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Abstract: In recent years, microelectromechanical systems (MEMS) technology has developed rapidly,
and low precision inertial devices have achieved small volume, light weight, and mass production.
Under this background, array technology has emerged to achieve high precision inertial measurement
under the premise of low cost. This paper reviews the development of MEMS inertial measurement
unit (IMU) array technology. First, the different types of common inertial measurement unit arrays
are introduced and the basic principles are explained. Secondly, IMU array’s development status
is summarized by analyzing the research results over the years. Then, the key technologies and
corresponding development status of IMU array are described, respectively, including error analysis
modeling and calibration, data fusion technology, fault detection, and isolation technology. Finally,
the characteristics and shortcomings of the past research results are summarized, the future research
direction is discussed, and some thoughts are put forward to further improve the accuracy of the
IMU array.
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1. Introduction

Microelectromechanical electro mechanical systems (MEMS) inertial devices have
many advantages such as low cost, small size, light weight, low power consumption,
and easy large-scale production [1], and have been widely used in the field of inertial
navigation. However, the measurement accuracy and reliability are low, which cannot be
ignored. Therefore, it is an important research direction to improve the accuracy of MEMS
inertial devices while making full use of their advantages [2].

The use of low cost, low precision and low reliability MEMS inertial devices to manu-
facture high-precision and high-reliability products, and then achieve high-precision and
high-reliability navigation goals, has become a hot topic in the field of inertial navigation.
There are two main ways to achieve the above goals, one is to improve the accuracy of a
single MEMS inertial device, and the other is to use multiple low-precision MEMS inertial
devices to improve the accuracy. As early as 2003, David S. Bayard and Scott R. Ploen
in the United States proposed a method for fusing multiple gyroscopes to significantly
improve performance [3,4]. Under the influence of this idea, later researchers in the field
of inertial navigation further proposed MEMS virtual gyroscope array [5], accelerometer
array, inertial sensor array [6], IMU array [7], etc., all of which are based on Newton’s law
of inertia. It has become an important research direction in the field of inertial navigation to
construct inertial measurement unit array using multiple MEMS inertial devices, and then
reduce error, improve accuracy and increase reliability through data fusion technology.

2. Principle and Research Status

The inertial measurement unit technology originated from David S. Bayard and col-
leagues at NASA’s Jet Propulsion Laboratory in 2003, with the concept of “virtual gyro-
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scopes”. They theoretically proposed a method to enhance accuracy for MEMS gyroscopes
by processing outputs from multiple gyroscopes. Through computer simulations, the fused
gyroscope accuracy was improved by a factor of 173. They further demonstrated that when
N gyroscopes are combined into an array, the drift of the combined gyroscope array can be
significantly reduced, thus enhancing performance [3,4].

IMU array technology refers to a technical solution that adopts multiple inertial mea-
surement units to form an array, measure the same acceleration and angular velocity signals,
analyze and model the signals collected by each IMU, and use data fusion technology to
fuse the measurement data of multiple inertial sensors into the output of the IMU array,
thereby improving the accuracy, as shown in Figure 1.
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The inertial measurement unit adopts the principle of Newton’s law of inertia, which
is used to detect the acceleration, angular velocity, and other information of the measured
object, and convert the collected physical signal into electrical signal output. Inertial
sensors include accelerometers and gyroscopes, which measure acceleration and angular
velocity information, respectively. As the core part of the inertial system, the inertial sensor
is an important factor affecting the whole inertial system. According to Newton’s law
of inertia, velocity and position information can be obtained by integrating acceleration
information and double integration, and angular information can be obtained by integrating
diagonal velocity information. However, the main problem is that errors grow rapidly with
the double integration, so that the system is not reliable [8], which seriously affects the
navigation accuracy. Therefore, by integrating the above information and combining the
positioning and orientation navigation algorithms [9], the position, speed, attitude, and
other information of the measured object can be obtained.

In 2004, Lam et al., based on dynamic modeling of random noise of MEMS inertial
devices, designed a dual-path compensation method that includes reference external
correction and dynamic detection to identify noise parameters in real-time, which is used
to provide filtering and noise elimination, effectively eliminate the noise source of MEMS
sensors, and improve the performance. This method also provides a new idea for the
internal self-calibration design of MEMS sensors [10].

In 2006, Min Hu from Northwestern Polytechnical University proposed a MEMS
virtual gyroscope system based on array technology in his Master’s thesis, the virtual gyro-
scope based on the data fusion of multiple similar sensors. He designed a micro-gyroscope
with high quality factors under normal pressure in hardware, and then compensated it in
software. Three such gyroscopes are formed into a gyroscope array by Kalman filter and
then fused into a high-precision virtual gyroscope [11]. Since then, Beijing University of
Aeronautics and Astronautics, Beijing Institute of Technology, Wuhan University, and other
institutions have also carried out a series of studies on MEMS IMU array technology.

In 2008, Peter A. Stubberud of the University of Nevada, United States, proposed A
new extended Kalman filter algorithm to solve the dimensional disaster of nonlinear fusion
of multiple MEMS inertial devices. The dynamic information of each sensor is fully utilized
to effectively improve the fusion accuracy [12].
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With the further development of research, array technology has been applied in
engineering practice. Since 2008, American companies Tanenhaus and Associates have
successively launched a number of low-cost and high-precision inertial navigation systems
based on array technology, which are used in intelligent munitions, micro-missiles, micro-
UAVs, and other applications [13].

In 2015, John Wang et al. from the University of Michigan in the United States
integrated 72 MEMS gyroscopes on a three-layer development board. As shown in Figure 2,
a hidden Markov model was adopted to model and fuse the gyroscope array. Experiments
showed that the gyroscope accuracy was improved by 50% compared with Kalman filter,
which significantly improved its performance [14].

Sensors 2024, 24, x FOR PEER REVIEW 3 of 18 
 

 

In 2008, Peter A. Stubberud of the University of Nevada, United States, proposed A 
new extended Kalman filter algorithm to solve the dimensional disaster of nonlinear fu-
sion of multiple MEMS inertial devices. The dynamic information of each sensor is fully 
utilized to effectively improve the fusion accuracy [12]. 

With the further development of research, array technology has been applied in en-
gineering practice. Since 2008, American companies Tanenhaus and Associates have suc-
cessively launched a number of low-cost and high-precision inertial navigation systems 
based on array technology, which are used in intelligent munitions, micro-missiles, micro-
UAVs, and other applications [13]. 

In 2015, John Wang et al. from the University of Michigan in the United States inte-
grated 72 MEMS gyroscopes on a three-layer development board. As shown in Figure 2, 
a hidden Markov model was adopted to model and fuse the gyroscope array. Experiments 
showed that the gyroscope accuracy was improved by 50% compared with Kalman filter, 
which significantly improved its performance [14]. 

 
Figure 2. The 72 MEMS gyroscope arrays [14]. 

In 2018, Owais Talaat Waheed et al. from Khalifa University in the United Arab Emir-
ates designed a vector processor based on Artix-7 FPGA, which solved the problem of 
scalability of IMU array sensor fusion and realized real-time and high-throughput IMU 
sensor array fusion [15]. The following year, they further proposed domain-specific archi-
tecture for IMU array data fusion, using Kalman filters to combine and predict the output 
and internal states of IMU arrays, and designed a compact data fusion processing system 
based on a combination of model approximation techniques and domain-specific proces-
sors. Compared with general-purpose processors, it greatly improves the efficiency of 
data fusion [16]. It marks that the research of MEMS IMU array has entered the application 
stage. 

In 2019, Chen et al. from Shanghai Micro-Satellite Engineering Center proposed an 
information fusion method for a micro-nano satellite gyroscope array system, which used 
time series modeling and Kalman filtering to filter the error signal of gyroscope and re-
duce the error of MEMS gyroscope. The fused gyroscope array met the application re-
quirements of micro-nano satellite [17]. The application of MEMS gyroscope array in mi-
cro-nano satellite is expanded. 

In 2020, Jing of Soochow University conducted a study on a pedestrian navigation 
system based on array inertial sensor in their Master’s thesis. They built a gyroscope array 
containing 32 MPU9250 in hardware, designed a pedestrian navigation system algorithm 
in software, corrected the gyroscope error through complementary filtering, and then car-
ried out inertial navigation solution. Finally, Kalman filter algorithm based on zero speed 

Figure 2. The 72 MEMS gyroscope arrays [14].

In 2018, Owais Talaat Waheed et al. from Khalifa University in the United Arab Emi-
rates designed a vector processor based on Artix-7 FPGA, which solved the problem of
scalability of IMU array sensor fusion and realized real-time and high-throughput IMU
sensor array fusion [15]. The following year, they further proposed domain-specific ar-
chitecture for IMU array data fusion, using Kalman filters to combine and predict the
output and internal states of IMU arrays, and designed a compact data fusion process-
ing system based on a combination of model approximation techniques and domain-
specific processors. Compared with general-purpose processors, it greatly improves the
efficiency of data fusion [16]. It marks that the research of MEMS IMU array has entered the
application stage.

In 2019, Chen et al. from Shanghai Micro-Satellite Engineering Center proposed an
information fusion method for a micro-nano satellite gyroscope array system, which used
time series modeling and Kalman filtering to filter the error signal of gyroscope and reduce
the error of MEMS gyroscope. The fused gyroscope array met the application requirements
of micro-nano satellite [17]. The application of MEMS gyroscope array in micro-nano
satellite is expanded.

In 2020, Jing of Soochow University conducted a study on a pedestrian navigation
system based on array inertial sensor in their Master’s thesis. They built a gyroscope array
containing 32 MPU9250 in hardware, designed a pedestrian navigation system algorithm in
software, corrected the gyroscope error through complementary filtering, and then carried
out inertial navigation solution. Finally, Kalman filter algorithm based on zero speed
interval was used for error correction, so as to realize pedestrian navigation function [18],
which expands the application of IMU array in the field of wearable devices.

In 2021, Professor Niu’s team at Wuhan University used a high-precision three-axis
rotary table to calibrate the constant error of MEMS IMU array. As shown in Figure 3, the
navigation accuracy of IMU array after error compensation was increased by 3.4 times, close
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to the theoretical limit value of 4 times. In the sports car experiment, the average position error
of pure inertial navigation with GNSS interrupted for 30 s was only 1.85 m [19]. It provides
experimental support for the application of IMU array in the inertial navigation field.
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In 2022, Liang Siyuan et al. from Xi’an University of Posts and Telecommunications
realized IMU array calibration without external calibration devices by manually adjusting
IMU array attitude, and the measurement accuracy of the array after error compensation
was improved by about 10 dB [20], providing a new research idea for the IMU array
self-calibration method.

In 2023, Yang et al. from Wuhan Institute of Technology integrated the Global Po-
sitioning System (GPS) and IMU sensors, built a Kalman filter platform using FPGA,
and built a loosely coupled integrated navigation system, which is more accurate than
single sensor positioning [21]. The application of IMU array in integrated navigation is
greatly promoted.

In 2024, Cao et al. from Sichuan University of Light Chemical Technology used a
sliding variance detector to divide the angular velocity into a static interval and a moving
interval, improved the traditional polyhedral static calibration method, calibrated each IMU
separately, and then compensated the velocity residual of the zero-velocity interval after
the zero-velocity update to improve the average noise performance of the IMU array [22].
They applied this method to the error compensation of IMU arrays in pedestrian navigation
systems, which improved the accuracy of pedestrian navigation and further promoted the
development of IMU arrays in the field of wearable devices.

Through the above analysis of the research status of MEMS IMU array technology,
it can be seen that the research mainly focuses on the following aspects: (1) in the cal-
ibration method, most researchers use a high-precision turntable to calibrate the array,
and some of them put forward the self-calibration method of the array; (2) in terms of
data fusion technology, research methods focus on the Kalman filter method and its exten-
sion, but some researchers have begun to use neural networks for data fusion of arrays;
(3) in practical applications, including applications in integrated navigation, satellites and
wearable devices.

Although some research work has been carried out in MEMS inertial measurement
unit array technology, there are still some problems to be solved. First, the process of
using a high-precision rotary table to calibrate the array is complicated and expensive,
so it is necessary to further study the new method of calibrating the array to reduce the
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cost of calibration. Secondly, the existing data fusion methods have their own advantages
and disadvantages. How to further improve the fusion accuracy and reliability of MEMS
IMU arrays needs to be optimized and improved. Finally, with the increase in the number
of sensors in the array, how to develop fault detection and isolation methods with high
stability, accuracy, and rapidity needs further research.

3. Error Analysis, Modeling, and Calibration

The output data of low-cost consumer MEMS inertial sensors are usually uncalibrated
and uncompensated. Due to the limitations of the manufacturing process and manufactur-
ing technology, the sensitive axes of the MEMS inertial sensors produced are not always
perfectly aligned, resulting in problems such as shaft misalignment errors and proportional
errors [23]. These problems lead to inaccurate output data of inertial devices. Accurate
error analysis and modeling of MEMS IMU arrays are the basis of data fusion. Through
error analysis, the influence of various error sources on the system is determined, and
then the corresponding error model is established, and the effective error compensation is
carried out to reduce the impact of the error.

The error of MEMS IMU array is mainly composed of inertial device error and instal-
lation error, which includes zero bias, noise, symmetric and asymmetric scale factor error
of gyroscope or accelerometer, etc. Installation error is the deviation between the actual
installation position of gyroscope or accelerometer and the design position.

Commonly used mathematical methods for error analysis of MEMS inertial devices
are mainly divided into the following four types: time series analysis, autocorrelation
function method, Power Spectral Density analysis (PSD), and Allan variance analysis [24].

The time series analysis method is the time domain analysis method, and its theoretical
core is to assume that a transfer function driven by a white noise source of intensity is able
to produce the same statistical and spectral characteristics as the actual black box system. It
models a stationary, normally distributed random sequence into a time-dependent sequence
driven by white noise occurring at various moments. The autoregressive model (AR) and
moving average model (MA) were selected according to the characteristics of spectral three
features (crest, trough, and roll drop) of random data of gyroscope angular velocity. ARMA
(autoregressive moving average model) is one of three models for error modeling. The
advantages of this method are that the error model is simple and recursive, and it can be
directly applied to Kalman filter and other filtering algorithms. The disadvantage is that
the model is very sensitive and is only suitable for dealing with stable random processes,
not for dealing with uncertain power spectrum processes, high-order processes, and wide
dynamic range [11,25].

The autocorrelation function method is a classical random data processing method,
and it is a form of frequency domain analysis. This method analyzes the characteristics of
various random processes in the data according to the autocorrelation characteristics of
random data. However, its data acquisition time is long, sometimes even exceeding the
instrument life [26].

Power spectrum density analysis is a frequency-domain analysis method. The power
spectrum density diagram of random sequence is obtained by Fourier transform. Various
random error sources can be identified from the power spectrum density diagram, which
is suitable for analyzing periodic or aperiodic signals. However, the analysis results of this
method in error modeling of gyroscopes are not easy to understand, and the calculation
time and resource consumption are large [11,27].

The Allan analysis of variance is developed on the basis of the power spectral density
method. This method utilizes the relationship between the power spectral density function
and the Allan variance function of various random errors in the output data of MEMS
gyroscope and accelerometer, analyzes and deduces the Allan variance of the output
signal, and makes the Allan variance characteristic curve in the log–log coordinate graph
to analyze the curve characteristics of random errors in the log–log graph. Allan variance
analysis combines time-domain analysis and frequency-domain analysis to form a double-
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logarithmic random error curve with obvious characteristics, easy to distinguish from each
other and simple operation, which can effectively identify various error components and
characteristics, so it is widely used in the error analysis of MEMS inertial devices [28].

After the error analysis of the IMU array is completed, the corresponding error model
can be established. The following introduces some commonly used error model formulas.
The stochastic error model of gyroscope can be written as follows:

ε = εb + εr + ωg
.
εb = 0

.
εr = − 1

τ εr + ωr
(1)

where ε is the overall random drift error of the gyroscope; εb is the successive start-up drift,
which can be modeled as a random constant, also known as random constant drift; εr is
the slow-varying drift, which is usually modeled as a first-order Markov process; τ is the
correlation time; ωg is the driving white noise; and ωr is fast change drift, modeled as a
white noise process.

The commonly used error model of gyroscope array can be written as follows, taking
the X-axis gyroscope in IMU as an example:

yi = ωx
i + bi + nai.

bi = nbi
i = 1, 2, 3, · · · , N (2)

where yi is the measured values of the ith gyroscope; ωx
i represents the true X-axis angular

rate of the ith gyroscope; bi represents the Rate Random Walk (RRW) of the ith gyroscope,
modeled as the integral of white noise nbi; and nai represents the ith gyroscope Angle
Random Walk (ARW), modeled as white noise.

The error model of IMU can be written as follows:{
ω = KgNg −ω0 − δω

f = KaNa − f0 − δf
(3)

where ω =
[
ωx ωy ωz

]
and f =

[
fx fy fz

]
are the true angular rate and specific

force of the gyroscope and accelerometer, respectively; Kg and Ka are the scale factor and
installation relation matrix of the gyroscope and accelerometer, respectively; Ng and Na are
the measured values of the gyroscope and accelerometer, respectively; ω0 and f0 are the
zero bias of the gyroscope and accelerometer, respectively; and δω and δf are the noise of
the gyroscope and accelerometer, respectively.

The measurements of the ith accelerometer triad and jth gyroscope triad can then be
modeled as follows: {

yi
a = s +ω× (ω× ri) +

.
ω× ri + ni

a

yj
g = ω+ nj

ω
(4)

where s is the specific force at the origin of the array coordinate system and ri is the location
of the ith accelerometer triad; ω and

.
ω are the array’s angular velocity and angular

acceleration, respectively; and ni
a and nj

ω are the measurement errors of the accelerometer
triads and gyroscope triads, respectively [29].

After the error analysis and error model of MEMS inertial devices are established, they
can be calibrated to determine the parameters of the error model, and then compensate for
the deterministic errors in MEMS inertial devices. Calibration is the process of comparing
the output of the inertial device with the known reference input to determine a set of
parameters that make the output of the inertial device match the reference input. Calibration
of the inertial sensors plays an important role in the ultimate accuracy of the IMU array [30].

For the calibration of MEMS IMU array, it is necessary to analyze and model a single
inertial device first. On this basis, the error model of the inertial sensor array is estab-
lished according to the particularity of the array, including not only the calibration factor,
installation, coupling, and other errors of the single inertial device, but also the correlation
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coefficient between the sensors in the array. Calibration of these parameters along with
standard parameters are essential to obtain the full capability of an inertial sensor array [29].
The calibration methods of MEMS IMU array can be divided into high-precision rotary table
calibration [31], low-precision rotary table calibration and no-rotary table calibration [32].
The most commonly used calibration methods based on the turntable are the speed test and
multi-position static test, which usually use the rate test to calibrate gyroscope parameters
and the multi-position static test to calibrate accelerometer parameters. The non-turntable
calibration method uses the earth gravity acceleration as the external excitation to solve the
calibration parameters of the array.

In 2009, Wang of North University of China studied the calibration method of error
coefficient of accelerometer array based on angular rate. On the basis of the in-depth study
of the inertial measurement combination configuration of the full accelerometer array, he
proposed a twelve-accelerometer configuration scheme and carried out the research on
the calibration method of the configuration scheme. With the acceleration of earth gravity
as the external excitation, the calibration schemes of three different distribution points
are calibrated by using a three-axis position rate turntable. The static and dynamic error
output models of accelerometers were established, respectively, and the optimal calibration
scheme was used to complete the calibration of the scale coefficient of the accelerometer
array [33].

In 2014, John-Olof Nilsson and others from the KTH Royal Institute of Technology of
Sweden designed a positive 20-hedron and established the accelerometer error model of
IMU array. The array was placed inside the positive 20-hedron, and static measurement
was carried out by sequential transformation of the position of the positive 20-hedron, as
shown in Figure 4. It is used to calibrate the constant error of the IMU array accelerometer.
After calibration compensation, the measurement accuracy of the IMU array accelerometer
is improved by 23 dB [7]. It proves the validity and importance of IMU array calibration
and provides an important idea for the later research of the IMU array calibration method.
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In 2016, Partick Schopp et al., based in Germany, proposed a self-calibration method
for accelerometer array that does not depend on external reference excitation, and only
uses the measured values of the accelerometer itself to estimate the accelerometer attitude.
In this method, three accelerometers are modeled as a group using an iterative graph
optimization algorithm taking the accelerometer attitude and motion as the target variables.
The global optimal solution is obtained [34]. It provides a new idea for self-calibration of
inertial devices.

In 2020, Wang Chuang et al. from the University of Shanghai for Science and Tech-
nology designed a calibration method based on IMU array. They first established the
calibration model of the inertial sensor array, constructed the cost function based on the
least square method for its nonlinearity, adopted the L-M algorithm to solve the calibration
parameters, and designed the standard positive 20-hedron. To provide enough external
excitation for the calibration process, it can also average some random errors and non-
modeling errors. They applied the designed calibration method to an IMU array containing
32 MPU-9250 IMUs, as shown in Figure 5. By comparing the calibration results with the
technical manual of MPU-9250, the effectiveness of the calibration scheme was verified,
and it was applicable to the calibration of both a single IMU and an IMU array [23]. In



Sensors 2024, 24, 7140 8 of 17

December of the same year, Zhou et al. from the University of Rocket Force Engineering
studied the calibration method of MEMS gyroscope array. They established the error model
of the gyroscope array including zero bias error, cross coupling, scale factor, and other
parameters, and tested the gyroscope range rate with a high-precision rate turntable. The
relationship equation between the theoretical value and the measured value was fitted with
the least square method. On this basis, the static weight distribution method was used
to calculate the weight assigned after normalization of each gyroscope. Then, the actual
output of the calibrated gyroscope array [35] is calculated, and the accuracy of the array is
improved by an order of magnitude after error compensation.
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In 2021, Hakan Carlsson et al. from Sweden proposed a maximum likelihood estimator
for self-calibration of IMU arrays, which can simultaneously estimate calibration parameters
and array motion dynamics without the help of external devices and can be used for real-
time calibration of small IMU arrays [36]. In the same year, Lukas et al. from the Blocher
Group in Germany used a high-precision rotary table to calibrate the constant parameters
of the IMU array. After error compensation, the array performed pure inertial navigation
based on the initial alignment of the static base, and the position error was only 0.99 m after
30 s. Experiments have proved that an array of 14 MEMS inertial sensors can reduce noise
variance by about a factor [37]. In October of the same year, Li Feng et al. from Soochow
University established different random noise models, further studied the problem of
excessive random noise existing in consumer MEMS inertial devices, analyzed the noise
principle and performance, and proposed that when N MEMS inertial sensors are used
to form an array, the noise variance can be reduced to [38]. However, as more and more
inertial sensors are added to the array, the extent to which the

√
N rule will remain valid

needs to be further investigated.
In 2023, Liu et al. from Wuhan University proposed an online calibration method based

on the Levenberg–Marquardt optimization algorithm, which calibrates the deterministic
errors of accelerometers and gyroscopes by manually rotating and standing IMU arrays
without the help of external reference devices. On-board experiments show that the
calibrated IMU array dynamic navigation accuracy is improved by 19.1% on average [39].

In recent years, neural network algorithms have gradually become a research hotspot,
and researchers have successively applied machine learning algorithms to array technology.
Dong et al. [40] of Xi’an Institute of Microelectronics Technology applied the Long Short-
Term Memory (LSTM) neural network algorithm to error correction and compensation of
IMU gyroscope array, reducing the bias instability of IMU array by 50% and the Angle
random walk by 35%.

In 2024, Wang et al. [41] of Xi’an Institute of Microelectronics proposed an adjoint
testing method and weighted fusion method for the calibration and fusion of IMU arrays,
respectively. As shown in Figure 6, the adjoint test method obtains error model calibration
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parameters through a single-chip microcomputer, and calibrates the coordinate system of
all sensors in the MEMS array to the same coordinate system, providing a basic guarantee
for sensor fusion. Considering the performance difference between sensors, the weighted
fusion method adopts a targeted weight allocation scheme, which can improve the error
performance index by about ten times. It provides a research idea for low-cost calibration
of MEMS IMU array.
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4. Data Fusion

The method to improve the accuracy of IMU array is to use data fusion to fuse the
measurement data of multiple inertial sensors into the output of array. Due to the impact of
noise, drift, and error that may exist in a single inertial sensor, data fusion technology fuses
multi-dimensional information of the sensor, which can reduce the impact of the error of a
single inertial sensor, improve the measurement accuracy of the system, and improve the
robustness of the system. Therefore, data fusion technology is the core of MEMS IMU array,
and its importance is beyond doubt.

In the early stage of inertial navigation development, researchers proposed a method
to improve measurement accuracy through data fusion of redundant information of inertial
sensors [42]. For the data fusion of redundant sensors, the simplest method is the least
square method, but the least square method uses the measured values of all sensors
regardless of good or bad, resulting in the measurement accuracy not being high. Therefore,
researchers proposed the weighted least square method [43], which is characterized by the
use of weights to ensure that sensors with higher accuracy occupy a greater proportion in
data fusion, so as to improve the accuracy of data fusion.

According to the criterion of the least square method, the least squares estimation for
the gyroscope angular rate and the specific force of the accelerometer is as follows:ω̂ = (K−1T

g WK−1
g )

−1
K−1T

g Wωi

f̂ = (K−1T
a WK−1

a )
−1

K−1T
a W f i

i = 1, 2, 3, · · · , N (5)

where ω̂ and f̂ are the least squares estimates of the gyroscope angular rate or the specific
force of the accelerometer, respectively. W is a positive definite weighted matrix with
appropriate values, and, in particular, when W = I, it is the general least squares criterion.
ωi is the corrected value of the ith gyroscope angular rate measurement and f i is the
corrected value of the ith accelerometer specific force measurement.

In addition, the researchers further proposed the recursive least squares method, which
can extract the estimated value information from each obtained measurement and be used
to modify the estimate obtained in the previous step, so as to make up for the shortcomings
of the least squares method which requires the storage of all the measurements.

In 2022, Liang et al. from Xi’an University of Posts and Telecommunication proposed
a two-stage fusion noise reduction algorithm based on MEMS array. They performed
empirical mode decomposition on gyroscope signals and integrated the Intrinsic Mode
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Function (IMF) components based on minimum variance and recursive least squares.
The fusion angular rate is then superimposed with the mean residual component. The
gyroscope Angle random walk processed by this algorithm is reduced by about 68%, and
the zero-bias instability is reduced by about 75% [44].

Another commonly used method in sensor data fusion is the weighted average method.
The principle of this method is to assign a corresponding weight to the measured value
of each sensor and use the size of the weight to reflect the relative reliability of the cor-
responding sensor. Usually, the sensor with more reliable or higher accuracy is given a
higher weight to achieve data fusion. The basic equation of the weighted average method
is as follows:

X̂ =

N
∑

i=1
Xi ·Wi

N
∑

i=1
Wi

i = 1, 2, 3, · · · , N (6)

where X̂ is the result after fusion; Xi is the measured value of the ith sensor; and Wi is
the weight corresponding to the ith sensor. In this method, weight will directly affect the
accuracy and reliability of data fusion, so weight setting is the core of the weighted average
method. There are many methods to set the weight, among which the method based on
support degree has been studied in the data fusion of the inertial sensor.

In 2007, Yang et al. from the Air Force Engineering University proposed a multi-sensor
information fusion algorithm based on support that does not rely on the prior knowledge of
sensor observation information and introduced the concept of support by using exponential
decay function in information fusion [45]. In 2012, Zhang et al. from Beijing University of
Aeronautics and Astronautics applied the support-based information fusion method to
MEMS gyroscope arrays. Experiments show that the method can effectively improve the
measurement accuracy of the Micro Inertial Measurement Unit (MIMU) [46].

The measurement variance ignored by the above data fusion method based on support
is caused by the comprehensive effect of various factors. Later, scholars further proposed
an adaptive weighting algorithm, which not only ensures the reliability of the sensor but
also minimizes the total variance of the fused target parameters by changing the influence
of the variance of the observed values of each sensor on the weighting coefficient [47,48].
Compared with the weighted average method, the estimated value obtained by the adaptive
weighted algorithm is closer to the real value.

In addition to the above methods, MEMS IMU array data fusion methods also include
Kalman filter [49] and its extension methods, including extended Kalman filter [12] and
particle filter [50].

The state equation and measurement equation of the basic Kalman filter are given
as follows: .

X(t) = F(t)X(t) + G(t)w(t)
Y(t) = H(t)X(t) + v(t)

(7)

where X(t) is the system state vector; F(t) is the state transition matrix; G(t) is the control
input matrix; and w(t) is the control input vector. Y(t) is the system observation vector;
H(t) is the observation matrix; and v(t) is the measurement noise.

According to Equations (2) and (7), the equation of state and the equation of measure-
ment are established for gyroscope array.

Let y =


y1
y2
...

yN

, b =


b1
b2
...

bN

, na =


na1
na2

...
naN

, nb =


nb1
nb2

...
nbN

 simply write Equation (2) as

y=Iω+b+na.
b = nb =

[
nb1 nb2 · · · nbN

]T (8)
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When the input angular velocity is zero, the Kalman static filter equation is established,
the system state vector X =

[
b ω

]T is set, the Angle random walk na is taken as the mea-
surement noise vector, the actual output y of the array is taken as the system measurement
vector, and the system state equation and measurement equation are established.

.
X(t) =

[
nb1 nb2 · · · nbN nω

]T
= 0 · X(t) + IN

[
nb1 nb2 · · · nbN

]T

Y(t) =
[

IN
...1N

]
· X(t) +

[
na1 na2 · · · naN

]T (9)

The static Kalman filter is only applicable to the estimation when the angular velocity
input is zero. When the angular velocity input is not zero, the real-time measurement value
needs to be fused with the previous state estimation to realize the dynamic update of the
system state estimation. The Kalman dynamic filter equation is established, the system state
vector X =

[
b1 b2 · · · bN

]T is set, and the actual output vector of the gyroscope array
is processed differently to eliminate the influence of the unknown real angular velocity on
the measured value.

.
X(t) =

[
nb1 nb2 · · · nbN

]T
= 0 · X(t) + IN

[
nb1 nb2 · · · nbN

]T
Z1(t)
Z2(t)

...
ZN(t)

 =


Y2(t)− Y1(t)
Y3(t)− Y2(t)

...
Y1(t)− YN(t)

 =


−1 1 · · · 0
0 −1 · · · 0
...

...
...

...
0 0 · · · −1

 · X(t) +


na2 − na1
na3 − na2

...
na1 − naN

 (10)

According to the above state equation and measurement equation, a Kalman filter is
constructed to obtain the optimal estimate of the random walk of the state rate, and then
the optimal estimate ω̂ of the input angular rate is extracted from it.

In 2016, Liu et al. from Rocket Army Engineering University proposed a signal fusion
method of MEMS gyroscope array based on an optimized Kalman filter. Based on the linear
measurement of the MEMS gyroscope array signal, a Kalman filter is constructed and the
steady-state value of the gain matrix of the Kalman filter is used to estimate the angular
rate. The calculation of gain and mean square error in each step is avoided, and the process
of optimal estimation is improved. The optimized Kalman filter reduces the complexity
and computation of the processing. Finally, the fusion estimation of diagonal velocity is
realized. Under this method, the noise of the array composed of six gyros is reduced by
144.2 times under static condition and 18.18 times and 5.36 times under constant rate and
sinusoidal rate, respectively [51].

Since the Kalman filter is only applicable to linear systems, when the system model is
nonlinear, a model approximation error will be caused. In the IMU array, the gyroscope and
accelerometer can provide angular velocity measurement information at the same time, and
the output of acceleration and angular velocity are nonlinear, thus the extended Kalman
filter is derived. The nonlinear problem is approximately transformed into a linear problem
by discarding higher order terms above the second order through Taylor expansion [52].

In 2018, Xing Li from the Nanjing University of Aeronautics and Aeronautics proposed
an angular velocity estimation method of IMU array based on an improved extended
Kalman filter, established the state equation and measurement equation of angular velocity
fusion estimation of IMU array, analyzed and deduced the improved extended Kalman
filter equation when state noise and measurement noise were correlated, and realized the
fusion estimation of angular velocity information in the array [53].

For the data fusion of MEMS inertial sensor array, based on the above basic meth-
ods, the researchers also combined and extended it, and put forward many new data
fusion methods.

In 2020, Hiroyuki Kamata et al. [54] from Japan proposed a signal processing filtering
method for MEMS gyroscope array that is easy to implement on FPGA. They established an
interference noise model and abnormal noise model, and restored gyroscope performance
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by suppressing interference noise and dynamically removing outlier noise, including
angular random walk and bias instability. For MEMS gyroscope sensors with mutual
interference and poor performance, the array containing 32 consumer MEMS IMUs is
raised to nearly the ideal gain value 1/

√
32 under the effect of this filtering method. In

the same year, Liang et al., Xi’an University of Posts and Telecommunications, proposed
a Wavelet Compressive Fusion (WCF) wavelet efficient optimal estimation algorithm for
MEMS arrays. The algorithm uses the compression characteristic of multi-scale wavelet
transform to compress the original signal output of MEMS inertial sensor array based on
support fusion, and then performs threshold processing on the fused wavelet coefficients.
This method increases gyroscope zero bias instability, Angle random walk, and rate slope
by 8.0, 8.0, and 9.5 dB, respectively [55].

In 2023, Miao et al. of the Beijing Institute of Technology [56] proposed a gyroscope
array fusion algorithm based on the combination of neural network and Kalman filter.
LSTM neural network was used to calculate the confidence of gyroscope, and multi-layer
feedforward network Back Propagation (BP) was used to identify gyroscope faults and
reduce the measurement data utilization of the faulty gyroscope. The method can reduce
the mean absolute error of gyroscope array by 80.25% and the root mean square error by
81.39% in the case of faulty gyroscope array. In the same year, Wei et al. from the Shanghai
University of Engineering Technology designed an array IMU hardware platform based
on redundant measurement information, and improved the extended Kalman filter fusion
algorithm by using the iterative reweighted least square method, which realized that the
random error of array IMU was reduced by three to five times compared with that of a
single IMU [57].

5. Fault Detection and Isolation

MEMS IMU array consists of multiple inertial sensors, including a large number of
accelerometers and gyroscopes [22]. The failure of individual sensors in a large number of
sensors is inevitable, that is, the sensor is in an abnormal working state. Once the sensor
fails, its output measurement data will become unreliable, leading to a lot of uncertainty in
the entire system. Sun et al., Nanjing University of Aeronautics and Astronautics, divided
sensor faults of navigation systems into the following three types: inaccurate output,
unreasonable output, and inconsistent output [58].

Fault Detection and Isolation technology can detect and identify the faults of a single
or multiple sensors in the inertial sensor array, and take timely measures to isolate the
faulty sensors, thereby improving the stability and reliability of the entire system [59].
FDI approaches can be divided into the following categories: hardware-based approach,
analyzing-based approach, and AI-based approach.

In 2014, Drew E. Bittner et al. developed a Fault Detection, Isolation, and Recovery
(FDIR) architecture for large-scale IMU arrays. Used to identify anomalies and error data
output from a large number of real-time parallel data, the architecture uses K-nearest
Neighbors (KNN) to calculate the difference between all sensor measurements in unit
time several times, and thus determine the corresponding tolerance N and establish a
neighboring value K. When the difference between the measured value of a sensor and
at least K sensors is within the tolerance value N, the measured value of the sensor is
considered to be “good”, otherwise it is considered to be “bad”. The abnormal IMU is
identified by the above method, and the wrong output is prevented from being included
in the state estimation. Taking 16 IMUs as examples, they calculated the difference for
a second time and set the adjacent value to 4. The Monte Carlo simulation method was
used to test the reliability of the FDIR architecture under various random faults, and the
results showed that the architecture could process a large amount of IMU measurement
information and had good robustness [60].

At present, there is little research on fault detection and isolation of MEMS IMU arrays,
but the array technology of sensors is a form of redundancy technology. Therefore, the best
solution to improve the fault detection and isolation performance of MEMS IMU array sen-
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sors is to implement redundant sensor configuration, which can not only increase the fault
tolerance rate of the system, but also improve the measurement accuracy of the system [61].
The inertial navigation system can be divided into system level redundancy and device
level redundancy according to the redundancy level. The device level redundancy is to
configure more sensors on the basis of the traditional structure of three axes and six tables.

For the fault detection of Redundant Inertial Measurement Unit (RIMU), common
methods include the direct comparison method based on equivalent space principle [62],
Generalized Likelihood Ratio (GLR) [63], Optimal Parity Test (OPT) [64], and Singular
Value Decomposition (SVD) [65].

The direct comparison method is applicable to the hard fault detection of inertial
devices. This method takes advantage of the principle that there must be linear correlation
between any four vectors, X1, X2, X3 and X4, in three-dimensional space. The equation is
as follows:

aX1 + bX2 + cX3 + dX4 = 0 (11)

where a, b, c, and d are real constants that are not all zero. Therefore, in a redundant IMU, the
measured values of the gyroscope (accelerometer) along any four directions also have this
linear correlation. Taking a gyroscope with regular dodecahedral redundancy as an example,
the measurement error is ignored, which can be obtained by the above Equation (11).

(m1 − m2) cos α − (m3 + m4) sin α = 0 (12)

Equation (12) shows that if the measured values of the four gyroscopes meet the above
equation, it means that the four gyroscopes are not faulty, otherwise it means that at least
one of the four gyroscopes is faulty. Through the above steps, the fault detection problem
can be transformed into a logical judgment problem of linear correlation equations. This
method of detecting faults by comparing the measured values of each gyroscope is also
called the parity detection method, and the linear correlation equation of Equation (12) is
also called the parity equation. Similarly, by combining multiple gyroscopes, we can set up
odd equations, identify all the equations whose results are not 0 as 1, and then establish
the truth table of fault isolation, through which fault detection and fault gyroscopes can be
quickly isolated. In particular, when three or more gyros fail, this method can only be used
for fault detection and cannot be used for fault isolation.

The generalized likelihood ratio method is applicable to the soft fault detection of
inertial devices. In this method, the concept of parity vector is introduced. When a sensor
fails, the corresponding fault vector will appear, resulting in the inconsistency between the
parity vector with fault and that without fault, which provides the basis for fault detection.
The fault detection decision function is established according to the statistical characteristics
of the parity vector ρ in the fault-free hypothesis H0 and the fault-free hypothesis H1, and
the fault decision criterion is established through the pre-set threshold. When a sensor is
determined to have a fault, the likelihood function of the parity vector ρ is further analyzed
to determine the specific fault sensor and isolate it.

The optimal parity vector method is an advanced method of the parity vector method.
It not only uses the parity of the output value of the sensor to detect faults, but also intro-
duces an optimization algorithm to improve the accuracy and efficiency of
fault detection.

Singular value decomposition method uses the principle of matrix singular value
decomposition to construct the output matrix from the output data of the inertial device
and performs singular value decomposition to obtain the singular value and corresponding
singular vector. Abnormal or faulty sensors usually cause some singular values to deviate
significantly from the normal singular value distribution. When the singular vector of a
sensor deviates significantly from other singular vectors, it indicates that the sensor has a
fault or anomaly.

In addition to the above methods, in recent years, many wavelet packet decompo-
sition techniques, such as fuzzy decision making, support vector machine (SVM), and
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wavelet packet decomposition, have been proposed in the literature. Methods such as
WPD and principal component analysis (PCA) are introduced into the fault diagnosis of
redundant IMUs.

In 2008, Li et al. from the Air Force Engineering University used multiple gyroscopes
to measure the same variable repeatedly, used fuzzy decision to evaluate the quality of odd-
even residuals, and designed an adaptive gradient fault tolerance method of redundant
IMU. This method can play a good role in detecting and tolerating the graded faults of up
to two gyroscopes [66].

In 2015, Li Yong from the Nanjing University of Aeronautics and Astronautics used
wavelet packet decomposition to extract the energy features of gyroscopes, combined
with support vector machine classifiers to carry out gyroscope fault diagnosis, and built a
gyroscope fault diagnosis system based on a fuzzy support vector machine and incremental
learning algorithm [67].

In 2020, Hao et al. proposed an improved principal component analysis (PCA) fault
detection algorithm based on odd-even space generation to make up for the shortcomings
of PCA for dynamic fault detection of redundant IMUs. This method uses odd-even
vectors to isolate dynamic variables to eliminate the influence of dynamic variables on fault
detection, uses the principal component analysis method to detect sensor information in
real-time, and transposes the original data set to the feature plane to form patterns, thus
achieving accurate separation of normal and fault modes of IMU [68].

For MEMS IMU arrays, the fault detection and isolation methods can be further
studied by referring to the above outlined IMU fault detection and isolation methods.

6. Summary and Prospect

At present, the research on MEMS IMU array technology mainly has the following characteristics:

(1) The research focuses on calibration methods. Most calibration methods are based
on high-precision turntables, and a few researchers have proposed self-calibration
methods without the help of external equipment.

(2) In the research of data fusion methods, with Kalman filter and its extension method
as the main, the stability of array measurement stability is improved by data fusion.

To sum up, the following aspects need further study:

(1) To study low-cost calibration methods, new self-calibration methods can be considered
to reduce calibration costs, and how to accurately calibrate inertial sensor arrays with
different installation error angles and large installation error angles.

(2) As data fusion technology is the core of MEMS IMU array technology and is directly
related to the accuracy of the array, how to further improve the fusion accuracy and
reliability of MEMS IMU array needs to include optimizing and improving the existing
methods. Further research can be conducted on the data fusion method combining
the Kalman filter and its extension method with neural network.

(3) When the number of sensors in the inertial sensor array becomes larger and larger, the
extent to which the rule will maintain its effectiveness remains to be further studied.

(4) With the increase in the number of inertial sensors in MEMS IMU array, the collected
information is complex and the data are large, so it is very important to study fault
detection and isolation methods with high stability, accuracy, and rapidity.

Using low-cost, low-precision MEMS inertial devices to compose inertial sensor array,
through data fusion, error analysis, modeling and calibration, fault detection and isolation,
and other technologies, can greatly reduce its random error and improve the accuracy, so
that the use of low-cost, low-precision inertial devices to compose high-precision inertial
navigation systems is possible. This paper summarizes some of the literature in the field
of inertial sensor array in recent years, discusses the research status and key technologies
of MEMS inertial sensor array technology, and puts forward some thoughts on the future
research direction.
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