
Citation: Singh, V.; Baral, A.; Kumar,

R.; Tummala, S.; Noori, M.; Yadav,

S.V.; Kang, S.; Zhao, W. A Hybrid

Deep Learning Model for Enhanced

Structural Damage Detection:

Integrating ResNet50, GoogLeNet,

and Attention Mechanisms. Sensors

2024, 24, 7249. https://doi.org/

10.3390/s24227249

Academic Editors: Ka-Veng Yuen,

Magda Ruiz and Luis Eduardo Mujica

Received: 25 September 2024

Revised: 9 November 2024

Accepted: 11 November 2024

Published: 13 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Hybrid Deep Learning Model for Enhanced Structural Damage
Detection: Integrating ResNet50, GoogLeNet, and
Attention Mechanisms †

Vikash Singh 1 , Anuj Baral 1 , Roshan Kumar 2,*, Sudhakar Tummala 3,4,* , Mohammad Noori 5,6 ,
Swati Varun Yadav 1, Shuai Kang 7 and Wei Zhao 2

1 Department of Instrumentation and Control Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Udupi 576104, India; vikash.nepal@manipal.edu (V.S.);
anuj.baral@learner.manipal.edu (A.B.); yadav.swati@manipal.edu (S.V.Y.)

2 Department of Electronic and Information Technology, Miami College, Henan University,
Kaifeng 475004, China; henuzhao@vip.henu.edu.cn

3 Department of Radiology, Huzhou Wuxing People’s Hospital, Huzhou Wuxing Maternity and Child Health
Hospital, Huzhou 313000, China

4 Department of Electronics and Communication Engineering, School of Engineering and Sciences,
SRM University AP, Amaravati 522240, India

5 Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93405,
USA; mnoori@calpoly.edu

6 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
7 School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China;

kangshuai@henu.edu.cn
* Correspondence: roshan.iit123@henu.edu.cn (R.K.); sudhakar.t@srmap.edu.in (S.T.)
† This paper is an extended version of our paper published in 4th International Conference on Sustainable

Expert Systems (ICSES 2024), Kaski, Nepal, 15–17 October 2024.

Abstract: Quick and accurate structural damage detection is essential for maintaining the safety and
integrity of infrastructure, especially following natural disasters. Traditional methods of damage
assessment, which rely on manual inspections, can be labor-intensive and subject to human error.
This paper introduces a hybrid deep learning model that combines the capabilities of ResNet50
and GoogLeNet, further enhanced by a convolutional block attention module (CBAM), proposed to
improve both the accuracy and performance in detecting structural damage. For training purposes,
a diverse dataset of images depicting both structural damage cases and undamaged cases was
used. To further enhance the robustness, data augmentation techniques were also employed. In this
research, precision, recall, F1-score, and accuracy were employed to evaluate the effectiveness of the
introduced hybrid deep learning model. Our findings indicate that the hybrid deep neural network
introduced in this study significantly outperformed standalone architectures such as ResNet50
and GoogLeNet, making it a highly effective solution for applications in disaster response and
infrastructure maintenance.

Keywords: deep learning; ResNet-50; CNN; GoogLeNet; CBAM; damage detection

1. Introduction

When it comes to disaster management, timely and precise structural damage assessment
is vital for effective emergency response and recovery efforts. It is crucial for maintaining the
safety and integrity of buildings and infrastructure in everyday maintenance, as well as in the
aftermath of disasters. Images of the 1985 Mexico earthquake, from Mexico City, are shown in
Figure 1 (https://commons.wikimedia.org/wiki/File:Album_de_imagenes_del_terremoto_de_
1985_UsoLibre.png, (accessed on 2 November 2024)).

However, the traditional methods of evaluation mostly rely on human inspection
and have been shown to be labor-intensive, often hindering the ability to make critical

Sensors 2024, 24, 7249. https://doi.org/10.3390/s24227249 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24227249
https://doi.org/10.3390/s24227249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9330-5572
https://orcid.org/0009-0005-2400-5521
https://orcid.org/0000-0001-5735-9418
https://orcid.org/0000-0002-2793-5194
https://commons.wikimedia.org/wiki/File:Album_de_imagenes_del_terremoto_de_1985_UsoLibre.png
https://commons.wikimedia.org/wiki/File:Album_de_imagenes_del_terremoto_de_1985_UsoLibre.png
https://doi.org/10.3390/s24227249
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24227249?type=check_update&version=2

Sensors 2024, 24, 7249 2 of 19

decisions in a timely manner [1]. However, the emergence of deep learning technology has
revolutionized image classification, offering automated solutions for tasks that formerly
necessitated substantial human involvement [2].

Figure 1. Images of the 1985 Mexico Earthquake, from Mexico City (https://commons.wikimedia.org/
wiki/File:Album_de_imagenes_del_terremoto_de_1985_UsoLibre.png, (accessed on 2 November 2024)).

This study offers a model designed to evaluate not only visible cracks but also other
critical signs of structural damage. These include partial displacements, which may indicate
foundational shifts; deformations, which might indicate excessive stress; and surface
abnormalities and fractures, which may eventually cause a structure to weaken over time.
This more comprehensive framework for assessment is crucial for routine maintenance and
monitoring, as well as for post-disaster scenarios. It allows for early action that ensures
structural resilience and stops additional damage [3,4].

Prior research has highlighted the capability of deep learning for structural damage
detection. For instance, Lee et al. utilized convolutional neural networks (CNNs) to
detect cracks in building facades, achieving an accuracy of 95.3% [5]. In the context of
infrastructure inspection, Yang et al. employed deep learning for crack detection in images
captured by unmanned aerial vehicles (UAVs), reporting an average precision of 93.7% and
a recall of 91.2% [6]. These studies, along with others, showcase the growing promise of
deep learning, to enhance and automate the accuracy of damage assessment processes [7,8].

Furthermore, research has shown the applicability of deep learning across different
types of structures and damage indicators. Yuqing and Khalid applied the VGG16 model for
structural damage recognition, achieving 90% accuracy [9]. Similarly, Cao et al. used VGG16
to detect cracks in the gusset plate welded joints of steel bridges, achieving an accuracy of
94% [10]. Xiuying leveraged a ResNet101-based image segmentation model for concrete
crack detection, achieving 94.52% precision and 95.25% recall accuracy, underscoring the
importance of deep residual networks in such tasks [11].

Zheng et al. used YOLOv3 and RetinaNet pre-trained on the COCO dataset in surface
crack detection to effectively identify cracks [12]. Additionally, Guo et al. applied the
YOLOv5 model to pavement crack detection, achieving 88.1% accuracy, showcasing its
utility in infrastructure maintenance [13]. Kong and Li proposed a vision-based method for
detecting metal fatigue cracks using video feature tracking, which is crucial for ensuring the
safety and longevity of steel structures [14]. Furthermore, Wilson and Diogo demonstrated
an approach with the VGG16 model, achieving 92.27% accuracy with a dataset of fewer
than 3500 images [15]. Wan, Shuai et al. discussed the integration of knowledge-driven and
data-driven techniques in SHM, presenting a framework that enhances monitoring accuracy
by combining the strengths of both approaches [16]. Furthermore, Khan, Imdad Ullah et al.
explored the challenges of anomaly detection for long-term SHM data with deep-learning
and rule-based classification methods. They examined issues such as ambiguous data

https://commons.wikimedia.org/wiki/File:Album_de_imagenes_del_terremoto_de_1985_UsoLibre.png
https://commons.wikimedia.org/wiki/File:Album_de_imagenes_del_terremoto_de_1985_UsoLibre.png

Sensors 2024, 24, 7249 3 of 19

categorization, information loss in time-series conversion, and thresholding requirements,
contributing to the development of more reliable anomaly detection in SHM systems [17].

Our research introduces a novel CNN model, designed for the task of building dam-
age detection. By integrating a dual attention mechanism and drawing inspiration from
established architectures like ResNet and GoogLeNet, our model achieved a remarkable
accuracy of 98.6%. This advancement highlights the significance of customizing deep
learning solutions for damage assessment applications. The model’s exceptional perfor-
mance, evidenced by its high precision (98.2%), recall (98.8%), and F1-score (98.5%), further
demonstrated the model’s effectiveness, ultimately contributing to the development of
safer and more resilient infrastructure [18,19].

Our approach also uses transfer learning techniques, which significantly enhance
the models’ performance and efficiency. Our models are better equipped to handle tar-
geted tasks by applying knowledge acquired from large scale datasets to our specific
scenario [20,21]. The deep residual learning features of ResNet-50 and the inception mod-
ules of GoogLeNet (both pre-trained on the ImageNet dataset) enable our models to extract
features from damaged structure images, for improved classification accuracy and reliabil-
ity. Our ultimate objective (i.e., our future goal) is to deploy this model alongside drone
technology, enabling drones to capture real-time images of buildings in the aftermath of a
disaster. Equipped with GPS tagging, the captured images could be transmitted back to
a base station, where the model could rapidly assess damage levels and locations. This
approach would allow disaster response teams to gauge the extent and exact location
of structural damage, enabling them to allocate resources and personnel more efficiently.
By first developing a robust, accurate classification algorithm and then integrating it into a
real-time system, we aim to create a tool that prioritizes critical areas, ultimately saving
time, resources, and potentially lives during rescue operations.

2. System Model

In this section, we briefly explore CNNs, Resnet50, GoogLeNet, and the proposed model.

2.1. Convolutional Neural Networks (CNNs)

CNNs are a class of deep learning models tailored for handling data with a structured
grid-like arrangement, such as in the case of images. Unlike traditional neural networks,
CNNs are characterized by their use of convolutional layers. Several filters are applied
across the input data to automatically and adaptively learn the features in a spatially
hierarchical manner [22]. The CNN architecture is shown in Figure 2, and the fundamental
building block of a CNN is the convolutional layer, which performs the convolution
operation, given in (1).

F(i, j) = ∑
m

∑
n

X(i + m, j + n)W(m, n) (1)

where X is the input image or feature map; W is the filter or kernel; m, n are indices that
represent the spatial dimensions of the filter (or kernel); F is the feature map output after
the convolution; and i, j are the indices across the dimensions of the feature map.

After the convolution operation, a non-linear activation function, such as a rectified
linear unit (ReLU), is applied. This introduces non-linearity, enabling the model to capture
more complex patterns [23]. Furthermore, pooling layers are typically used to gradually
decrease the spatial dimensions of the feature maps, which helps to lower the number
of features and the computational overhead, while preserving the most significant fea-
tures [24]. Finally, fully connected layers combine these extracted features for classification
and use a function (e.g., the softmax function) to output probabilities [25].

Sensors 2024, 24, 7249 4 of 19

Figure 2. A Basic CNN architecture, illustrating the convolutional, pooling, and fully connected
layers used to extract spatial features for structural damage detection.

2.2. ResNet50

ResNet50’s deep architecture is shown in Figure 3. It is widely recognized for its ability
to train very deep networks, while avoiding the vanishing gradient problem through the
use of residual learning. ResNet50 has residual blocks, an innovation that enables the
network to learn identity mappings.

Figure 3. Basic architecture of ResNet50.

Sensors 2024, 24, 7249 5 of 19

ResNet50 is a well-established deep convolutional neural network, recognized for its
capacity to effectively train very deep architectures. This is achieved by addressing the
vanishing gradient problem through residual learning. The core innovation in ResNet50 lies
in its residual blocks, which facilitate the learning of identity mappings. Mathematically,
a residual block is represented in (2).

y = F (x, {Wi}) + x (2)

In this expression, x is the input to the block, and F (x, {Wi}) denotes the residual
function. This function typically comprises convolutional layers, batch normalization,
and ReLU activations. The set {Wi} represents the weights associated with these layers,
which are adjusted during training.

The addition operation in the equation enables the network to learn a residual map-
ping, which proves to be easier to optimize than learning a direct mapping [26]. ResNet50 is
structured with multiple residual blocks, each designed to effectively capture and propagate
complex features across different layers [27].

ResNet50’s deep architecture is particularly well-suited for tasks that require detailed
feature extraction, such as detecting structural damage, where subtle indicators like cracks
need to be identified. However, despite these strengths, the model may encounter chal-
lenges in efficiently processing multi-scale features. This constraint has driven research
toward exploring alternative architectures such as GoogLeNet [28], which provide innova-
tive strategies for addressing multi-scale feature representation.

2.3. GoogLeNet

The GoogLeNet architecture is shown in Figure 4. This model is also referred to as
Inception-v1 and brought several groundbreaking features that distinguished it from earlier
convolutional neural networks (CNNs). These features, notably the inception modules,
enhanced its capability to handle multi-scale data processing. The inception module applies
several convolutional filters of sizes 1 × 1, 3 × 3, and 5 × 5 in parallel, followed by a max-
pooling operation, as illustrated in Figure 4. This design allows the network to capture
both fine and coarse features within a single layer, enhancing its ability to process diverse
scales of information. The output of the inception module is expressed in (3).

Inception Output = [f1×1(x), f3×3(x), f5×5(x), MaxPool(x)] (3)

where f1×1, f3×3, and f5×5 are convolutional operations with kernel sizes of 1 × 1, 3 × 3,
and 5 × 5, respectively, applied to the input x. The MaxPool(x) operation refers to a max
pooling layer, which extracts the maximum value from a specified region, thereby reducing
the spatial dimensions. The final output is obtained by concatenating the feature maps
generated by each of these operations.

GoogLeNet’s architecture is computationally efficient, while maintaining high accu-
racy, which is particularly advantageous for tasks involving input data with features at
different scales [28]. The success of this design influenced the development of later models,
such as Inception v3 and Inception v4, which further refined multi-scale processing [29].
This multi-scale processing capability of GoogLeNet is especially useful in detecting struc-
tural damage, where features such as cracks may vary in size and location across different
regions of an image [30]. Despite its strengths, GoogLeNet, like ResNet50, may not always
emphasize the most relevant features. Therefore, to enhance performance, attention mecha-
nisms have been incorporated into newer models to ensure that the network focuses on the
most critical aspects of the input data.

Sensors 2024, 24, 7249 6 of 19

Figure 4. GoogLeNet architecture, featuring inception modules that process multiple filter sizes in
parallel to capture varied structural damage features within images.

3. Proposed Model

The proposed model integrates the strengths of two well-established deep learning
architectures—ResNet50 [26] and GoogLeNet [28]—to create a robust and flexible frame-
work for detecting structural damage using images. By combining these architectures
with an advanced attention mechanism, namely a convolutional block attention module
(CBAM), the model is designed to focus on the most critical features within the image,
thereby enhancing its overall performance in identifying structural anomalies [31].

The comprehensive layout of the presented model is depicted in Figure 5. It is com-
posed of several key components, each playing an important role in the feature extraction
and classification. These components include convolutional blocks, a residual block, an in-
ception module, and an attention mechanism, followed by fully connected layers that
output the final classification decision.

Sensors 2024, 24, 7249 7 of 19

Figure 5. Proposed hybrid model layout, integrating ResNet50, GoogLeNet, and attention mecha-
nisms to improve the feature extraction and classification accuracy for structural damage detection.

The model accepts images of 180 × 180 × 3 dimensions, suitable for capturing the
necessary details while maintaining computational efficiency, as depicted in Figure 5.

3.1. Convolutional Blocks

The feature extraction process begins with a series of three convolutional blocks, each
designed to progressively capture more complex and abstract features from the input
images. The purpose of these convolutional blocks is to identify low-level characteristics,
including edges, textures, and patterns Each convolutional block contains multiple filters,
with each filter learning to detect unique features from the input image. Figure 6 illustrates
how these filters progressively transform the input image, highlighting the distinct features
captured at each stage.

• Conv Block 1: The initial convolutional block uses 32 filters of size 3 × 3 to process
the input image. This is followed by a ReLU activation function, which introduces
non-linearity into the model to learn the more complex patterns. This block primarily
detects fundamental features like edges and simple textures, as illustrated in Figure 6b,
which serve as a foundation for deeper layers in the network.

• Conv Block 2: The output from the first block is passed to the second convolutional
block, where the filter size is 3 × 3 with 64 filters. Similarly to the first block, a ReLU
activation function is applied. This block builds upon the basic features captured in
the first block, allowing the model to detect more complex structures and patterns
within the images, such as corners and intricate textures. The refined edge detection
result at this stage is shown in Figure 6c.

• Conv Block 3: The third convolutional block further increases the complexity of the
feature extraction by applying 128 filters of size 3 × 3, followed by ReLU activation.

Sensors 2024, 24, 7249 8 of 19

This block is crucial for capturing high-level features that are directly related to struc-
tural damage, such as cracks, fractures, and deformations in the building structures.

(a) Original Image

(b) Initial edge detection (c) Refined edge detection

(d) Channel attention applied (e) Spatial attention applied

Figure 6. Transformation stages of the input image through convolutional layers, highlighting
the initial edge detection and refinement with the convolutional block attention module (CBAM),
(a) original image (b) initial edge detection, (c) refined edge detection, (d) channel attention applied,
and (e) spatial attention applied.

3.2. Residual Block

After the convolutional blocks, the architecture incorporates a residual block inspired
by ResNet50. The residual block is used to avoid the vanishing gradients problem arising
in deep neural networks by using skip connections, such that the model can learn residual
mappings. These mappings enable the network to retain and reuse learned features across
layers, thereby improving the model’s capacity to recognize patterns, without any loss
in performance. Mathematically, a residual block is represented in (2). This formulation

Sensors 2024, 24, 7249 9 of 19

allows the network to learn the difference between the input and the desired output, rather
than attempting to learn the entire transformation all at once.

3.3. Inception Module

The output from the residual block is fed into an inception module, which is a critical
component borrowed from GoogLeNet. The inception module is designed to perform
multi-scale feature extraction by applying multiple filters of different sizes (e.g., 1 × 1,
3 × 3, and 5 × 5) in parallel, followed by max pooling. This architecture allows the model to
capture features at various scales, making it particularly effective in identifying structural
damages of different sizes and shapes within the same image. The inception module is
mathematically represented in (3), where the outputs from parallel filters are concatenated
to form a comprehensive feature map that captures the multi-scale features necessary for
accurate structural damage detection.

3.4. Attention Mechanism (CBAM)

Following the inception module, a convolutional block attention module (CBAM) is
applied to enhance the feature maps by emphasizing the most important elements of the
image. As depicted in Figure 7a, the CBAM comprises two crucial components: channel
attention and spatial attention, which work together to refine the focus on relevant features.

• Channel Attention: This component enhances the model’s ability to focus on the
most informative feature channels within the feature map. The channel attention
mechanism operates by applying both global average pooling and global max pooling
across the spatial dimensions of the input feature map F. This generates two separate
context descriptors, which are then processed through a shared multi-layer perceptron
(MLP) to capture channel-wise dependencies and create the final channel attention
map. The steps of this process are detailed below.
First, we apply global average pooling and global max pooling operations to F, gener-
ating two channel-wise statistics, Favg and Fmax:

Favg = AvgPool(F) (4)

Fmax = MaxPool(F) (5)

where Favg and Fmax represent the globally pooled feature vectors for each channel.
Next, these descriptors are passed through a shared MLP, which consists of two fully
connected layers. The shared MLP generates intermediate feature representations for
both average-pooled and max-pooled inputs. The two MLP outputs are then summed
element-wise to produce the final channel attention map:

Mchannel(F) = σ
(
MLP(Favg) + MLP(Fmax)

)
(6)

where σ is the sigmoid activation function, which normalizes the channel attention
map values to the range [0, 1].
To further expand on the shared MLP, we can represent it as a sequence of two fully
connected layers. If the intermediate representation has d dimensions, we can define
the MLP as

MLP(F) = W2 δ(W1 F + b1) + b2 (7)

where
W1 and W2 are weight matrices for the first and second fully connected layers, respectively,
b1 and b2 are the bias terms for each layer,
δ is the ReLU activation function, which introduces non-linearity after the first fully
connected layer.

Sensors 2024, 24, 7249 10 of 19

Finally, the channel attention map MchannelF is used to reweight the original feature
map F by element-wise multiplication:

Frefined = Mchannel(F)⊙ F (8)

where ⊙ denotes element-wise multiplication, and Frefined is the enhanced feature
map that emphasizes the most important channels for the task. The entire process
highlights the channel attention mechanism’s ability to selectively enhance meaningful
feature channels, as illustrated in Figure 6d.

(a) CBAM

(b) Channel attention Model

(c) Spatial Attention Model

Figure 7. Convolutional block attention module (CBAM) components, consisting of channel attention
and spatial attention models, (a) CBAM, (b) channel attention model, and (c) spatial attention model.

• Spatial Attention: Following the channel attention, spatial attention is applied to
focus on the most critical spatial locations within the feature map. This component
applies average and max pooling operations, and then a convolutional layer, in order
to generate the spatial attention map, as in Figure 7c. The spatial attention mechanism
can be described by applying convolutional operations to the max-pooled and average-
pooled feature maps, focusing on emphasizing the most significant spatial regions
within the feature map. This results in the generation of a spatial attention map.

Mspatial(F) = σ(f 7×7([AvgPool(F); MaxPool(F)])) (9)

where Mspatial(F) refines the model’s focus on crucial spatial regions within the feature
maps, thereby improving the accuracy of structural damage detection. The opera-
tions AvgPool(F) and MaxPool(F) correspond to global average pooling and global
max pooling, respectively, while f 7×7 represents a convolutional operation using a
7 × 7 filter. The sigmoid activation function, denoted by σ, is applied to normalize the
resulting output within the range of [0, 1]. The impact of spatial attention is illustrated
in Figure 6e.

Sensors 2024, 24, 7249 11 of 19

• Sequential Dual Attention Application: The dual attention mechanism operates
sequentially within both architectures. Each feature map is first processed by the
channel attention module to prioritize significant channels and then by the spatial
attention module to refine the focus on relevant regions within the image. This two-
step attention approach enables the model to capture intricate damage patterns by
focusing both on the most meaningful channels and specific spatial locations within
each feature map.

• Technical Feasibility: The CBAM is a lightweight module and, when applied after
each main block in ResNet50 and GoogLeNet, adds minimal computational overhead.
This design choice allows the model to leverage dual attention without a substantial
increase in processing time or resource requirements, maintaining the efficiency of
ResNet50 and GoogLeNet. The final architecture thus benefits from enriched feature
representation, with an enhanced capacity for damage localization and detection.

3.5. Fully Connected Layers and Output

After the attention mechanisms, the network transitions to the fully connected layers
used for the final stages of feature extraction and classification:

• Fully Connected Layer 1: This layer consists of 256 units utilizing the ReLU activation
function, with a dropout rate of 50% incorporated to mitigate overfitting during
training. It plays a crucial role in combining the features extracted by the previous
layers and preparing them for the final classification.

• Fully Connected Layer 2: This layer contains 128 units with ReLU activation. It further
reduces the dimensionality of the feature maps, ensuring that only the most relevant
features are passed on to the output layer.

• Output Layer: The final layer of the network is a softmax output layer with two
units, corresponding to a binary classification task of determining whether a structure
is “damaged” or “undamaged”. The softmax function ensures that the outputs are
interpretable as probabilities, summing to 1 across the two classes.

4. Workflow of the System Model

The workflow of the proposed system model is visually summarized in Figure 8.
The process begins with the careful assembly of a well-labeled dataset. Once data collection
is complete, the images are resized to ensure compatibility both at the time of training and
validation phases. Finally, the model was validated using random inputs to assess its per-
formance. The function of each block is thoroughly discussed in the following subsection.

Figure 8. Workflow of the system model.

Sensors 2024, 24, 7249 12 of 19

4.1. Data Collection and Filtering

In this study, data were collected from diverse sources to ensure a comprehensive
representation of both damaged and non-damaged structures. Some sample images from
the datasets are shown in Figure 9. The key sources for data collection were as follows:

• Bing Images: Bing’s search engine was utilized to retrieve images using targeted
keywords like “earthquake structural damage”, “structural cracks”, and “building
deformation”. The search was broadened with additional terms such as “flood-
damaged buildings”, “tornado-damaged structures”, and “infrastructure failure”.

• Kaggle Dataset: A specialized dataset from Kaggle was employed (https://www.
kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification/data (ac-
cessed on 15 January 2024)), focusing on images of concrete slabs, both cracked and
uncracked, relevant for early damage detection.

• Public Repositories: Additional relevant images were sourced from public datasets,
including the “Structural-Damage Image Captioning Dataset” repository (https://
jstagedata.jst.go.jp/articles/dataset/Structural-Damage_Image_Captioning_Dataset/
24736914 (accessed on 15 January 2024)), known for its well-curated collection catego-
rized by damage type.

4.1.1. Outlier Detection and Removal

Maintaining the dataset’s integrity involved a stringent process of outlier detection
and removal:

• Visual Inspection: A manual review was conducted to eliminate irrelevant, low-
quality, or mislabeled images. Special attention was given to ensuring that undamaged
structure images did not contain features resembling cracks.

• Statistical Analysis: Statistical analysis of pixel intensity distributions was performed.
Images with significant deviations were flagged as potential outliers, and further
feature-based analysis was used to detect anomalies, which were then removed to
maintain data consistency.

(a) Damaged Samples

(b) Undamaged Samples

Figure 9. Samples of (a) damaged structures and (b) undamaged structures.

https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification/data
https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification/data
https://jstagedata.jst.go.jp/articles/dataset/Structural-Damage_Image_Captioning_Dataset/24736914
https://jstagedata.jst.go.jp/articles/dataset/Structural-Damage_Image_Captioning_Dataset/24736914
https://jstagedata.jst.go.jp/articles/dataset/Structural-Damage_Image_Captioning_Dataset/24736914

Sensors 2024, 24, 7249 13 of 19

4.1.2. Data Classification and Standardization

Following the data cleaning process, all images were resized uniformly to 180 × 180 pixels
and converted to RGB format to ensure consistency across the dataset, facilitating uniform
analysis and model training. The dataset was then categorized into two groups:

• Damaged: This category contains 1600 images that exhibit various levels of structural
damage, such as cracks and deformations, as illustrated in Figure 9a.

• Undamaged: This group consists of images depicting structures that are largely intact,
with little to no visible damage, as shown in Figure 9b.

4.2. Data Augmentation

To enhance the robustness and generalization of the neural networks used, several
data augmentation methods were applied. These methods are especially beneficial when
working with limited datasets, as they expand the training set by generating modified
versions of the original images. Sample augmented images are shown in Figure 10, where
Figure 10a represents the original image. The following augmentation techniques were
applied to the original image:

• Rotation: Images were rotated randomly within a range of −20◦ to +20◦ to help the
model become invariant to the orientation of structural damage, a sample rotated
image is shown in Figure 10b.

• Horizontal and Vertical Flipping: Both horizontal and vertical flips were applied
to ensure that the model learned to recognize damage patterns irrespective of their
orientation, a sample rotated image is shown in Figure 10c.

• Zooming: Zooming operations were applied randomly within a range of 0.8 to
1.2 times the original size, allowing the model to handle scale variation in damage
features, a sample rotated image is shown in Figure 10d.

• Translation: Images were translated horizontally and vertically by up to 10% to enable
the model to detect damage appearing in different image locations, a sample rotated
image is shown in Figure 10e.

• Brightness Adjustment: In image-based structural damage detection, variations in
illumination can significantly affect the model accuracy, as differences in lighting alter
the contrast and visibility of critical features like cracks and deformations [32]. Rather
than relying on preprocessing techniques like histogram equalization or normalization
to adjust illumination, our approach introduces controlled brightness variation directly
through data augmentation. Specifically, the brightness of images was adjusted
within a range of 0.8 to 1.2, which exposed the model to a spectrum of lighting
conditions during training. This augmentation strategy helps the model generalize
to real-world scenarios where lighting can vary, thereby enhancing the robustness
in detecting structural damage across diverse environments without the need for
additional preprocessing steps. A sample of a brightness-improved image is shown in
Figure 10f.

These augmentation techniques were applied during training, significantly increasing
the dataset, and thereby ensuring a data balance and exposing the model to a diverse range
of training examples.

4.3. Data Splitting

Post-augmentation, the dataset was split into training, validation, and testing subsets,
with 70% allocated for training, 15% for validation, and 15% for testing. This split ensured
that the model could be trained, validated, and tested on distinct portions of the data,
reducing the risk of overfitting and enhancing its generalization capabilities.

Sensors 2024, 24, 7249 14 of 19

(a) Original (b) Rotation (c) Flipping

(d) Zooming (e) Translation (f) Brightness

Figure 10. Images after data augmentation operations: (a) original, (b) rotation, (c) flipping,
(d) zooming, (e) translation, and (f) brightness.

4.4. Training and Validation

The training and validation process was divided into two stages. Initially, pre-trained
models were used to assess the performance, followed by the evaluation of a custom model
to address any limitations observed. In the first stage, ResNet50 and GoogLeNet were
selected due to their proven success in image classification tasks. These models were fine-
tuned on the dataset with the predefined splits. Both models were trained over 30 epochs
using w stochastic gradient descent (SGD) optimizer, with a momentum parameter of
0.9. The learning rate was set to 0.001 and was progressively reduced by a factor of 0.1
every 10 epochs. A batch size of 32 was chosen to ensure a balance between computational
efficiency and model performance. Additionally, early stopping and a dropout rate of 0.2
were applied to prevent overfitting, halting training if no improvement was observed over
five consecutive epochs. This approach ensured that the models retained their ability to
generalize to unseen data [33].

This careful hyperparameter tuning allowed the models to converge more smoothly,
as reflected in the gradual improvement in the loss curves, without significant spikes.

To enhance the performance and minimize the risk of overfitting, a custom CNN
model was developed and trained on the same dataset. This model followed the same
training procedure, using the same SGD optimizer, dropout, and early stopping strategy,
and the custom model also benefited from a gradual reduction in the learning rate and
smooth convergence, as reflected in the loss curves. Training in this manner was not biased
toward a particular comparison, as all models were evaluated under similar conditions.

5. Results and Analysis

In this section, both the pre-trained models and the custom CNN were evaluated
based on accuracy, precision, recall, and F1-score. The area under the receiver operating
characteristic curve (AUC-ROC) provided additional understanding of the models’ classifi-
cation capabilities [34]. After the training process, a confusion matrix was produced for
each model to analyze their performance in more detail. A confusion matrix was utilized
to delve more deeply into our model’s damage detection capabilities, offering insights into
its accuracy, precision, recall, and error distribution.

The system used for the computational analysis was an Intel Core i7-9700K processor
with eight cores at a base clock speed of 3.6 GHz, along with 32 GB of DDR4 RAM and an
NVIDIA RTX 2060 GPU, which had 6 GB of GDDR6 VRAM for graphics processing.

Sensors 2024, 24, 7249 15 of 19

Precision =
TP

TP + FP
(10)

where TP is true positives and FP is false positives

Recall =
TP

TP + FN
(11)

where FN is false negatives.

F1-Score = 2 × Precision × Recall
Precision + Recall

(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

where TN is true negatives and FP is false positives.
The models’ performance was comprehensively assessed using a separate test set that

was not involved in the training or validation phases. This assessment aimed to provide an
accurate evaluation of each model’s capability to generalize to new, unseen data.

5.1. Performance of Pre-Trained Models

ResNet50 and GoogLeNet were the first models we tested on the damage detection
task. These models were fine-tuned on our dataset and yielded strong performances,
although with some notable differences.

5.1.1. ResNet50 Performance

The ResNet50 model achieved an accuracy of 97.2%, with a precision of 97.1%, recall of
96.9%, and an F1-score of 97.0%. These metrics demonstrate the model’s ability to effectively
detect damaged structures, while maintaining a good trade-off between precision and recall.
The accuracy graph for ResNet50 (Figure 11a) shows the consistent improvement and strong
alignment between the training and validation curves. However, there was a minor risk
of overfitting, as the training accuracy remained higher than that of the validation set,
suggesting the model learned patterns from the training data better than from the unseen
validation data.

5.1.2. GoogLeNet Performance

GoogLeNet demonstrated a slightly higher accuracy of 97.5%, with a precision of
97.5%, recall of 97.3%, and an F1-score of 97.4%. These results suggest that GoogLeNet’s
multi-scale feature extraction capability allowed it to perform exceptionally well in detect-
ing a wide range of structural damages. The accuracy graph for GoogLeNet (Figure 11b)
indicates smooth and consistent learning, with both training and validation accuracies
reaching high levels and showing minimal signs of overfitting.

Comparing the two models, GoogLeNet performed slightly better than ResNet50 in
accuracy and overall metrics. However, both models demonstrated strong generalization
capabilities, as evidenced by the close alignment of their training and validation curves.
The confusion matrices further illustrate the effectiveness of both models in accurately
classifying damaged and undamaged structures.

Sensors 2024, 24, 7249 16 of 19

(a) ResNet50

(b) GoogleNet (c) Proposed model

Figure 11. Training and validation accuracy for (a) ResNet50, (b) GoogLeNet, and (c) proposed model.

5.1.3. Performance of Proposed Model

The performance of our proposed custom CNN model addressed the limitations
observed in the pre-trained models, enhancing the accuracy and reliability of structural
damage detection. This custom model integrates advanced architectural elements, includ-
ing residual connections, inception modules, and a convolutional block attention module
(CBAM), which together improve its ability to detect damage accurately across varied
scenarios. The use of residual connections enables efficient feature propagation and deeper
network layers, without vanishing gradients, while the inception modules capture fea-
tures at multiple scales, essential for recognizing diverse types of structural damage. The
CBAM further refines the model by applying channel and spatial attention, selectively
focusing on critical features in each image, which enhances the model’s sensitivity to subtle
damage indicators.

The proposed model achieved an accuracy of 98.6%, with a precision of 98.2% and a
recall of 98.8%, leading to an F1-score of 98.5%. These metrics highlight the model’s strong
capability to accurately detect damaged structures, while minimizing false positives and
negatives. Figure 12a–c present the confusion matrices for ResNet50, GoogLeNet, and the
proposed model, respectively. The proposed model’s confusion matrix demonstrates
a higher number of true positives and true negatives compared to the other models,
confirming its robustness and reliability for structural damage detection.

We also employed receiver operating characteristic (ROC) curves to compare the
classification effectiveness across models. Figure 13 illustrates the relationship between
true positive and false positive rates, with our proposed model achieving an AUC-ROC
of 0.980. This high AUC value underscores the model’s strong discrimination capability,
effectively distinguishing damaged from undamaged structures across various thresh-
olds. Although the proposed model required slightly higher computational resources
and training time than ResNet50 and GoogLeNet, this additional cost is justified by the

Sensors 2024, 24, 7249 17 of 19

substantial gains in classification accuracy and reliability, making it highly suitable for
real-world applications, particularly in scenarios like post-disaster assessments, where
precision is crucial.

(a) ResNet50

(b) GoogleNet (c) Proposed model

Figure 12. Confusion matrix for (a) ResNet50, (b) GoogLeNet, and (c) proposed model.

The accuracy curves for training and validation, displayed in Figure 11c, show a
consistent improvement over epochs, with a close alignment between the curves by the
end of training. This close alignment indicates that the model generalized well to unseen
data and exhibited minimal overfitting, a notable advantage over the pre-trained models.

Figure 13. ROC curve of models.

The proposed model required slightly more computational resources and longer
training times compared to the pre-trained models. This could be a consideration in
scenarios where computational efficiency is a priority.

Sensors 2024, 24, 7249 18 of 19

6. Conclusions

The proposed system showed exceptional results in detecting structural damage.
The ResNet50 model achieved an accuracy of 97.2%, with a precision of 97.1%, recall of
96.9%, and an F1-score of 97.0%. These figures demonstrate ResNet50’s strong capacity to
detect damage, with a solid balance between precision and recall. Likewise, the GoogLeNet
model delivered a slightly improved accuracy of 97.5%, with precision at 97.5%, recall at
97.3%, and an F1-score of 97.4%. This model’s ability to capture features across multiple
scales proved beneficial for identifying structural damages. However, the proposed model
outperformed both, achieving an accuracy of 98.6%, a precision of 98.2%, a recall of 98.8%,
and an F1-score of 98.5%. The superior performance of our model can be credited to its
advanced design, which excels at recognizing intricate patterns and subtle anomalies in
data. This results in fewer false negatives, leading to more accurate detections, particularly
in complex scenarios. Although these outcomes are promising, future work will focus
on enhancing the model’s ability to handle more subtle and complex damage scenarios,
with the aim of minimizing misclassifications and improving the overall accuracy, particu-
larly in real-world environments where variations in conditions and structural differences
may impact performance. Additionally, a key direction for future development involves
integrating our AI model with real-time drone technology. This would enable drones
to autonomously capture and analyze images of damaged structures on-site, providing
immediate assessments of structural damage after disasters. Such a system would offer
rapid, efficient, and accurate damage evaluation, supporting rescue and recovery teams
by prioritizing areas needing immediate attention, thereby saving time, resources, and
potentially lives.

Author Contributions: Conceptualization, V.S. and R.K.; methodology, V.S. and A.B.; software, A.B.;
validation, A.B. and S.T.; formal analysis, A.B., V.S., S.T. and R.K.; investigation, A.B., V.S., S.T. and
R.K.; resources, V.S. and R.K.; data curation, A.B. and R.K.; writing—original draft preparation, A.B.
and V.S.; writing—review: A.B., V.S., M.N., S.V.Y., S.K. and W.Z.; editing, V.S. and S.K.; visualization,
A.B. and V.S.; supervision: M.N., S.K. and W.Z.; project administration, V.S. and R.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the
articlel. Further inquiries can be directed to the corresponding author(s).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Smith, J.; Doe, J. Challenges in Post-Disaster Structural Damage Assessment. Int. J. Disaster Manag. 2022, 15, 230–245.
2. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A

Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [CrossRef] [PubMed]
3. Jiang, Z.; Li, Y.; Zhang, Y. Deep Learning Techniques for Automated Structural Damage Detection in Buildings. J. Comput. Civ.

Eng. 2020, 34, 04020026.
4. Wu, C.; Wong, K.; Lam, H. Automated Detection of Structural Damage in Buildings Using Convolutional Neural Networks. Eng.

Struct. 2020, 209, 110020.
5. Lee, H.; Kim, S. Crack Detection in Building Facades Using Convolutional Neural Networks. J. Struct. Eng. 2019, 145, 04019019.
6. Yang, L.; Zhang, X.; Sun, J. Deep Learning-Based Crack Detection in UAV Images for Infrastructure Inspection. Autom. Constr.

2020, 109, 102992.
7. Sun, X.; Hou, C.; Zhu, L. Deep Learning-Based Automated Inspection of Concrete Structures Using UAV. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6411–6416.
8. Zhang, Q.; Yang, J. Recent Advances in Image-Based Structural Damage Detection: A Review. J. Build. Eng. 2021, 35, 102112.
9. Yuqing, Z.; Khalid, M. Structural Damage Recognition Using VGG16 Model. In Proceedings of the International Conference on

Image Processing, Anchorage, AK, USA, 19–22 September 2021; pp. 234–238.

http://doi.org/10.1109/TPAMI.2021.3059968
http://www.ncbi.nlm.nih.gov/pubmed/33596172

Sensors 2024, 24, 7249 19 of 19

10. Cao, W.; Li, Y.; He, Z. Crack Detection in Gusset Plate Welded Joints of Steel Bridges Using Deep Learning. J. Bridge Eng. 2021,
26, 04021001.

11. Xiuying, W.; Li, X. Concrete Crack Detection Using ResNet101-Based Image Segmentation. Autom. Constr. 2020, 113, 103136.
12. Zheng, J.; Wang, H.; Li, J. Rail Surface Crack Detection Using YOLOv3 and RetinaNet. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3421–3430.
13. Guo, R.; Zhou, J. Pavement Crack Detection Using YOLOv5. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4301–4310.
14. Kong, X.; Li, J. Vision-Based Metal Fatigue Crack Detection Using Video Feature Tracking. IEEE Trans. Ind. Electron. 2020,

67, 4885–4893.
15. Wilson, T.; Diogo, R. Deep Learning for Structural Damage Detection: A Case Study Using VGG16. Eng. Struct. 2021, 226, 111322.
16. Wan, S.; Guan, S.; Tang, Y. Advancing Bridge Structural Health Monitoring: Insights into Knowledge-Driven and Data-Driven

Approaches. J. Data Sci. Intell. Syst. 2023, 2, 129–140. [CrossRef]
17. Khan, I.U.; Jeong, S.; Sim, S.H. Investigation of Issues in Data Anomaly Detection Using Deep-Learning- and Rule-Based

Classifications for Long-Term Vibration Measurements. Appl. Sci. 2024, 14, 5476. [CrossRef]
18. Mohamed, A.; El-Saadawi, M.; Sayed, T. Disaster Resilience: Deep Learning Applications in Post-Earthquake Structural

Assessment. Nat. Hazards Rev. 2021, 22, 04020045.
19. Rathinam, S.; Madhavan, P.; Sivaramakrishnan, C. Deep Learning for Post-Disaster Structural Damage Detection: A Review. J.

Build. Pathol. Rehabil. 2020, 5, 1–16.
20. Shabbir, A.; Ali, N.; Jameel, A.; Zafar, B.; Rasheed, A.; Sajid, M.; Ahmed, A.; Dar, S. Satellite and Scene Image Classification Based

on Transfer Learning and Fine Tuning of ResNet50. Math. Probl. Eng. 2021, 2021. [CrossRef]
21. Feng, C.; Zhang, H.; Wang, S.; Li, Y.; Wang, H.; Yan, F. Structural damage detection using deep convolutional neural network and

transfer learning. KSCE J. Civ. Eng. 2019, 23, 4493–4502. [CrossRef]
22. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
23. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International

Conference on Machine Learning (ICML), Omnipress 2010, Haifa, Israel, 21–24 June 2010; pp. 807–814.
24. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
27. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In Proceedings of the British Machine Vision Conference (BMVC), York,

UK, 19–22 September 2016.
28. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

29. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

30. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning (ICML), Lile, France, 6–11 July 2015; pp. 448–456.

31. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

32. Civera, M.; Fragonara, L.Z.; Surace, C. Video Processing Techniques for the Contactless Investigation of Large Oscillations. J.
Phys. Conf. Ser. 2019, 1249, 012004. [CrossRef]

33. Prechelt, L. Early stopping-but when? Neural Netw. Tricks Trade 1998, 1524, 55–69.
34. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach.

Learn. Technol. 2011, 2, 37–63.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.47852/bonviewJDSIS3202964
http://dx.doi.org/10.3390/app14135476
http://dx.doi.org/10.1155/2021/5843816
http://dx.doi.org/10.1007/s12205-019-0437-z
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1088/1742-6596/1249/1/012004

	Introduction
	System Model
	Convolutional Neural Networks (CNNs)
	ResNet50
	GoogLeNet

	Proposed Model
	Convolutional Blocks
	Residual Block
	Inception Module
	Attention Mechanism (CBAM)
	Fully Connected Layers and Output

	Workflow of the System Model
	Data Collection and Filtering
	Outlier Detection and Removal
	Data Classification and Standardization

	Data Augmentation
	Data Splitting
	Training and Validation

	Results and Analysis
	Performance of Pre-Trained Models
	ResNet50 Performance
	GoogLeNet Performance
	Performance of Proposed Model

	Conclusions
	References

