation errors in azimuth and pitch
exhibit severe fluctuations. In contrast, MCF, MCFCK and ED-MCFCK can leverage the
robustness of the Gaussian/Cauchy kernel to effectively handle the non-Gaussian noise
information, leading to stable orientation errors in azimuth and pitch.
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The global orientation accuracy and the corresponding Root Mean Square Error
(RMSE) are further used to evaluate the orientation accuracy, where the global orientation
error is defined as

∥δθ∥ =
√

δθ2
A + δθ2

E (51)

where δθA and δθE are the azimuth error and pitch error of the turntable, respectively.
The RMSE at time k is defined as

RMSE =

√√√√ 1
N

N

∑
i=1

|δθk|2 (52)
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where N is the total simulation time, and δθk represents the orientation error at time k.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 5. Orientation errors in azimuth and 3  error boundary for the case of non-Gaussian noise 

with outliers. 

 

Figure 6. Orientation errors in pitch and 3  error boundary for the case of non-Gaussian noise 

with outliers. 

The global orientation accuracy and the corresponding Root Mean Square Error 

(RMSE) are further used to evaluate the orientation accuracy, where the global orientation 

error is defined as 

2 2

A Eδθ δθ δθ= +  (51) 

where 
Aδθ  and 

Eδθ  are the azimuth error and pitch error of the turntable, respectively. 

The RMSE at time k is defined as 

2

1

1 N

k

i

RMSE δθ
N =

=   (52) 

where N is the total simulation time, and kδθ  represents the orientation error at time k. 

Table 2 shows the mean RMSEs of global orientation error as well as the azimuth and 

pitch errors for each filter. Due to the ability of robustness on non-Gaussian noise, the 

mean RMSEs of global orientation error as well as the azimuth and pitch errors achieved 

by the MCF are 55.8%, 67.76% and 48.46% lower than those of the Kalman filter. Mean-

while, the mean RMSEs of global orientation error as well as the azimuth and pitch errors 

achieved by the MCFCK are 56.26%, 70.35% and 47.97% lower than those of the Kalman 

filter. Further, the mean RMSEs of global orientation error as well as the azimuth and pitch 

Figure 6. Orientation errors in pitch and 3σ error boundary for the case of non-Gaussian noise with
outliers.

Table 2 shows the mean RMSEs of global orientation error as well as the azimuth and
pitch errors for each filter. Due to the ability of robustness on non-Gaussian noise, the mean
RMSEs of global orientation error as well as the azimuth and pitch errors achieved by the
MCF are 55.8%, 67.76% and 48.46% lower than those of the Kalman filter. Meanwhile, the
mean RMSEs of global orientation error as well as the azimuth and pitch errors achieved
by the MCFCK are 56.26%, 70.35% and 47.97% lower than those of the Kalman filter.
Further, the mean RMSEs of global orientation error as well as the azimuth and pitch
errors achieved by the ED-MCFCK are 56.91%, 70.47% and 48.84% lower than those of
the Kalman filter. These indicate that the MCF, MCFCK and ED-MCFCK exhibit a similar
estimation performance for the case of non-Gaussian noise with outliers in measurements
and they have a better sensitivity to the non-Gaussian measurement noises compared to
the Kalman filter.

Table 2. Mean RMSEs of the orientation errors by Kalman filter, MCF, MCFCK and ED-MCFCK for
the case of non-Gaussian noise with outliers.

Filtering Methods Global Orientation
Error (′′) Azimuth Error (′′) Pitch Error (′′)

Kalman Filter 24.60 16.22 18.49
MCF 10.87 5.23 9.53

MCFCK 10.76 4.81 9.62
ED-MCFCK 10.6 4.79 9.46

(2) α stable noise in measurements

The α stable noise is a significant type of non-Gaussian random distribution, and
its two most important features are the stability of the probability distribution and the
heavy-tailed probability density function. The characteristic function of the α stable noise
is given by [40]

φ(t) = exp
{

jδt − α|t|β[1 + jζsgn(t)ω(t, β)]
}

(53)

with

ω(t, β) =

{
tan( βπ

2 ), β ̸= 1
2
π log|t|, β = 1

(54)
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sgn(t) =


1, t > 0
0, t = 0
−1, t < 0

(55)

where β ∈ (0, 2] is the characteristic index, ζ ∈ [−1, 1] is the symmetry parameter, δ is the
location factor and α > 0 is the dispersion factor.

To test the performance of the four filters under α stable noise, the above noise form
was injected into the measurement during the time intervals (1000 s, 1500 s) and (2500 s,
3000 s), where (β, ζ, α, δ) = (1.8, 0, 1.6, 0) is set in this simulation.

Figures 7 and 8 provide the orientation errors in azimuth and pitch achieved by
the Kalman filter, MCF, MCFCK and ED-MCFCK as well as the 3σ error boundary of
ED-MCFCK for the case of α stable noise in measurement. It can be seen that as stated
previously, MCF is unable to handle heavy-tailed noise anomalies due to the limitation of
the Gaussian kernel function; thus, its estimation error is divergent. In contrast, MCFCK
and ED-MCFCK can effectively handle the influence of α stable noise with a heavy-tailed
characteristic through the robustness of the Cauchy kernel. They show similar performance
with the case of non-Gaussian noise with outliers in measurements and have a stronger
robustness than the Kalman filter. Table 3 shows the mean RMSEs of global orientation
error as well as the azimuth and pitch errors by the above four filters. Due to the robustness
of the Cauchy kernel of MCFCK and ED-MCFCK, the mean RMSEs of the global orientation
error as well as the azimuth and pitch errors achieved by the MCFCK are 63.19%, 78.65%
and 53.46% lower than those of the Kalman filter, and the mean RMSEs of ED-MCFCK
are 66.43%, 81.97% and 56.98% lower than those of the Kalman filter. However, due to
the limitation of the Gaussian kernel in handling the heavy-tailed noise anomalies, the
mean RMSEs of global orientation error as well as the azimuth and pitch errors by the
MCF increased by 2008.05%, 3599.69% and 1625.61% compared the ED-MCFCK. Therefore,
it is evident that the proposed ED-MCFCK has a superior robust performance to curb
heavy-tailed non-Gaussian noise such as α stable noise, leading to improved orientation
accuracy in the complex space environment.
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B. Computational Performance Evaluation

The computational efficiency of the proposed ED-MCFCK is also discussed by com-
parison with the Kalman filter, MCF and MCFCK via a Monte Carlo simulation. It was
conducted 10 times on an Intel(R) Core(TM) i5-9300H 2.40 GHz PC with 8 GB memory to
study the computational performance of the proposed ED-MCFCK based on the above
two types of non-Gaussian measurement noise scenarios. The computational times for
each Monte Carlo run of the Kalman filter, MCF, MCFCK and ED-MCFCK are listed in
Table 4. Further, the relative efficiencies of all the filters compared to the ED-MCFCK are
also computed and shown in Figure 9.

Table 4. The computational times for each Monte Carlo run of the Kalman Filter, MCF, MCFCK and
ED-MCFCK based on the simulation cases.

Filtering Methods
Non-Gaussian Noise

with Outliers α Stable Noise

Computational Time Computational Time

Kalman Filter 2.78 s 2.80 s
MCF 5.22 s 6.98 s

MCFCK 5.14 s 5.62 s
ED-MCFCK 2.84 s 2.89 s
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It can be seen from Table 4 and Figure 9 that the Kalman filter has optimal real-time
performance and its computational time for each Monte Carlo run is smallest among all the
four filters. This is the reason why it is widely used in engineering practices. Further, the
computational times of MCF and MCFCK are significantly longer than those of the Kalman
filter. The filtering computational time of MCF is 87.8% (for the first case) and 149.3% (for
the second case) longer than that of the Kalman filter. The filtering computational time of
MCFCK is 84.9% (for the first case) and 100.7% (for the second case) longer than that of the
Kalman filter. They have a similar computational performance since multiple iterations
are involved in filtering every time and result in unnecessary redundant calculations. Both
MCF and MCFCK’s real-time performance are poor; thus, they are not suitable for the
practice applications. As a comparison, the proposed ED-MCFCK establishes a flexible
event-driven mechanism to detect and process the case of non-Gaussian measurement
noise. This effectively avoids the unnecessary redundant calculations and significantly
improves the computational efficiencies of MCF and MCFCK. The ED-MCFCK has an
approximated computational efficiency compared to the Kalman filter (97.9% for the first
case and 96.9% for the second case). Thus, through the designed event-driven mechanism,
ED-MCFCK can simultaneously obtain a good robustness on non-Gaussian measurement
noise and a strong real-time performance in practical engineering.

The results of the above simulation evaluations and analysis demonstrate that the pro-
posed ED-MCFCK not only has a superior ability to deal with the influence of non-Gaussian
measurement noise but can also achieve superior real-time spatial applications by avoiding
unnecessary computational costs in time points without non-Gaussian measurement noise,
leading to improved spatial orientation performance for the gyros/star sensor integration
used in the two-dimensional turntable structure.

5. Conclusions

This paper proposes an event-driven maximum correntropy filter based on the Cauchy
kernel to improve the performance of gyros/star sensor integration used for spatial orienta-
tion under the environment of non-Gaussian measurement noise. The main contributions
of this paper can be concluded as follows: (i) it establishes and derives a direct installation
mode of gyros/star sensor integration as well as its mathematical model to ensure the
turntable control stability; (ii) it further proposes an event-driven maximum correntropy
filter based on the Cauchy kernel to handle the influence of non-Gaussian measurement
noise on the above gyros/star sensor integration, in which an event-driven mechanism is
also constructed based on the innovation information to reduce the unnecessary computa-
tional costs involved in the filtering solution. The results of the simulations and comparison
analysis indicate that the proposed methodology can effectively curb the non-Gaussian
measurement noise through the maximum correntropy criterion based on the Cauchy
kernel, and it also can avoid the unnecessary computational cost of MC filters such as
MCF and MCFCK, leading to improved robustness for the gyros/star sensor integration of
spatial orientation in comparison with the conventional Kalman filter and MC filters.

Future research will focus on the combination of the proposed ED-MCFCK with
advanced intelligent methods such as neural networks or deep learning to improve its
robustness by adaptively adjusting the kernel bandwidth in real-time to accommodate the
complex spatial environment. Further, it will also concentrate on the practical/extension
application of the ED-MCFCK in the fields of vehicle navigation or target tracking.
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Abbreviations

Abbreviations Full Names
PF Particle filter
GSF Gaussian sum filter
MCC maximum correntropy criterion
MC maximum correntropy
ED-MCFCK event-driven maximum correntropy filter based on Cauchy kernel
MCF maximum correntropy filter
MCFCK maximum correntropy filter based on Cauchy kernel
RMSE Root Mean Square Error
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