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Abstract: The goal of the multi-focus image fusion (MFIF) task is to merge images with different
focus areas into a single clear image. In real world scenarios, in addition to varying focus attributes,
there are also exposure differences between multi-source images, which is an important but often
overlooked issue. To address this drawback and improve the development of the MFIF task, a new
image fusion dataset is introduced called EDMF. Compared with the existing public MFIF datasets,
it contains more images with exposure differences, which is more challenging and has a numerical
advantage. Specifically, EDMF contains 1000 pairs of color images captured in real-world scenes, with
some pairs exhibiting significant exposure difference. These images are captured using smartphones,
encompassing diverse scenes and lighting conditions. Additionally, in this paper, a baseline method
is also proposed, which is an improved version of memory unit-based unsupervised learning. By
incorporating multiple adaptive memory units and spatial frequency information, the network is
guided to focus on learning features from in-focus areas. This approach enables the network to
effectively learn focus features during training, resulting in clear fused images that align with human
visual perception. Experimental results demonstrate the effectiveness of the proposed method in
handling exposure difference, achieving excellent fusion results in various complex scenes.

Keywords: dataset; multi-focus image fusion; exposure difference; memory unit

1. Introduction

As a highly significant branch of multi-sensor information fusion, image fusion tech-
nology [1–3] has attracted extensive attention and research worldwide in the past two
decades. MFIF is a crucial technique [4–6] for producing globally clear images through
the fusion of images captured at different focal depths. This method is widely applied
in various domains, including medical imaging [7,8], satellite remote sensing [9], and
smartphone photography [10,11].

Despite the vast applications of MFIF, it still faces several challenges. One of them is
the exposure difference between multi-focus images. When capturing objects at different
distances, images often exhibit varying degrees of exposure difference. The main cause of
this issue is the automatic aperture adjustment of smartphones. Fusing multi-focus images
with exposure difference into a visually pleasing and clear image is a problem that urgently
needs to be addressed. It is worth noting that there are currently no publicly available
multi-focus image datasets related to this issue.

The public MFIF datasets can be categorized into two types based on the genera-
tion methods: synthetic and captured. Synthetic datasets include MFI-WHU [12], Beta-
Fusion [13], and WHU-MFM [14]. These datasets are commonly created by applying a
Gaussian filter to segmented datasets with masks, which blurs them into foreground and
background, thus constituting multi-focus image pairs. Unfortunately, synthetic datasets
fail to reflect the characteristics of real complex scenes.
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Captured datasets such as Lytro [15], MFFW [16], and Road-MF [17] offer a different
perspective. The MFFW dataset presents relatively complex scenes. However, it contains
only a single pair of multi-focus images with exposure variations. In contrast, the scenarios
in Lytro and Road-MF are simpler and more idealized. Considering the current situation
where there are no datasets that consider exposure difference, the EDMF has been devel-
oped. The EDMF dataset encompasses a wide variety of complex scenes and specifically
includes multiple exposure variation phenomena. The EDMF has been made public and is
licensed under CC BY 4.0.

Figure 1a provides a simple comparison between our dataset and other datasets.
As shown in Figure 1b, compared with the public datasets, EDMF contains more images for
scholars to research. In addition, the image resolution is not fixed. These points make EDMF
more challenging. As shown in Figure 1c, existing deep learning-based MFIF methods [18]
cannot effectively solve the exposure difference.

To address the issue and provide a baseline method, in this paper, an unsupervised
model incorporating multiple memory unit structures is introduced. To the best of our
knowledge, this is the first network architecture and dataset that consider the varying
exposure levels in multi-focus images task according to real-world scenarios. The main
contributions of this paper are summarized as follows:

• A novel multi-focus dataset with varying exposure levels is provided, which covers
diverse scenarios such as indoor, outdoor, daytime, and nighttime environments.

• An improved unsupervised model is proposed to address this new issue; it is capable
of merging images with different focus attributes and brightness levels into a clear
image that aligns with human perception.

• During the training process, we devise multiple adaptive memory units and uti-
lize spatial frequencies as pixel value weights for intermediate results, allowing the
network to focus more on the focused regions.

Experimental results demonstrate that this design can generate fusion images with
outstanding visual quality, meeting our expectations.

(a) Presentation of MFIF Datasets

Lytro MFI-WHU BetaFusion

MFFW Road-MF EDMF(ours)

(b) Presentation of MFIF Datasets
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256 256
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520 520

(c) Existing Methods Face Challenges on New Issues

I1 I2 SAMF GACN ZMFF MDLSR SESF

Figure 1. Cont.
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(a) Presentation of MFIF Datasets
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(b) Presentation of MFIF Datasets
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Figure 1. (a) Compared to the existing public datasets, the EDMF dataset not only has focus differences
but also includes exposure differences. (b) The dataset disclosed in this paper has advantages in its
scale and varying resolutions. (c) Taking the SAMF [17], GACN [19], ZMFF [20], MDLSR [21], and
SESF [22] algorithms as an example, it is demonstrated that existing MFIF methods face the challenge
of exposure difference.

2. Related Work
2.1. Classification-Based MFIF Methods

These types of methods [23–25] fundamentally utilize network to extract features from
the source images and perform binary classification on the pixel-wise focusing properties
to obtain decision maps. The fusion image is obtained by multiplying two source images
separately with a decision map and then adding them together.

In 2017, Liu et al. [26] first introduce convolutional neural networks as binary classifi-
cation networks into MFIF. To improve the accuracy of decision maps, in 2021, Ma et al. [22]
combine spatial frequencies from the traditional method with an autoencoder. In 2022,
Kanika Bhalla et al. [27] proposed to combine the advantages of fuzzy sets (FS) and convo-
lutional neural networks (CNN) to generate high-quality fused images, thus overcoming
the limitations of traditional manual design of fusion rules and feature extraction. It is
worth mentioning that this technique has also been applied in the fusion of infrared and
visible images [28]. In the past two years, due to the lack of training datasets, many un-
supervised methods have been proposed. In 2023, Xu et al. pioneered the application
of a zero-shot method to the MFIF task [20], achieving outstanding fused image results.
However, this approach incurred substantial time costs. In 2024, Wang et al. employed a
non-deep learning approach [21], alleviating the reliance on extensive training data. They
devised a fusion method based on multi-dictionary linear sparse representation, achieving
state-of-the-art performance. It still relies on initially obtaining the focus decision map
initially but faces challenges in generating accurate maps under complex scene scenarios.

Specifically, although this type of method can perfectly extract information from the
source images, the strategy of the decision map is completely not applicable to complex
scenarios with exposure differences. It is precisely this strategy that leads to the extraction
of image patches with inconsistent luminance information from the two source images,
thereby resulting in extremely poor visual effects of the fused image.

2.2. Regression-Based MFIF Methods

Unlike classification-based methods, regression-based methods [29,30] directly output
fused images, constituting an end-to-end fusion approach. These works typically comprise
three parts: feature extraction, feature fusion, and image reconstruction.
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For example, in 2022, Xu et al. proposed U2Fusion [31], which employs a feature
extractor with dense connections to obtain features from the source images and trains
a reconstruction module to generate fused results. However, since this method is not
specifically designed for MFIF, the fused image may still be blurry in some regions. In the
same year, Cheng et al. propose MUFusion [32]. It incorporates neural networks with
memory unit structures into image fusion, enhancing the ability of network to extract
and fuse image features. It should be noted that the weight setting of the MUFusion loss
function is not designed for MFIF.

Interestingly, regression-based methods such as U2Fusion and MUFusion are more
robust to exposure difference than classification-based methods. This is because of this
method independence from decision maps. When it comes to dealing with exposure
differences, feature-level fusion is capable of generating results that are more in line with
human vision. Although the problem of exposure differences has been solved, the existing
regression-based methods, when dealing with multi-focus image tasks, especially in the
design of loss functions, do not take into account the targeted design of focusing weights to
improve the quality of the fused images. Therefore, there is still room for improvement in
the clarity of the fused images obtained by such methods at present.

2.3. MFIF Dataset

A well-designed test dataset plays a crucial role in assessing the performance of algo-
rithms. Currently, several publicly available datasets for multi-focus image fusion (MFIF)
exist, including Lytro [15], MFFW [16], MFI-WHU [12], Road-MF [17] and BetaFusion [13].

As shown in Figure 1b, the differences between these datasets in scale and resolution
have been introduced in the introduction. Moreover, Lytro, MFFW, and MFI-WHU are
widely used by scholars at present.

The images in the Lytro dataset are captured by the Lytro camera. The scene is very
simple. Therefore, it is easy to detect the focus map. With this in mind, the MFFW dataset
has been proposed. The dataset comes from real images collected from the Internet. It
has complex scenes , but the scale is small, and only one pair of images has an exposure
difference. In order to expand the scale of tests, the MFI-WHU dataset has been proposed.
It is synthesized and constructed based on the public datasets. Although the scale is
expanded, the scenario is still too simple.

Recently, in order to combine MFIF with downstream tasks, some scholars have
proposed the Road-MF. It has a single scene, including only roads and vehicles. In order
to solve the transition region (TR) problem, some scholars have proposed the Betafusion
dataset, which has challenging but only contains 80 pairs.

It is worth noting that there is no publicly available dataset that addresses exposure
differences in MFIF. To this end, the EDMF dataset is proposed. It has three highlights,
including exposure difference, a relatively large data volume, and a large number of
complex scenes that are challenging. Table 1 summarizes the characteristics of the EDMF
dataset and other datasets.

Table 1. The EDMF and existing datasets are compared respectively from four aspects: data generation
method, number and size of images in the dataset, whether it is a real shot, and whether there is an
exiting exposure difference.

Dataset Data Generation Method Size Realistic Exposure

Lytro Captured by light field camera 20 pairs 520 × 520 Yes No
MFFW Online collection 13 pairs Various Yes No
MFI-WHU Synthetically generated 120 pairs Various No No
Road-MF Captured by light field camera 80 pairs Various Yes No
BetaFusion Synthetically generated 20 pairs 256 × 256 No No
EDMF(ours) Captured by mobile phone 1000 pairs Various Yes Yes
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3. Dataset
3.1. Dataset Construction
3.1.1. The Equipment and Process of Image Acquisition

Four different smartphone models are employed for dataset collection, namely, IQOO
Z8, IQOO Neo8 Pro, Redmi K70, and iPhone 13, along with their respective operating
systems (three on Android and one on iOS). To ensure the authenticity of dataset, no al-
terations are made to the camera settings during image capture, accurately representing
real-world usage scenarios. Both tripods and smartphone mounts are employed during the
image capture process. It minimizes camera shake and misalignment.

Scenes encompass diverse locations, including campuses, communities, roads, and both
daytime and nighttime settings. In total, 1000 pairs of images were captured.

3.1.2. Image Registration

Image registration, particularly for manually captured images, presents challenges
due to inherent variations in camera positioning and orientation.

Thus, the Position, Scale, and Orientation-invariant Scale-Invariant Feature Transform
(PSO-SIFT) [33] method is employed for image registration. This method falls under the
category of feature point matching algorithms.

As illustrated in Figure 2, the registration process includes the following steps: feature
point extraction, feature point matching, computation of transformation matrices, and
resampling of the source image to obtain properly registered images.

Reference Image

Image to be Registered

Improved SIFT
Feature

Extraction
1516 Feature Points

1499 Feature Points

Matching

Optimization
Using PSO

Transformation

Registered Images

Figure 2. Registration process. During registration, one of the original images is taken as the reference
for registration. The registration process includes four steps: feature point extraction, feature point
matching, transformation matrix calculation, and source image resampling. The particle swarm
optimization (PSO) algorithm improves the registration efficiency.

In our dataset (EDMF), there are diverse scenes, including day and night, indoor and
outdoor, as shown in the Figure 3. It is normal for the registered image to have black edges.
This is because registration uses one image as a reference and the other image is aligned
with it through translation and rotation operations.
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Indoor Outdoor & Daytime Night

Figure 3. Partial image display of the EDMF dataset. It involves a variety of complex real-world
scenes, including indoor, outdoor, day and night.

4. Proposed Method

In this section, an enhanced unsupervised model centered around the memory unit
structure is introduced. Initially, the motivation for enhancing the memory unit structure is
discussed, and the design strategy for improving the model to solve the multi-focus image
fusion problem in complex real-world scenes is presented in detail.

Following the above processing, a thorough introduction to the loss function cus-
tomized for the MFIF task and its weight distribution is provided. This design focuses on
the clarity and coherence of the fused image, ensuring that the model minimizes the impact
of exposure inconsistencies while maintaining image clarity.

Finally, the optimization process of the network structure is presented, enhancing the
efficiency of model and deployability through streamlined operations while preserving
performance integrity.

4.1. Enhanced Memory Unit

In MUFusion [32], the memory unit structure plays a crucial role by utilizing the
output of the previous training epoch to guide the fusion process in the current training
epoch. This structure enables the retrieval of intermediate results generated during the
training process, providing rich supervisory signals to guide the training of network. This
training method relies on the design of intermediate results and the loss function.

However, as the training progresses, relying solely on the output of the previous
epoch may not always be optimal due to the best output of one epoch may not necessarily
effectively promote the training of subsequent epochs. Additionally, the optimal solution
may already exist in some previous epochs.

To address this issue, as illustrated in Figure 4, an improved memory unit structure is
proposed in this paper. In this structure, not only the previous epoch is considered, but it
also integrates the first four best outputs from the previous training epochs to guide the
current training epoch. The key aspect of this approach lies in how to select these four
optimal training epochs.
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I1
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IF

I1

I2
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...
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...

   

Figure 4. The proposed adaptive memory unit structure. Epochi represents the current training epoch.
Epochj to Epochj+3 represents the four epochs with the best performance in previous training epochs.

Spatial frequency [34,35], as a common image processing operation, can reflect the
sharpness of the image to some extent. Based on this observation, in our method, spatial
frequency is used to evaluate and filter the quality of the outputs at each stage of the
network. This filtering process is described in Algorithm 1.

Algorithm 1: Screen out the top four epochs of fusion quality
Data: Fusion image output by each epoch IF, total number of epochs N, current

epoch number n, the value with the minimum spatial frequency and epoch
corresponding to the epoch in the array SFmin, e, the average SF value
corresponding to the current epoch SFe

Result: An array composed of the best four epoch numbers for fused image
quality Le

1 while n ≤ N do
2 if n > 4 then
3 SFmin ← min(SF(Le));
4 if SFe > SFmin then
5 remove e from Le; Add e to Le;
6 end
7 end
8 Le ← n; n← n + 1;
9 end

4.2. Loss Function

In MUFusion [32], the pre-trained VGG-19 network [36] is used to extract deep features
from the two input source images. The mask is generated by directly comparing the
magnitudes of the elements in the feature matrix and is used as the weight in the loss
function to effectively preserve the prominent details. This enables the network to focus on
the regions with rich details in the two original images during the training process, so that
the fused image can retain as many texture details as possible from the original images.

However, the way of obtaining the mask weight in MUFusion is too simple and rough,
and there is no specific design for the MFIF task, so it is unable to accurately distinguish
the focused and unfocused regions.

To extract focus-related activation level maps in a more reasonable manner, this study
employs a method based on spatial frequency. The obtained mask is only used as a weight
matrix in loss function for the current epoch. Specifically, the spatial frequency between two
source images is calculated firstly. It reflects the sharpness of different regions in the images.
Subsequently, a more accurate mask is obtained by comparing these spatial frequencies at
the pixel level. The obtained mask indicates which parts are sharply focused and which
parts may be blurred.
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Through the proposed mask extraction strategy, more attention is ensured to be paid
by the network to the truly important and well-focused areas during the fusion process,
thereby enhancing the quality and effectiveness of multi-focus image fusion. Specifically,
this paper cites three kinds of loss, which are pixel loss, gradient loss, and structural
similarity loss. The following is the specific loss function formula:

Li
pixel =

∥∥∥∥∥ M

∑
x=1

N

∑
y=1

(IO(x, y)− IOi (x, y))

∥∥∥∥∥
2

F

, s.t. i ∈ {1, 2, 3, 4} (1)

L′pixel =

∥∥∥∥∥M1 ×
M

∑
x=1

N

∑
y=1

(IO(x, y)− I1(x, y))

∥∥∥∥∥
2

F

+

∥∥∥∥∥M2 ×
M

∑
x=1

N

∑
y=1

(IO(x, y)− I2(x, y))

∥∥∥∥∥
2

F

(2)

Li
grad =

∥∥∥∥∥ M

∑
x=1

N

∑
y=1
▽IO(x, y)−

M

∑
x=1

N

∑
y=1
▽IOi (x, y)

∥∥∥∥∥
2

F

, s.t. i ∈ {1, 2, 3, 4} (3)

L′grad =

∥∥∥∥∥M1 ×
M

∑
x=1

N

∑
y=1
▽(IO(x, y)− I1(x, y))

∥∥∥∥∥
2

F

+

∥∥∥∥∥M2 ×
M

∑
x=1

N

∑
y=1
▽(IO(x, y)− I2(x, y))

∥∥∥∥∥
2

F

(4)

Li
ssim = (1− SSIM(IO, IOi )), s.t. i ∈ {1, 2, 3, 4} (5)

L′ssim = 2− SSIM(M1 × IO, M1 × I1) + SSIM(M2 × IO, M2 × I2) (6)

In above formulas, × indicates element-wise multiplication. ∥∥F indicates the Frobe-
nius norm. M and N are the dimensions of the image in terms of row and column,
respectively. I1 and I2 represent the two source images. (x, y) represents the pixel value.
M1 and M2 represent the mask of the focus area obtained from the source image using
the spatial frequency. L′pixel , L′grad, and L′ssim represent the losses calculated in the current

epoch. Li
pixel , Li

grad, and Li
ssim calculate the loss value between the output IO of the current

epoch and the output IOi of the four best epochs in the previous epochs. Based on the
above, the loss value of the current epoch can be obtained as follows:

Lcurrent = L′pixel + L′grad + L′ssim (7)

The output in the previous epoch and the output result of the current epoch are utilized
to calculate the loss value as memory loss:

Li
memory = Li

pixel + Li
grad + Li

ssim, s.t. i ∈ {1, 2, 3, 4} (8)

In order to achieve effective training supervision, an adaptive loss ratio is also in-
troduced, which can be adjusted adaptively according to the characteristics of different
training epochs. It is primarily based on the Structural Similarity Index (SSIM) which is
utilized to calculate the weights of the loss functions.

Thus, the loss ratio can be flexibly adjusted to fully utilize the intermediate fusion
results, thereby improving the quality of the final fused image. The calculation process of
adaptive ratio between loss functions is as follows:

S = [SSIM(IO, I1) + SSIM(IO, I2)]/2 (9)

Si = [SSIM(IOi , I1) + SSIM(IOi , I2)]/2, s.t. i ∈ {1, 2, 3, 4} (10)

W =
eS

eS + ∑4
i=1 eSi

(11)

Wi =
eSi

eS + ∑4
i=1 eSi

(12)
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In the above equations, SSIM(·) denotes the Structural Similarity Index between two
images. W and Wi are used to control the preservation degrees of the current output and
the previous outputs in the loss function.

Based on the current loss and the memory loss, the total loss is given as follows:

Ltotal = W × Lcurrent +
4

∑
i=1

Wi × Li
memory (13)

After the network is improved through enhancing the training strategy and precisely
designing the weight of the loss function, it is capable to adaptively fuse the areas in the
source images that are rich in detailed textures. Consequently, satisfactory fusion results
can be generated.

4.3. Network Structure

To boost the efficiency of the baseline model and cut down on computational resource
consumption, this study carries out lightweight fine-tuning of the original autoencoder
network structure [37–39].

Specifically, the number of channels in the network is halved. This adjustment is
made based on the analysis of experimental results. Figure 5 shows the network structure
during our training. Figure 5a is the structure of the baseline (MUFusion). Figure 5b is the
proposed network structure.

a.Baseline

, H, W, 2, 32

Input : H W 2 Output : H W 1

, H, W, 96, 32

, H/2, W/2, 64, 64

, H/2, W/2, 128, 64 , H/2, W/2, 128, 64

, H/2, W/2, 192, 64 , H/2, W/2, 64, 64

, H, W, 64, 1

, H, W, 32, 32

, H/2, W/2, 64, 64

, H/2, W/2, 128, 64

, H/2, W/2, 128, 64

b.Ours

, H, W, 2, 16

Input : H W 2 Output : H W 1

, H, W, 48, 16

, H/2, W/2, 32, 32

, H/2, W/2, 64, 32 , H/2, W/2, 64, 32

, H/2, W/2, 96, 32 , H/2, W/2, 32, 32

, H, W, 32, 1

, H, W, 16, 16

, H/2, W/2, 32, 32

, H/2, W/2, 64, 32

, H/2, W/2, 64, 32

Figure 5. Network structure during training. (a) The network structure of the baseline (MUFusion).
(b) The network structure of this paper. The red font represents the number of channels.

Colored arrows and dashed arrows represent dense connections and skip connections,
respectively. The red font represents the number of channels. The dotted arrows and
colored arrows in the figure represent jumping connections and dense connections. H and
W are the dimensions of the image, representing the height and width. 3× 3 is the size of
the convolution kernel.

In our final network structure, the encoder part is used to extract features at different
scales from source images, enabling the capture of information from details to the over-
all scene. Subsequently, the decoder part utilizes these features to reconstruct the final
fused image.

5. Experiments

In this section, the experimental settings will be introduced. Subsequently, qualitative and
quantitative experiments are conducted to analysis the fusion performance of our proposed
method and other existing fusion methods on the proposed dataset, EDMF. Additionally,
ablation studies are performed to evaluate the impact of the proposed improvements.
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5.1. Experimental Details

Considering the brightness difference among source images, this work chooses to
transform training image blocks into the YCBCR color space and the Y component is
utilized to train our model. The Y components of the two image blocks are concatenated as
the input of the network. Finally, the fused Y component is restored with CB and CR to
form the RGB image.

As we discussed in introduction part, the MFIF task suffers from a lack of training
datasets. In this study, to obtain sufficient training data, the first 500 pairs of multi-focus
images from the EDMF are selected and cut, and 106,250 image blocks with a size of
256 × 256 are obtained. The number of image pairs used for testing is the remaining
500 pairs.

Network parameters are updated using the Adam optimizer, with a learning rate of
0.0001, 10 epochs, and a batch size of 48. All related experiments are conducted on an
NVIDIA GeForce RTX 3090Ti GPU.

5.2. Evaluation Metric

In scenarios with exposure differences, in order to comprehensively evaluate the
effectiveness of the proposed benchmark experiment, this paper selects eight metrics. The
fusion results are comprehensively considered mainly from three aspects, including the
degree of information preservation in the fused image, the degree of detail and structural
information preservation in the fused image, and the information fidelity based on human
vision. Considering these eight metrics in combination can reflect the richness of the
detailed structural information and the degree of information preservation of the fused
image in scenarios with exposure differences.

Specifically, these eight metrics are utilized: (1) Entropy (EN) to measure the informa-
tion content of the fused image; (2) Mutual Information (MI) [40] to evaluate the amount of
information retained between the source images and the fused result; (3) Spatial Frequency
(SF) [41] to characterize the overall activity level of image details and textures; (4) Visual
Information Fidelity (VIF) [42] to assess information preservation based on a human visual
system model; (5) Objective Image Fusion Performance Measure (Qabf) [43] focusing on the
preservation of edge strength and orientation; (6) Structural Similarity Index (SSIM) [44] to
measure structural information retention; (7) Average Gradient (AG) reflecting the clarity of
the image; and (8) Peak Signal-to-Noise Ratio (PSNR) as a traditional metric for estimating
noise level in images.

These metrics form a comprehensive evaluation framework that allows us to accurately
quantify the performance of fusion algorithms in dealing with exposure variations in real-
world scenarios.

5.3. Comparative Experiments

This study compares seven representative MFIF methods: the pioneering work that
introduced neural networks to the MFIF task (CNN) [26], end-to-end learning methods
(GACN) [19], methods based on small area perception (SAMF) [17], zero-shot multi-focus
image fusion (ZMFF) [20], fusion methods based on multi-dictionary linear sparse repre-
sentation and region fusion model (MDLSR) [21], a generic fusion method using memory
unit structures (MUFusion) [32], and unsupervised end-to-end generic fusion methods
(U2Fusion) [31].

All these methods are implemented based on public code (released by the original
authors) and the pre-trained parameters.

5.3.1. Objective Analysis

As can be seen from Table 2, considering all the metrics comprehensively, the method
proposed in this paper has the best performance. Specifically, it ranks second in the image
fusion indicators EN, AG, and PSNR, which indicates that in terms of entropy, average
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gradient, and peak signal-to-noise ratio, although the method in this paper does not reach
the optimal level, it also shows a relatively high level and is close to the optimal result.

Table 2. Comparison of objective metrics on proposed datasets. Bold: Best, Red: Second Best, Blue:
Third Best.

Methods EN MI SF VIF Qabf SSIM AG PSNR

CNN (2017) 7.484 7.879 19.716 1.347 0.686 0.683 6.135 67.963
GACN (2022) 7.522 7.468 20.632 1.288 0.706 0.645 6.686 68.156
MDLSR (2024) 7.447 8.298 20.009 1.362 0.699 0.680 6.309 67.780
SAMF (2024) 7.528 7.543 20.445 1.272 0.685 0.639 6.588 68.184
ZMFF (2023) 7.499 5.463 21.328 1.069 0.652 0.645 6.997 67.781

U2Fusion (2022) 7.479 6.160 12.135 1.073 0.534 0.682 4.575 69.888
MUFusion (2023) 7.613 5.324 20.247 1.067 0.563 0.640 7.326 68.545

Ours 7.567 5.598 21.498 1.189 0.653 0.667 7.121 68.720

The metric SF indicates that in terms of spatial frequency, the proposed method has a
significant advantage and can better retain the spatial detail information of the image, so
that the fused image has a more excellent performance in spatial features. It also reflects
from the side that the method in this paper effectively utilizes and optimizes the spatial
information when dealing with image fusion.

The performance on other metrics does not reach the best. This is attributed to the
difference in the generation method of fused images. As mentioned in the related work in
Section 2, for MFIF methods based on decision maps, the fused image is directly obtained
by multiplying the source images by the corresponding elements of the map respectively
and then adding them. These methods can retain the original information of the source
images to the greatest extent. However, there are exposure differences in the EDMF dataset
proposed in this paper. Although traditional methods perform excellently in most metrics,
there are a large number of artifacts in the visualization results. The current evaluation
metrics for image fusion have certain limitations, and further research on the evaluation of
image quality is required.

Therefore, in the field of image fusion, especially for multi-focus image fusion, it
is not suitable to only focus on metrics. The quantitative metrics may not show a sig-
nificant advantage of our proposed method over the existing methods. It is crucial to
consider the qualitative aspects of image fusion, particularly in terms of visual clarity and
detail preservation.

5.3.2. Subjective Analysis

The unsupervised fusion model proposed in this paper is visually compared with
seven other fusion methods. As shown in Figures 6–9, I1 and I2 are two source images.

The results indicate that the majority of MFIF methods generate fused images with
numerous artifacts, primarily attributed to their heavy dependence on precise decision
maps. This is also reflected in the objective indicators. From the PSNR values in Table 2, it
can be clearly seen that the fused images obtained by the methods based on the decision
map have more noise. Although both MUFusion [32] and U2Fusion [31] methods do not
rely on decision maps and show relatively good visual effects, they still exhibit insufficient
focus when handling details in the fusion images.

To highlight the differences in results between our method and the baseline (MUFu-
sion), Figure 10 provides more examples of subjective comparisons. The fused images
obtained by the training strategy refined in this paper are significantly better than MU-
Fusion in terms of image texture details and clarity. In contrast, the proposed method
demonstrated outstanding performance in qualitative assessment, indicating its superiority
in handling complex exposure difference and maintaining image details. The fact that the
SF value in Table 2 is much higher than that of MUFusion confirms this point.
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(a) I1

(f) I2

(b) CNN

(g) ZMFF

(c) GACN

(h) U2Fusion

(d) MDLSR

(i) MUFusion

(e) SAMF

(j) Ours

Figure 6. Qualitative visual comparison between our method and other representative methods on
the No. 108 pair in EDMF dataset.

(a) I1 (b) CNN (c) GACN (d) MDLSR (e) SAMF

(f) I2 (g) ZMFF (h) U2Fusion (i) MUFuison (j) Ours

Figure 7. Qualitative visual comparison between our method and other representative methods on
the No. 285 pair in EDMF dataset.

(a) I1 (b) CNN (c) GACN (d) MDLSR (e) SAMF

(f) I2 (g) ZMFF (h) U2Fusion (i) MUFuison (j) Ours

Figure 8. Qualitative visual comparison between our method and other representative methods on
the No. 94 pair in EDMF dataset.
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(a) I1 (b) CNN (c) GACN (d) MDLSR (e) SAMF

(f) I2 (g) ZMFF (h) U2Fusion (i) MUFuison (j) Ours

Figure 9. Qualitative visual comparison between our method and other representative methods on
the No. 467 pair in EDMF dataset.

(a) I1 (b) I2 (c) MUFusion (d) Ours

Figure 10. Subjective comparison of our fusion results with the baseline (MUFusion). The yellow
boxes are used to visually highlight the significant differences in fusion results between our method
and MUFusion.

In addition, qualitative experiments on commonly used datasets MFFW and Lytro are
also conducted. As illustrated in Figures 11 and 12, due to the lack of attention to exposure
variation issues in public datasets, the fused images produced by other fusion methods
exhibit no discernible visual difference.
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(a) I1 (b) CNN (c) GACN (d) MDLSR (e) SAMF

(f) I2 (g) ZMFF (h) U2Fusion (i) MUFuison (j) Ours

Figure 11. Qualitative visual comparison on MFFW dataset between our method and other represen-
tative methods.

(a) I1 (b) CNN (c) GACN (d) MDLSR (e) SAMF

(f) I2 (g) ZMFF (h) U2Fusion (i) MUFuison (j) Ours

Figure 12. Qualitative visual comparison on Lytro dataset between our method and other representa-
tive methods.

5.4. Ablation Experiments
5.4.1. Ablation Study About Adaptive Memory Unit

To validate the effectiveness of the proposed adaptive memory unit module and
the spatial frequency-based activity level map, corresponding ablation experiments are
conducted separately, as shown in Figure 13.

(a) MUFusion(baseline) (b) Only modified the 
memory unit

(c) Adopting SF as the
activity level

(d) Ours

Figure 13. Qualitative visual comparison between our method and other representative methods.

Figure 13a illustrates the fusion result of the baseline. Figure 13b presents the outcome
after optimizing the memory unit into an adaptive memory unit. Figure 13c demonstrates
the result obtained by employing spatial frequency for extracting active levels, instead of
utilizing the original VGG feature extraction as active level weights. Figure 13d shows the
final improved fusion result of this paper. From the visual results, the improved module
proposed in this paper enhances the fused image, resulting in increased clarity and overall
image quality.
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As shown in Table 3, the adaptive memory unit structure enhances the retention of
information from the source images. The introduction of spatial frequency improves the
edge strength and information content of the fused image. While each individual im-
provement may not significantly impact performance, their combined application produces
a complementary effect, demonstrating the overall effectiveness and superiority of the
proposed method.

Table 3. Metrics comparison of ablation experiments. Bold: best.

Methods EN MI SF VIF Qabf SSIM AG PSNR

MUFusion (baseline) 7.613 5.324 20.247 1.067 0.563 0.640 7.326 68.545
Only modified memory unit 7.489 6.474 14.791 1.171 0.623 0.661 4.145 69.870

SF as the activity level 7.562 5.679 17.303 1.181 0.617 0.653 5.339 68.731
Ours 7.567 5.598 21.498 1.189 0.653 0.667 7.121 68.720

5.4.2. Ablation Study About Adaptive Loss Ratios

To verify the rationality and scientific nature of the adaptive loss rates W and Wi, this
paper conducted three groups of control experiments. In the first group, no weights are set.
In the second group, fixed weights are adopted, with W, W1, W2, W3, and W4 all set to 0.2.
In the third group, adaptive loss weights are used, which are adaptively adjusted during
the training process.

The comparison of the fusion results are shown in Figure 14. The adaptive loss weights
assign different loss ratios according to the quality of the fusion results obtained from
different epochs stored in the memory unit during the training process. It is more scientific
compared to not setting loss weights and using fixed loss weights. This is also reflected in
Figure 14. A scientific setting of the loss weights is more conducive to the network learning
more accurate network parameters and ultimately obtaining fusion images of better quality.

(a) I1 (b) I2 (c) No weights (d) Fixed weights (e) Adaptive weights

Figure 14. The impact of different loss ratio settings on the fusion results.

6. Conclusions

This paper addresses the issue of exposure difference in MFIF by introducing a new
dataset and a new baseline. Public datasets are overly idealized and do not adequately
reflect the common exposure differences present in real-world photography. Consequently,
deep learning methods developed on these datasets often underperform in practical appli-
cations. The proposed dataset, EDMF, includes images captured with smartphones under
various lighting conditions, covering diverse scenes without any adjustments to camera
parameters, thereby realistically simulating real-world usage. We hope that the EDMF
dataset will attract interest from researchers, fostering the development of more efficient
and robust MFIF methods to better address exposure difference in practical applications.

Furthermore, although multi-focus image fusion in complex real-world scenes is now
achievable, the method proposed in this paper still requires pre-registered images as input.
Our goal is to develop a method that can immediately produce a fused image from multiple
shots taken on the spot. Currently, there are mainly two solutions. The first one is to
effectively utilize transfer learning and combine it with the fusion methods. The second is
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to construct an end-to-end unregistered image fusion framework. At present, we are still in
the process of exploration.
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