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Background: Hypoxia is significantly associated with cancer progression and
treatment outcomes. Nevertheless, the precise molecular mechanisms
underlying the hypoxia-induced immunosuppressive microenvironment in
high-grade serous ovarian cancer (HGSOC) are still not fully understood.

Methods: By analyzing five independent transcriptomic datasets, we investigated
the effect of hypoxia on prognosis and tumor microenvironment (TME) in
HGSOC. The hypoxia levels and the intercellular communication signaling
pathways were studied by using single-cell analysis. Furthermore, the
Hypoxia-TME classifier was developed and then validated in the multiple
HGSOC datasets. In addition, we also investigated the prognostic significance,
genetic variations, signaling pathways, and the potential for immunotherapy
benefits in different Hypoxia-TME subgroups.

Results: Hypoxia was identified as a crucial risk factor in HGSOC, and strongly
correlated with an immunosuppressive microenvironment characterized by
alterations in the composition and distribution of immune cells. Single-cell
analysis elucidated the heterogeneity inherent within the TME in HGSOC, and
demonstrated an association between the hypoxic TME and fibroblasts as well as
macrophages. CellChat analysis identified SPP1-CD44 and CXCL12-CXCR4 as
the principal signaling axes through which macrophages and fibroblasts interact
with T cells, respectively. Moreover, a personalized Hypoxia-TME classifier was
constructed and validated through the integration of the hypoxia (18 genes) and
TME (7 immune cells) scores. It was observed that patients in the Hypoxialow/
TMEhigh subgroup displayed a significantly better prognosis than other subgroups.
Different subgroups exhibited unique genomic alterations and variations in
signaling pathway differences, including TGF-β and Wnt/β-catenin pathways,
which are closely associated with various biological functions. Finally, our results
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indicated that patients in the Hypoxialow/TMEhigh subgroup exhibit a better response
to immunotherapy, suggesting the potential utility of the Hypoxia-TME classifier as
a new biomarker in HGSOC.

Conclusion: Our study revealed hypoxia-induced immunosuppressive
microenvironment, and developed Hypoxia-TME classifier to distinguish the
prognosis, immune characteristics, and potential benefits of immunotherapy in
HGSOC.

KEYWORDS

high-grade serous ovarian cancer, hypoxia, immunotherapy, immunosuppressive
microenvironment, single-cell analysis

1 Introduction

Globally, ovarian cancer is a prevalent gynecological
malignancy with the highest mortality rate among all
gynecological tumors (Lheureux et al., 2019). As the
predominant histological subtype of ovarian cancer, high-grade
serous ovarian cancer (HGSOC) accounts for an estimated 70%–
80% of all ovarian cancer-related mortality (Siegel et al., 2019;
Matulonis et al., 2016). HGSOC patients often present with tumor
metastasis and are frequently diagnosed at advanced stages.
Surgical resection combined with neoadjuvant chemotherapy is
the standard management for patients, most patients will likely
chemoresistance and recurrence, and thus the overall survival (OS)
rates of patients remain very low (Bohm et al., 2016; Kuroki and
Guntupalli, 2020). Therefore, studying the primary factors
influencing the survival prognosis of HGSOC and the associated
molecular mechanisms will offer novel therapeutic strategies
for patients.

Recent research indicates that immunotherapy with immune
checkpoint inhibitors can significantly improve clinical outcomes of
patients in several cancers, such as melanoma, neuroblastoma, and
non-small cell lung cancer (Billan et al., 2020; Reck et al., 2022;
Huang and Zappasodi, 2022; Anderson et al., 2022). Multiple
clinical trials have provided evidence of the anti-tumor efficacy
and safety of immune checkpoint inhibitors in patients with
platinum-resistant or recurrent ovarian cancer (Xia et al., 2022;
Hamanishi et al., 2021; Lee et al., 2020). For example, the
KEYNOTE-100 trial demonstrated that pembrolizumab exhibited
anti-tumor efficacy and a well-tolerated safety dose in advanced
ovarian cancer patients with recurrence (Lee et al., 2020). The
influence of the tumor microenvironment (TME) on tumor
prognosis and immunotherapy effectiveness is widely recognized.
Nevertheless, malignant tumor cells can evade immune surveillance
by utilizing intricate immune evasion mechanisms, which involve
immune cell dysfunction, immune checkpoint signaling, and genetic
alterations (Mohme et al., 2017; vanWeverwijk and de Visser, 2023).
Importantly, HGSOC is considered as an immune cold tumor due to
limited immune cell infiltration around the tumor site, resulting in
reduced responsiveness to immunotherapy in HGSOC patients
(Kandalaft et al., 2022). Hence, it is necessary to elucidate the
molecular mechanisms that contribute to the immunosuppressive
microenvironment in HGSOC, and simultaneously explore novel
predictive models and therapeutic strategies.

This study involved a comprehensive investigation that included
807 HGSOC patients from 5 multicenter studies, with the aim of

systematically analyzing the cancer hallmarks and immune
microenvironment. The results indicated that hypoxia was the
primary prognostic risk factor in HGSOC, exhibiting a significant
association with the immunosuppressive microenvironment.
Subsequently, we investigated the impact of hypoxia on immune
cell populations through the utilization of single-cell RNA
sequencing (scRNA-seq) analysis. Additionally, we characterized
and analyzed cell-cell communication networks. Moreover, we
constructed and validated a personalized classifier that integrates
hypoxia and immune cells, enhancing risk stratification and
predictive precision for patients with HGSOC. Finally, we
elucidated the link between the Hypoxia-TME classifier, somatic
mutations, and immune characteristics to guide prognosis
management and immunotherapy decisions for HGSOC patients.

2 Methods

2.1 Collection and processing of bulk
transcriptome data from patients
with HGSOC

In this study, we collected transcriptome data and
corresponding clinical information from five public cohorts of
HGSOC patients, including RNA-sequencing dataset from The
Cancer Genome Atlas-Ovarian Cancer (TCGA-OV) and four
microarray datasets (GSE13876, GSE14764, GSE18520, and
GSE26712). After excluding patients with incomplete survival
information, a total of 807 HGSOC patients were selected for
subsequent study (Supplementary Table S1), including TCGA-OV
(n = 378), GSE13876 (n = 157), GSE14764 (n = 66), GSE18520 (n =
53), and GSE26712 (n = 153). For RNA-sequencing dataset, raw
counts were normalized by transcripts-per-million bases (TPM)
and log2 (TPM+1) transformed. Similarly, the microarray data
underwent log2 transformation and normalization by using the
Robust Multichip Average algorithm. Moreover, the TCGA-OV
dataset (training dataset) was utilized to develop Hypoxia-TME
classifier for HGSOC patients, while the four microarray datasets
were merged into meta-cohort (validation dataset) for
independent performance assessment. In this study, we used
ComBat algorithm to eliminated the batch effects among four
microarray cohorts by sva package. The sva is a well-known
package that can be used to identify, estimate, and remove
various sources of variation in high-throughput data
(Leek et al., 2012).
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2.2 Cancer hallmarks, immune cells, and
functional enrichment analysis

We collected a total of 29 cancer hallmarks gene sets from the
Molecular Signatures Database (MSigDB) (Liberzon et al., 2015).
The performances of cancer hallmarks were calculated by single
sample gene set enrichment analysis (ssGSEA) algorithm by using
GSVA package. In order to investigate the tumor immune
microenvironment in HGSOC, we further estimated the relative
content of the immune cells by using the ssGSEA algorithm. The
gene signatures of 28 tumor-infiltrating immune cells have been
identified in previous study (Ru et al., 2019). Moreover, Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm was used to
study the immune dysfunction and exclusionmechanisms in tumors
(Jiang et al., 2018). The TIDE score of HGSOC patients was
calculated online to explore the predictive capacity of Hypoxia-
TME classifier for immunotherapy outcomes. The
Imvigor210 cohort was also employed to predict the therapeutic
responses of HGSOC patients to anti-PD-L1 immunotherapy.
Additionally, the exome sequencing data of HGSOC was
downloaded from TCGA-OV cohort (Cancer Genome Atlas
Research, 2011). Tumor mutational burden (TMB) refers to the
quantity of non-synonymous mutations found in every million
bases (Mb) of the genomic sequence under investigation. The
somatic mutations landscape and TMB was analyzed by using
the maftools package (Mayakonda et al., 2018).

2.3 Single-cell RNA sequencing data
processing of HGSOC patients

The scRNA-seq data from five HGSOC patients were obtained
from the Gene Expression Omnibus (GEO) database (GSE112302)
(Geistlinger et al., 2020). The scRNA-seq data were processed using
the R package Seurat, which included quality control, normalization,
dimensionality reduction, clustering, and cell type identification
(Hao et al., 2021; Andrews et al., 2021). Cells with a minimum
detection of 200 genes and expression in at least three cells were
retained. After quality control, the data were normalized, and
2000 highly variable features were identified. Harmony is a tool
used for batch effects correction, thereby improving data integration
and downstream analysis (Korsunsky et al., 2019). Harmony was
applied to remove possible batch effects in the GSE112302 dataset.
Subsequently, the top 2,000 variant genes were analyzed using the
standard deviation in principal component analysis (PCA). In this
study, we selected the top 30 principal components (PCs) for
clustering, dimension reduction, and visualization analysis via the
application of the uniform manifold approximation and projection
(UMAP) method. Cell types were defined according to marker gene
expression, and automatic annotation by using SingleR package
(Aran et al., 2019). The specific marker genes were gathered
from both published literature and the CellMarker database (Hu
et al., 2023). The differential marker genes between distinct cell
populations in the GSE112302 dataset were distinguished through
the FindAllMarkers function available in the Seurat package. In
addition, cell-cell interaction signaling pathways was analyzed by
using CellChat package, and the “CellChatDB.human” database as a
reference for ligand-receptor interactions.

2.4 Development of hypoxia signature, TME
signature and Hypoxia-TME classifier

To construct the hypoxia signature for patients with HGSOC,
we screened for hypoxia-related genes using univariate Cox
regression analysis and Least Absolute Shrinkage and Selection
Operator (LASSO) regression method. Through dimension
reduction screening, significant prognostic genes were selected
and used to construct the hypoxia-related gene signature. The
hypoxia score was calculated by weighting the expression levels of
the candidate genes with the LASSO coefficients. The hypoxia
subgroups were determined based on the mean value of hypoxia
score in each cohort. Then, the differential marker genes of TME-
related cells were obtained from scRNA-seq analysis. Based on
theses marker genes, the relative content of TME-related cells was
estimated by using the ssGSEA algorithm. Similarly, the TME
score was also calculated from the TME-related cells selected by
the LASSO method. According to the mean value of TME score,
patients were classified into the TME-high and TME-low
subgroups in each cohort. Furthermore, we combined the
hypoxia and TME scores to develop the Hypoxia-TME
classifier. Patients were further categorized into the following
subgroups: Hypoxialow/TMEhigh, mixed (Hypoxialow/TMElow and
Hypoxiahigh/TMEhigh) and Hypoxiahigh/TMElow. The efficacy of the
Hypoxia-TME classifier in predicting clinical outcomes was
assessed through Kaplan-Meier (K-M) survival analysis and
receiver operating characteristic (ROC) analysis in each
HGSOC cohorts.

2.5 Immunofluorescence staining

Tumor tissues of 3 HGSOC patients were obtained from
Shanghai First Maternity and Infant Hospital (Shanghai, China).
All patients have signed informed consent admitted to hospital.
Immunofluorescence staining was described in our previous study
(Wei et al., 2018). Briefly, tumor tissues were deparaffinized and
blocked with 3% bovine serum albumin. The sections were labeled
with primary antibodies COL1A1 (ab34710, Abcam; 1:150 dilution)
and PD-L1 (ab205921, Abcam; 1:200 dilution) overnight and
subsequently incubated with antibody HIF-1α (ab8366, Abcam, 1:
150 dilution) for double staining, respectively. Next, the fluorescent
secondary conjugated Alexa Fluor-488 and Alexa Fluor-594 were
incubated for 2 h. After washing, the cell nuclei were counterstained
with 4′,6-diamidino-2-phenylindole (DAPI).

2.6 Statistical analysis

The statistical analysis was performed using R software
(v4.2.2). Survival analysis was conducted using the K-M
curves and the log-rank test implemented in the R packages
survminer and survival. We performed statistical comparisons
between two groups using the Student’s t-test, and comparisons
among three groups using one-way analysis of variance
(ANOVA) analysis. Benjamini-Hochberg (BH) correction was
applied for multiple hypothesis testing. Statistical significance
was defined as p < 0.05.
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3 Results

3.1 Hypoxia was identified as an important
risk factor in HGSOC

To identify significant risk factors in HGSOC, we calculated the
prognostic value of cancer hallmarks using the gene expression
profiles of 807 patients across 5 HGSOC cohorts (Supplementary
Table S2). We then used meta-analysis to integrate overall
prognostic value of each cancer hallmarks. The results revealed
five cancer hallmarks, including hypoxia, Hedgehog signaling, Wnt/
β-catenin signaling, TGF-β signaling, and epithelial-mesenchymal

transition (EMT), all of which were identified as significant risk
factors (Figure 1A). After adjusting for multiple hypothesis testing,
hypoxia emerged as the primary risk factor for OS among all cancer
hallmarks in HGSOC. Survival analysis further suggested that
HGSOC patients with lower hypoxia score had a better OS
compared to patients with higher hypoxia score (Figure 1B).
Furthermore, we found that a notable positive relationship
between the expression of HIF1A and the hypoxia ssGSEA score,
and lower expression of HIF1A was also associated with better
survival outcomes for patients in the TCGA-OV cohort (Figures 1C,
D). These results suggest that hypoxia was a dominant risk factor for
prognosis in HGSOC.

FIGURE 1
Hypoxia was identified as an important risk factor for prognosis in HGSOC. (A)Meta analysis of cancer hallmarks for prognosis in HGSOC cohorts. (B)
Survival analysis of the hypoxia-related ssGSEA score. (C) Correlation between hypoxia ssGSEA score and HIF1A expression. (D) Survival analysis of the
HIF1A expression in the TCGA-OV cohort.
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3.2 Hypoxia is associated with
immunosuppressive microenvironment

To study the role of hypoxia on tumor immune microenvironment,
we characterized the composition of immune cells in patients with
HGSOC by using the ssGSEA method. Our results showed that the
distribution of immune cells exhibits markedly difference between
different hypoxia subgroups. As shown in Figure 2A, we found that
activated CD8 T cells, monocyte, regulatory T cells, and Th 17 cells were
more abundant in the patients with higher hypoxia score, while activated
B cells, macrophage, and natural killer T cells were more abundant in the
patients with lower hypoxia score. Furthermore, the cytolytic activity was
calculated, which was found to be notably increased in HGSOC patients
with high hypoxia score (Figure 2B). Subsequently, we investigated three
immunosuppressive cells known to restrict T cell infiltration, specifically

myeloid cells, cancer-associated fibroblasts (CAFs), and tumor-associated
macrophages (TAMs). Our findings demonstrated a significant increase
in myeloid cells, CAFs, and TAMs in patients with high hypoxia score
(Figure 2C). Additionally, the expression of HIF1A was significantly
positively linked to the expressions of FOXP3, CD163, and COL1A1
(Supplementary Figure S1). These results indicate that hypoxia is
associated with immunosuppressive microenvironment in HGSOC.

3.3 The effect of hypoxia in the TME through
scRNA-seq analysis

We further analyzed scRNA-seq data obtained from five patients
with HGSOC. After quality control, 51,643 cells were clustered into
15 subpopulations and annotated into eight cell types, including

FIGURE 2
Hypoxia is associated with immunosuppressivemicroenvironment. (A) Infiltration 28 immune cell types in HGSOCwith different hypoxia groups. (B)
The cytolytic activity of patients in different hypoxia groups. (C) The relative content of myeloid cells, CAFs, and TAMs in different hypoxia groups. *, p <
0.05; **, p < 0.01; ***, p < 0.001.

Frontiers in Pharmacology frontiersin.org05

Chen et al. 10.3389/fphar.2024.1450751

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1450751


FIGURE 3
Analysis of hypoxia in the TME at the level of single-cell RNA sequencing. (A) The UMAP plot displays 15 cell types in HGSOC. (B) The specificmarker
genes in each cell types. (C) Eight cell types annotation. (D) Proportion of eight cell types. (E) Proportion of eight cell types in chemotherapy-sensitive and
resistant patients. (F) Expression levels ofHIF-1A in eight cell types. (G)Hypoxia score across single cells. (H)Hypoxia score among eight distinct cell types.
(I) The differences of hypoxia score between chemotherapy-sensitive and resistant patients. (J) Immunofluorescence staining of HIF-1α and
COL1A1 in HGSOC patients. ***, p < 0.001.
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T cells, macrophages, fibroblasts, epithelial cells, plasma cells, endothelial
cells, B cells, and dendritic cells (Figures 3A–C). The specific marker
genes of eight cell types in HGSOC have been identified. Moreover, our
results clearly showed that the proportion of eight cell types among
patients is different, which reflects the heterogeneity of the immune
microenvironment in HGSOC patients (Figure 3D). The
chemotherapy-resistant group exhibited a higher abundance of
fibroblasts and macrophages, whereas the chemotherapy-sensitive
group showed a higher abundance of T cells (Figure 3E). At the
single-cell level, we found that the expression of HIF1A was mainly
present in macrophages, fibroblasts, and endothelial cells (Figure 3F).
Additionally, we calculated the hypoxia score for the eight cell types in
HGSOC, revealing that fibroblasts exhibited the highest hypoxia score
compared to the other seven cell types (Figures 3G, H). Furthermore, we
observed that chemotherapy-resistant patients displayed a higher
hypoxia score compared to chemotherapy-sensitive patients
(Figure 3I). In HGSOC patients, the results of immunofluorescence
staining also demonstrated that the expression of HIF-1α was mainly
present in fibroblasts (Figure 3J). These findings further indicate that
hypoxia induces immunosuppressive microenvironment in HGSOC,
potentially involving fibroblasts and macrophages.

3.4 Cell-cell communications in the
progression of HGSOC

CellChat analysis was performed to explore cell-cell
communications involved in the progression of HGSOC. The

interaction numbers and strength between eight cell types were
depicted in detail (Supplementary Figure S2A). Fibroblasts,
macrophages, epithelial cells, and T cells exhibited stronger
interaction numbers and strength with other cell types in
HGSOC (Figure 4A). Then, specific pathways were identified in
different cell types, and TGF-β, and NF-κB signaling pathways were
mainly activated in the fibroblasts and macrophages, respectively
(Figure 4B). Furthermore, we specifically analyzed the ligand-
receptor pathways that potentially regulate intercellular
communications between T cells and other cells. It was found
that macrophages, fibroblasts and epithelial cells exhibited the
strongest interactions with T cells (Figure 4C). Notably,
macrophages communicated with T cells via the SPP1-CD44
signaling pathway, while fibroblasts interacted with T cells
through the CXCL12-CXCR4 and MIF-(CD74 + CXCR4)
signaling pathways. Furthermore, fibroblasts communicated with
epithelial cells via the MDK-NCL pathway (Supplementary Figure
S2B). These results indicate that intercellular communication is
crucial in the progression of HGSOC.

3.5 Development of the Hypoxia-TME
classifier improved prognostic evaluation

To characterize the hypoxic immune microenvironment in
HGSOC, we characterized immune cells based on the
differentially expressed markers derived from scRNA-seq data
(Supplementary Table S3). We investigated the prognostic values

FIGURE 4
Cell-cell communications in the progression of HGSOC. (A) Cell-cell communications; (B)Mean pathway activity scores; (C) Ligand-receptor pairs
between T cells and other cell groups.
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of 179 hypoxia-related genes using univariate Cox regression
analysis and meta-analysis. We found that 35 hypoxia-related
genes were significantly associated with OS in HGSOC (p < 0.05;
Supplementary Table S4). Subsequently, hypoxia score and TME
score were developed using LASSO Cox regression analysis,
respectively (Supplementary Table S5). HGSOC patients were
divided into low- and high-hypoxia groups based on the mean
value of the hypoxia score. It was observed that HGSOC patients
with high hypoxia score exhibited shorter OS time than those with
low hypoxia score (Figure 5A). Similarly, a significant difference
between low- and high-TME groups was also observed (Figure 5B).
In addition, there was a significant negative correlation between the
hypoxia and TME score (Figure 5C).

Based on the results above, we considered whether the hypoxia
and TME score could be combined to further stratify HGSOC
patients. Consequently, we constructed the Hypoxia-TME
classifier by integrating the hypoxia and TME score, which
allowed the patients to be divided into four subgroups:
Hypoxialow/TMEhigh, Hypoxialow/TMElow, Hypoxiahigh/TMEhigh, and
Hypoxiahigh/TMElow. Our results showed that Hypoxia-TME
classifier exhibited a significant prognostic difference in patient
with HGSOC (Figure 5D). It was observed that patients in the
Hypoxialow/TMEhigh subgroup exhibited the most favorable
prognosis. In addition, the prognosis in the Hypoxialow/TMElow

and Hypoxiahigh/TMEhigh subgroups showed less divergent, and
thus we merged these two subgroups (Figure 5E). Finally, it was
showed that the area under the curve (AUC) of the Hypoxia-TME

classifier were 0.623, 0.635, and 0.676 for 1-, 3-, and 5- years OS,
respectively (Figure 5F). These results indicate that Hypoxia-TME
classifier improves the accuracy of prognostic prediction for patients
with HGSOC.

3.6 Validation and evaluation of the
Hypoxia-TME classifier in
multicenter studies

We further validated the prognostic value of the Hypoxia-TME
classifier in multicenter studies. Our results also demonstrated a
poorer prognosis in patients with high hypoxia score or low TME
score in the meta-cohort (Figures 6A, B). Similarly, the Hypoxia-TME
subgroups showed a distinct prognosis, and patients in the
Hypoxialow/TMEhigh subgroup had the most favorable prognosis
compared to patients from the other subgroups (Figure 6C). As
shown in Figure 6D, the ROC analysis depicted that the AUC of
the Hypoxia-TME classifier were 0.652, 0.649, and 0.692 for the 1-, 3-,
and 5-year OS rates, respectively. Moreover, similar clinical outcomes
were also observed in the GSE13876, and GSE26712 cohorts (Figures
6E, F). HGSOC patients with Hypoxialow/TMEhigh had a longer
survival time compared to other patients. Lastly, the univariate and
multivariate Cox analysis indicated that the Hypoxia-TME classifier
was the independent clinical factor in the TCGA-OV cohort (Table 1).
These results demonstrated the prognostic value of the Hypoxia-TME
classifier in multicenter studies.

FIGURE 5
Construction of the Hypoxia-TME classifier improved prognostic assessment. (A) Survival analysis of the Hypoxia score. (B) Survival analysis of the
TME score. (C) Correlation between the Hypoxia and TME scores. (D, E) Survival analysis of the Hypoxia-TME classifier. (F) ROC analysis of the Hypoxia-
TME classifier.
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3.7 Molecular characteristics among
different Hypoxia-TME subgroups

In the TCGA-OV cohort, we examined the association
between the tumor somatic changes and the Hypoxia-TME

classifier. It was found that 420 (96.33%) of 436 HGSOC
patients had mutations, with TP53 being the most frequently
mutated gene. We separately analyzed the top 15 genes with the
highest mutation frequencies in the different Hypoxia-TME
subgroups. Specifically, the Hypoxialow/TMEhigh patients

FIGURE 6
Validation of the Hypoxia-TME classifier in multicenter studies. (A) Survival analysis of the Hypoxia score in the meta cohort. (B) Survival analysis of
the TME score in the meta cohort. (C) Survival analysis of the Hypoxia-TME classifier in themeta cohort. (D) ROC analysis of the Hypoxia-TME classifier in
the meta cohort. (E) Survival analysis of the Hypoxia-TME classifier in the GSE13876. (F) Survival analysis of the Hypoxia-TME classifier in the GSE26712.

TABLE 1 Univariate and multivariate Cox regression analyses of Hypoxia-TME classifier.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

Stage

Stage II 1 1

Stage III 2.440 (1.002–5.941) 0.050 2.082 (0.840–5.163) 0.114

Stage IV 2.952 (1.164–7.483) 0.023 2.664 (1.030–6.890) 0.043

Grade

G2 1 1

G3 1.232 (0.832–1.823) 0.297 1.145 (0.768–1.709) 0.506

G4 1.851 (0.251–13.634) 0.546 2.567 (0.344–19.17) 0.358

Hypoxia-TME classifier

HypoxiaLow/TMEHigh 1 1

Mixed 1.566 (1.142–2.146) 0.005 1.631 (1.182–2.249) 0.003

HypoxiaHigh/TMELow 2.009 (1.455–2.774) <0.001 2.050 (1.474–2.851) <0.001
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exhibited the highest rates of mutation for TP53 (90%), TTN
(22%), and NF1 (11%), while the Hypoxiahigh/TMElow patients
had the highest mutation frequencies for TP53 (94%), TTN
(23%), and FAT3 (11%) (Figures 7A, B). In addition, we also
found that BRCA1 was the differentially mutated gene in the
Hypoxialow/TMEhigh subgroup. Since TMB is a potential
biomarker of immunotherapy, the TMB score was also
calculated for patients. There was no notable difference in
TMB across Hypoxia-TME subgroups (Figure 7C).
Subsequently, cancer-related molecular pathways were
analyzed to study the underlying mechanism among different
Hypoxia-TME subgroups. The results clearly showed
that distinct patterns of tumor proliferation and immune
response among various subgroups (Figure 7D). Specially,
the Hypoxiahigh/TMElow subgroup were enriched in DNA
repair, TGF-β, EMT, and angiogenesis, whereas the
Hypoxialow/TMEhigh were enriched in IFN-γ response, and
inflammatory response.

3.8 Prediction of immunotherapy benefit
based on the Hypoxia-TME classifier

We further evaluated the possible therapeutic effectiveness of
immunotherapy in the different Hypoxia-TME subgroups. The
findings showed that the Hypoxialow/TMEhigh subgroup had lower
TIDE score compared to the Hypoxiahigh/TMElow subgroup,
indicating that Hypoxialow/TMEhigh patients could more benefit
from immunotherapy than patients in the Hypoxiahigh/TMElow

subgroup (Figure 8A). Additionally, the Hypoxiahigh/TMElow

subgroup had higher T-cell dysfunction and exclusion score,
whereas the Hypoxialow/TMEhigh subgroup exhibited a higher
microsatellite instability score (Figures 8B–D). Furthermore, we
assessed the prognostic value of Hypoxia-TME classifier in the
anti-PD-L1 immunotherapy cohort IMvigor210. As shown in
Figure 8E, patients responding to PD-L1 immunotherapy showed
lower hypoxia score or higher TME score, respectively. In addition,
the Hypoxialow/TMEhigh subgroup had the highest percentage

FIGURE 7
Molecular characteristics in different Hypoxia-TME subgroups. (A) Oncoplot of 15 mutated genes in the Hypoxialow/TMEhigh group. (B) Oncoplot of
15 mutated genes in the Hypoxiahigh/TMElow group. (C) TMB among Hypoxia-TME classifier subgroups. (D) Heatmap of signaling pathways in different
Hypoxia-TME subgroups.
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(32.6%) of patients showing therapeutic response and better
prognosis, whereas the Hypoxiahigh/TMElow subgroup had a
response rate of only 15.1% (Figures 8F–G). Hypoxiahigh/TMElow

subgroup generally exhibited higher expression levels of activation
immune markers compared to the Hypoxialow/TMEhigh subgroup
(Figure 8H). However, it was noted that the expression of IDO1,

FIGURE 8
Prediction of immunotherapy benefit based on Hypoxia-TME classifier. (A–D) TIDE, T-cell dysfunction and exclusion, and MSI score in
different Hypoxia-TME subgroups. (E) Hypoxia and TME score in the IMvigor210 cohort. (F) The different percentages of anti-PD-
L1 immunotherapy in different Hypoxia-TME subgroups. (G) Survival analysis of the Hypoxia-TME classifier in the IMvigor210 cohort. (H, I) The
expression of activation and inhibitory immune markers in different Hypoxia-TME subgroups. (J) Immunofluorescence staining of HIF-1α
and PD-L1 in HGSOC patients. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant.
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LAG3 and PDCD1 were significantly increased in the Hypoxialow/
TMEhigh subgroup than Hypoxiahigh/TMElow subgroup (Figure 8I).
We also found that hypoxia can induce the expression of PD-L1 and
thereby immune evasion in HGSOC tumor tissues (Figure 8J). These
findings suggest that the Hypoxia-TME classifier may be a novel
therapeutic biomarker for identifying patients who would benefit
from immunotherapy.

4 Discussion

HGSOC is characterized by genomic instability, which causes
heterogeneity and results in different molecular subtypes, making it
challenging to determine effective clinical treatments. Therefore, further
study is required to enhance our insights into themolecularmechanisms
in HGSOC, aiming to develop new strategies for prognosis and
treatment. In this study, by integrating RNA sequencing
transcriptome data from 807 HGSOC patients, hypoxia was
identified as the most critical risk factor for ovarian cancer.
Furthermore, scRNA-seq analysis revealed that the primary cell types
in HGSOC include epithelial cells, T cells, macrophages, and fibroblasts,
with fibroblasts and macrophages exhibiting higher levels of hypoxia.
Currently, several studies have used scRNA-seq analysis to characterize
different cell types and therapeutic targets in ovarian cancer and
HGSOC (Hu et al., 2020; Wang et al., 2022; Liang et al., 2021).
These studies indicate that T cells, fibroblasts, and macrophages are
the most important cells in HGSOC, and they are significantly linked to
the progression and treatment of HGSOC, which are similar to our
results. In addition, a distinct S100A9+ tumor cell subtype was identified
in both primary and metastatic sites, which is strongly associated with
poor prognosis (Xu et al., 2024). Moreover, our cell-cell interaction
analysis revealed that the CXCL12-CXCR4 signaling pathway mediated
fibroblast-T cell interactions, while the SPP1-CD44 signaling pathway
played a major role in macrophage-T cell interactions. These findings
indicate that targeting the hypoxia-induced immunosuppressive
microenvironment, in combination with immunotherapy, provides
new targets and biomarkers for clinical treatment of HGSOC.

Hypoxia represents a crucial characteristic of the solid tumors,
which is associated with tumor invasiveness, chemotherapy
resistance, and prognosis (Wang et al., 2021). In hypoxic
conditions, tumor cells undergo adaptive changes in their
metabolic pathways, promoting angiogenesis and invasive growth
(Arner and Rathmell, 2023). Furthermore, the hypoxia can impact
immune cell function, suppress immune responses, and thus
facilitate tumor immune escape (Chen et al., 2023). Hypoxia can
inhibit the activity and function of T cells, thereby impairing their
potential to eliminate tumor cells. Several studies have demonstrated
an association between hypoxia and poor prognosis in ovarian
cancer (Wei et al., 2021; Shimogai et al., 2008; Alharbi et al.,
2021). Elevated levels of tissue hypoxia correlate with tumor
malignancy, recurrence rate, and reduced survival rates. Hence,
hypoxia emerges as a potential biomarker for prognostic
evaluation in patients with ovarian cancer. In this study, through
meta-analysis and integration of multiple HGSOC transcriptome
datasets, our results also revealed that patients with high hypoxia
scores exhibited a poorer prognosis compared to those with low
hypoxia scores. Additionally, the hypoxia-related gene HIF1A
displayed similar result. These findings imply that targeting

hypoxia may improve the clinical treatment outcomes and extend
overall survival time of patients with HGSOC.

We then conducted a detailed analysis of the hypoxic TME in
HGSOC. Hypoxia is strongly correlated with an immunosuppressive
microenvironment, characterized by elevated levels of immunosuppressive
cells, including TAMs and CAFs. In this study, we found that the
expression of HIF1A exhibits a significant positive association with
CD163, COL1A1, and FOXP3, suggesting that hypoxia potentially
promotes the accumulation of M2 macrophages, fibroblasts, and
regulatory T cells. Single-cell analysis further confirmed that the
hypoxia-induced immunosuppressive microenvironment is primarily
associated with fibroblasts andmacrophages, and that hypoxia is related
to chemotherapy resistance in HGSOC. CAFs have the ability to secrete
various cytokines, including CXCL12, IL-6, and CCL2, which can
influence the chemotaxis and function of T cells (Bu et al., 2019).
CXCL12 can attract T cells to the vicinity of CAFs, thereby suppressing
T cells activation and proliferation. Research has demonstrated that
CXCL12β can promote fibroblast heterogeneity and induce an
immunosuppressive microenvironment in HGSOC (Givel et al.,
2018). Through cell-cell interaction analysis, we discovered that
fibroblasts engage in interactions with T cells through the CXCL12-
CXCR4 signaling pathway, while macrophages interact with T cells by
the SPP1-CD44 signaling pathway. SPP1, through its binding to CD44,
can regulate T cell migration and infiltration. Previous studies have
identified SPP1 as a biomarker for prognosis in ovarian cancer, which
associated with enhanced immune cell infiltration (Gao et al., 2022).
These findings highlight the crucial involvement of the CXCL12-
CXCR4 and SPP1-CD44 signaling pathways in the hypoxic
microenvironment of HGSOC, thereby representing promising
targets for therapeutic interventions in HGSOC.

The risk of ovarian malignancy algorithm (ROMA) is a
predictive tool that can evaluate the probability and prognosis of
epithelial ovarian cancer, calculated by combining the measured
values of CA125 and HE4 levels in the blood (Kim et al., 2019).
Currently, a variety of gene signatures have been identified as
predictive tools for determining the prognosis of patients with
ovarian cancer (Wei et al., 2021; Konecny et al., 2016; Bonome
et al., 2008). Given the considerable heterogeneity of HGSOC, gene
signatures from the single dimension are insufficient to accurately
reflect the physiological state of the disease. Thus, it is crucial to
identify new biomarkers from multiple dimensions to improve
predictive accuracy. Given the pivotal importance of hypoxia and
TME as prognostic factors in HGSOC, this study utilized scRNA-seq
analysis of immune cells to develop and validate a novel Hypoxia-
TME classifier for the prognostic assessment of HGSOC patients.
Based on hypoxia score and TME score, patients were categorized
into four subgroups: Hypoxialow/TMEhigh, Hypoxiallow/TMElow,
Hypoxialhigh/TMEhigh, and Hypoxialhigh/TMElow. The Hypoxia-
TME classifier effectively provided significant prognostic
stratification for HGSOC patients in multiple independent
datasets. Specifically, compared to other subgroups, the subgroup
with low hypoxia and high TME (Hypoxialow/TMEhigh) demonstrated
the most favorable survival prognosis. Furthermore, our results
showed that the Hypoxia-TME classifier was an independent
factor for HGSOC patients through multivariate Cox regression
analysis, which can improve prognostic assessment and risk
stratification. In addition, racial differences could play a significant
role in determining the outcome for patients with HGSOC. Several
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studies indicated that ovarian cancer patients from different racial
exhibit differences in clinical presentation, pathological
characteristics, treatment response, and survival rates (Peres et al.,
2021; Peres et al., 2022; Sarink et al., 2020).

The predictive capacity of the Hypoxia-TME classifier for the
effectiveness of immunotherapy was further explored. We found that
Hypoxiahigh/TMElow subgroup had more T-cell dysfunction and
exclusion, whereas Hypoxialow/TMEhigh subgroup showed a greater
response rate to immunotherapy. In addition, immune checkpoint-
associated biomarkers can also be utilized for predicting the outcomes
of immunotherapy treatments. Our results showed that the expression
of immune checkpoint genes, including IDO1, LAG3, and PDCD1,
had significant differences among Hypoxia-TME subgroups,
indicating that different subgroups may have different response
rates to immunotherapy. Finally, our investigation focused on the
predictive efficacy of the Hypoxia-TME classifier in the
IMvigor210 immunotherapy dataset. It was observed that the
Hypoxialow/TMEhigh subgroup exhibited enhanced immunotherapy
response and the most favorable clinical prognosis compared to other
subgroups. These findings indicate that the Hypoxia-TME classifier
has the capability to identify patients who will benefit from
immunotherapy, highlighting its potential utility as an emergent
biomarker for immunotherapeutic interventions in HGSOC patients.

Through scRNA-Seq and bulk RNA-Seq analysis of HGSOC
patients, the Hypoxia-TME classifier was constructed and
subsequently validated across multiple independent datasets.
However, there are still some issues that need to be addressed
when Hypoxia-TME classifiers are applied to clinical practice.
Firstly, it is important to ensure the reliability and accuracy of
the classifiers, further evaluation would benefit from the collection of
patient samples in real-world. Secondly, our classifier was based on
gene expression levels, and more clinical samples are needed to
further validate at the protein level. Thirdly, although this study
employed a range of bioinformatics methods to develop the
Hypoxia-TME classifier, additional functional experiments are
required to explore its roles and potential molecular mechanisms
in vivo. Therefore, future studies should address these limitations.

5 Conclusion

This study revealed hypoxia-induced immunosuppressive
microenvironment at the single-cell level, and developed a new
Hypoxia-TME classifier that contributes to enhanced prognostic
prediction capabilities for patients with HGSOC.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

The studies involving humans were approved by Ethics
Committee of Shanghai First Maternity and Infant Hospital. The
studies were conducted in accordance with the local legislation and
institutional requirements. The participants provided their written
informed consent to participate in this study.

Author contributions

QC: Conceptualization, Project administration, Visualization,
Writing–original draft. YZ: Writing–original draft, Methodology.
CW: Methodology, Visualization, Writing–review and editing. HD:
Writing–review and editing. LC: Project administration,
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

We express our sincere gratitude to Jianming Zeng and his
biotrainee team for the generous sharing of their coding resources.
We also thanks to the patients who contributed their data to this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1450751/
full#supplementary-material

References

Alharbi, M., Lai, A., Sharma, S., Kalita-de Croft, P., Godbole, N., Campos, A., et al. (2021).
Extracellular vesicle transmission of chemoresistance to ovarian cancer cells is associated with

hypoxia-induced expression of glycolytic pathway proteins, and prediction of epithelial
ovarian cancer disease recurrence. Cancers 13 (14), 3388. doi:10.3390/cancers13143388

Frontiers in Pharmacology frontiersin.org13

Chen et al. 10.3389/fphar.2024.1450751

https://www.frontiersin.org/articles/10.3389/fphar.2024.1450751/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1450751/full#supplementary-material
https://doi.org/10.3390/cancers13143388
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1450751


Anderson, J., Majzner, R. G., and Sondel, P. M. (2022). Immunotherapy of
neuroblastoma: facts and hopes. Clin. cancer Res. official J. Am. Assoc. Cancer Res.
28 (15), 3196–3206. doi:10.1158/1078-0432.CCR-21-1356

Andrews, T. S., Kiselev, V. Y., McCarthy, D., and Hemberg, M. (2021). Tutorial:
guidelines for the computational analysis of single-cell RNA sequencing data. Nat.
Protoc. 16 (1), 1–9. doi:10.1038/s41596-020-00409-w

Aran, D., Looney, A. P., Liu, L., Wu, E., Fong, V., Hsu, A., et al. (2019). Reference-
based analysis of lung single-cell sequencing reveals a transitional profibrotic
macrophage. Nat. Immunol. 20 (2), 163–172. doi:10.1038/s41590-018-0276-y

Arner, E. N., and Rathmell, J. C. (2023). Metabolic programming and immune
suppression in the tumor microenvironment. Cancer cell 41 (3), 421–433. doi:10.1016/j.
ccell.2023.01.009

Billan, S., Kaidar-Person, O., and Gil, Z. (2020). Treatment after progression in the era
of immunotherapy. Lancet Oncol. 21 (10), e463–e476. doi:10.1016/S1470-2045(20)
30328-4

Bohm, S., Montfort, A., Pearce, O. M., Topping, J., Chakravarty, P., Everitt, G. L., et al.
(2016). Neoadjuvant chemotherapy modulates the immune microenvironment in
metastases of tubo-ovarian high-grade serous carcinoma. Clin. cancer Res. official
J. Am. Assoc. Cancer Res. 22 (12), 3025–3036. doi:10.1158/1078-0432.CCR-15-2657

Bonome, T., Levine, D. A., Shih, J., Randonovich, M., Pise-Masison, C. A.,
Bogomolniy, F., et al. (2008). A gene signature predicting for survival in
suboptimally debulked patients with ovarian cancer. Cancer Res. 68 (13),
5478–5486. doi:10.1158/0008-5472.CAN-07-6595

Bu, L., Baba, H., Yoshida, N., Miyake, K., Yasuda, T., Uchihara, T., et al. (2019).
Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor
microenvironment. Oncogene 38 (25), 4887–4901. doi:10.1038/s41388-019-0765-y

Cancer Genome Atlas Research, N. (2011). Integrated genomic analyses of ovarian
carcinoma. Nature 474 (7353), 609–615. doi:10.1038/nature10166

Chen, Z., Han, F., Du, Y., Shi, H., and Zhou, W. (2023). Hypoxic microenvironment
in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct.
Target Ther. 8 (1), 70. doi:10.1038/s41392-023-01332-8

Gao, W., Liu, D., Sun, H., Shao, Z., Shi, P., Li, T., et al. (2022). SPP1 is a prognostic
related biomarker and correlated with tumor-infiltrating immune cells in ovarian
cancer. BMC Cancer 22 (1), 1367. doi:10.1186/s12885-022-10485-8

Geistlinger, L., Oh, S., Ramos, M., Schiffer, L., LaRue, R. S., Henzler, C. M., et al.
(2020). Multiomic analysis of subtype evolution and heterogeneity in high-grade serous
ovarian carcinoma. Cancer Res. 80 (20), 4335–4345. doi:10.1158/0008-5472.CAN-20-
0521

Givel, A. M., Kieffer, Y., Scholer-Dahirel, A., Sirven, P., Cardon, M., Pelon, F., et al.
(2018). miR200-regulated CXCL12β promotes fibroblast heterogeneity and
immunosuppression in ovarian cancers. Nat. Commun. 9 (1), 1056. doi:10.1038/
s41467-018-03348-z

Hamanishi, J., Takeshima, N., Katsumata, N., Ushijima, K., Kimura, T., Takeuchi, S.,
et al. (2021). Nivolumab versus gemcitabine or pegylated liposomal doxorubicin for
patients with platinum-resistant ovarian cancer: open-label, randomized trial in Japan
(NINJA). J. Clin. Oncol. 39 (33), 3671–3681. doi:10.1200/JCO.21.00334

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., 3rd, Zheng, S., Butler, A., et al.
(2021). Integrated analysis of multimodal single-cell data. Cell 184 (13), 3573–3587.e29.
doi:10.1016/j.cell.2021.04.048

Hu, C., Li, T., Xu, Y., Zhang, X., Li, F., Bai, J., et al. (2023). CellMarker 2.0: an updated
database of manually curated cell markers in human/mouse and web tools based on
scRNA-seq data. Nucleic acids Res. 51 (D1), D870–D876. doi:10.1093/nar/gkac947

Hu, Z., Artibani, M., Alsaadi, A., Wietek, N., Morotti, M., Shi, T., et al. (2020). The
repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell
sequencing of normal fallopian tube epithelial cells. Cancer cell 37 (2), 226–242. doi:10.
1016/j.ccell.2020.01.003

Huang, A. C., and Zappasodi, R. (2022). A decade of checkpoint blockade
immunotherapy in melanoma: understanding the molecular basis for immune
sensitivity and resistance. Nat. Immunol. 23 (5), 660–670. doi:10.1038/s41590-022-
01141-1

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 (10),
1550–1558. doi:10.1038/s41591-018-0136-1

Kandalaft, L. E., Dangaj Laniti, D., and Coukos, G. (2022). Immunobiology of high-
grade serous ovarian cancer: lessons for clinical translation. Nat. Rev. Cancer 22 (11),
640–656. doi:10.1038/s41568-022-00503-z

Kim, B., Park, Y., Kim, B., Ahn, H. J., Lee, K. A., Chung, J. E., et al. (2019). Diagnostic
performance of CA 125, HE4, and risk of Ovarian Malignancy Algorithm for ovarian
cancer. J. Clin. Lab. Anal. 33 (1), e22624. doi:10.1002/jcla.22624

Konecny, G. E., Winterhoff, B., and Wang, C. (2016). Gene-expression signatures in
ovarian cancer: promise and challenges for patient stratification. Gynecol. Oncol. 141
(2), 379–385. doi:10.1016/j.ygyno.2016.01.026

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., et al. (2019).
Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. methods
16 (12), 1289–1296. doi:10.1038/s41592-019-0619-0

Kuroki, L., and Guntupalli, S. R. (2020). Treatment of epithelial ovarian cancer. BMJ
371, m3773. doi:10.1136/bmj.m3773

Lee, E. K., Xiong, N., Cheng, S. C., Barry, W. T., Penson, R. T., Konstantinopoulos, P.
A., et al. (2020). Combined pembrolizumab and pegylated liposomal doxorubicin in
platinum resistant ovarian cancer: a phase 2 clinical trial.Gynecol. Oncol. 159 (1), 72–78.
doi:10.1016/j.ygyno.2020.07.028

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The sva
package for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28 (6), 882–883. doi:10.1093/bioinformatics/bts034

Lheureux, S., Gourley, C., Vergote, I., and Oza, A. M. (2019). Epithelial ovarian
cancer. Lancet London, Engl. 393 (10177), 1240–1253. doi:10.1016/S0140-6736(18)
32552-2

Liang, L., Yu, J., Li, J., Li, N., Liu, J., Xiu, L., et al. (2021). Integration of scRNA-seq and
bulk RNA-seq to analyse the heterogeneity of ovarian cancer immune cells and establish
a molecular risk model. Front. Oncol. 11, 711020. doi:10.3389/fonc.2021.711020

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P., and Tamayo,
P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection.
Cell Syst. 1 (6), 417–425. doi:10.1016/j.cels.2015.12.004

Matulonis, U. A., Sood, A. K., Fallowfield, L., Howitt, B. E., Sehouli, J., and Karlan, B.
Y. (2016). Ovarian cancer. Nat. Rev. Dis. Prim. 2, 16061. doi:10.1038/nrdp.2016.61

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018). Maftools:
efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28 (11),
1747–1756. doi:10.1101/gr.239244.118

Mohme, M., Riethdorf, S., and Pantel, K. (2017). Circulating and disseminated
tumour cells - mechanisms of immune surveillance and escape. Nat. Rev. Clin.
Oncol. 14 (3), 155–167. doi:10.1038/nrclinonc.2016.144

Peres, L. C., Bethea, T. N., Camacho, T. F., Bandera, E. V., Beeghly-Fadiel, A., Chyn,
D. L., et al. (2021). Racial differences in population attributable risk for epithelial ovarian
cancer in the OCWAA consortium. J. Natl. Cancer Inst. 113 (6), 710–718. doi:10.1093/
jnci/djaa188

Peres, L. C., Colin-Leitzinger, C., Sinha, S., Marks, J. R., Conejo-Garcia, J. R., Alberg,
A. J., et al. (2022). Racial differences in the tumor immune landscape and survival of
women with high-grade serous ovarian carcinoma. Cancer Epidemiol. Biomarkers Prev.
31 (5), 1006–1016. doi:10.1158/1055-9965.EPI-21-1334

Reck, M., Remon, J., and Hellmann, M. D. (2022). First-line immunotherapy for non-
small-cell lung cancer. J. Clin. Oncol. 40 (6), 586–597. doi:10.1200/JCO.21.01497

Ru, B., Wong, C. N., Tong, Y., Zhong, J. Y., Zhong, S. S. W., Wu, W. C., et al. (2019).
TISIDB: an integrated repository portal for tumor-immune system interactions.
Bioinformatics 35 (20), 4200–4202. doi:10.1093/bioinformatics/btz210

Sarink, D., Wu, A. H., LeMarchand, L., White, K. K., Park, S. Y., Setiawan, V.W., et al.
(2020). Racial/ethnic differences in ovarian cancer risk: results from the multiethnic
cohort study. Cancer Epidemiol. Biomarkers Prev. 29 (10), 2019–2025. doi:10.1158/
1055-9965.EPI-20-0569

Shimogai, R., Kigawa, J., Itamochi, H., Iba, T., Kanamori, Y., Oishi, T., et al. (2008).
Expression of hypoxia-inducible factor 1alpha gene affects the outcome in patients with
ovarian cancer. Int. J. Gynecol. Cancer 18 (3), 499–505. doi:10.1111/j.1525-1438.2007.
01055.x

Siegel, R. L., Miller, K. D., and Jemal, A. (2019). Cancer statistics, 2019. CA a cancer
J. Clin. 69 (1), 7–34. doi:10.3322/caac.21551

van Weverwijk, A., and de Visser, K. E. (2023). Mechanisms driving the
immunoregulatory function of cancer cells. Nat. Rev. Cancer 23 (4), 193–215.
doi:10.1038/s41568-022-00544-4

Wang, B., Zhao, Q., Zhang, Y., Liu, Z., Zheng, Z., Liu, S., et al. (2021). Targeting
hypoxia in the tumor microenvironment: a potential strategy to improve cancer
immunotherapy. J. Exp. and Clin. cancer Res. CR 40 (1), 24. doi:10.1186/s13046-
020-01820-7

Wang, Y., Xie, H., Chang, X., Hu, W., Li, M., Li, Y., et al. (2022). Single-cell dissection
of the multiomic landscape of high-grade serous ovarian cancer. Cancer Res. 82 (21),
3903–3916. doi:10.1158/0008-5472.CAN-21-3819

Wei, C., Liu, X., Wang, Q., Li, Q., and Xie, M. (2021). Identification of hypoxia
signature to assess the tumor immune microenvironment and predict prognosis in
patients with ovarian cancer. Int. J. Endocrinol. 2021, 4156187. doi:10.1155/2021/
4156187

Wei, L., Chen, Q., Guo, A., Fan, J., Wang, R., and Zhang, H. (2018). Asiatic acid
attenuates CCl4-induced liver fibrosis in rats by regulating the PI3K/AKT/mTOR and
Bcl-2/Bax signaling pathways. Int. Immunopharmacol. 60, 1–8. doi:10.1016/j.intimp.
2018.04.016

Xia, L., Peng, J., Lou, G., Pan, M., Zhou, Q., Hu, W., et al. (2022). Antitumor activity
and safety of camrelizumab plus famitinib in patients with platinum-resistant recurrent
ovarian cancer: results from an open-label, multicenter phase 2 basket study.
J. Immunother. cancer 10 (1), e003831. doi:10.1136/jitc-2021-003831

Xu, J., Lu, W., Wei, X., Zhang, B., Yang, H., Tu, M., et al. (2024). Single-cell
transcriptomics reveals the aggressive landscape of high-grade serous carcinoma and
therapeutic targets in tumormicroenvironment.Cancer Lett. 593, 216928. doi:10.1016/j.
canlet.2024.216928

Frontiers in Pharmacology frontiersin.org14

Chen et al. 10.3389/fphar.2024.1450751

https://doi.org/10.1158/1078-0432.CCR-21-1356
https://doi.org/10.1038/s41596-020-00409-w
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1016/j.ccell.2023.01.009
https://doi.org/10.1016/j.ccell.2023.01.009
https://doi.org/10.1016/S1470-2045(20)30328-4
https://doi.org/10.1016/S1470-2045(20)30328-4
https://doi.org/10.1158/1078-0432.CCR-15-2657
https://doi.org/10.1158/0008-5472.CAN-07-6595
https://doi.org/10.1038/s41388-019-0765-y
https://doi.org/10.1038/nature10166
https://doi.org/10.1038/s41392-023-01332-8
https://doi.org/10.1186/s12885-022-10485-8
https://doi.org/10.1158/0008-5472.CAN-20-0521
https://doi.org/10.1158/0008-5472.CAN-20-0521
https://doi.org/10.1038/s41467-018-03348-z
https://doi.org/10.1038/s41467-018-03348-z
https://doi.org/10.1200/JCO.21.00334
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1093/nar/gkac947
https://doi.org/10.1016/j.ccell.2020.01.003
https://doi.org/10.1016/j.ccell.2020.01.003
https://doi.org/10.1038/s41590-022-01141-1
https://doi.org/10.1038/s41590-022-01141-1
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/s41568-022-00503-z
https://doi.org/10.1002/jcla.22624
https://doi.org/10.1016/j.ygyno.2016.01.026
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1136/bmj.m3773
https://doi.org/10.1016/j.ygyno.2020.07.028
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1016/S0140-6736(18)32552-2
https://doi.org/10.1016/S0140-6736(18)32552-2
https://doi.org/10.3389/fonc.2021.711020
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1038/nrdp.2016.61
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1038/nrclinonc.2016.144
https://doi.org/10.1093/jnci/djaa188
https://doi.org/10.1093/jnci/djaa188
https://doi.org/10.1158/1055-9965.EPI-21-1334
https://doi.org/10.1200/JCO.21.01497
https://doi.org/10.1093/bioinformatics/btz210
https://doi.org/10.1158/1055-9965.EPI-20-0569
https://doi.org/10.1158/1055-9965.EPI-20-0569
https://doi.org/10.1111/j.1525-1438.2007.01055.x
https://doi.org/10.1111/j.1525-1438.2007.01055.x
https://doi.org/10.3322/caac.21551
https://doi.org/10.1038/s41568-022-00544-4
https://doi.org/10.1186/s13046-020-01820-7
https://doi.org/10.1186/s13046-020-01820-7
https://doi.org/10.1158/0008-5472.CAN-21-3819
https://doi.org/10.1155/2021/4156187
https://doi.org/10.1155/2021/4156187
https://doi.org/10.1016/j.intimp.2018.04.016
https://doi.org/10.1016/j.intimp.2018.04.016
https://doi.org/10.1136/jitc-2021-003831
https://doi.org/10.1016/j.canlet.2024.216928
https://doi.org/10.1016/j.canlet.2024.216928
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1450751

	Integrated analysis of single-cell and bulk transcriptome reveals hypoxia-induced immunosuppressive microenvironment to pre ...
	1 Introduction
	2 Methods
	2.1 Collection and processing of bulk transcriptome data from patients with HGSOC
	2.2 Cancer hallmarks, immune cells, and functional enrichment analysis
	2.3 Single-cell RNA sequencing data processing of HGSOC patients
	2.4 Development of hypoxia signature, TME signature and Hypoxia-TME classifier
	2.5 Immunofluorescence staining
	2.6 Statistical analysis

	3 Results
	3.1 Hypoxia was identified as an important risk factor in HGSOC
	3.2 Hypoxia is associated with immunosuppressive microenvironment
	3.3 The effect of hypoxia in the TME through scRNA-seq analysis
	3.4 Cell-cell communications in the progression of HGSOC
	3.5 Development of the Hypoxia-TME classifier improved prognostic evaluation
	3.6 Validation and evaluation of the Hypoxia-TME classifier in multicenter studies
	3.7 Molecular characteristics among different Hypoxia-TME subgroups
	3.8 Prediction of immunotherapy benefit based on the Hypoxia-TME classifier

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


