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Abstract: Aflatoxin B1 (AFB1) is a major foodborne mycotoxin that poses a significant economic
risk to poultry due to a greater degree of susceptibility compared to other agricultural species.
Domesticated turkeys (Meleagris gallopavo) are especially sensitive to AFB1; however, wild turkeys
(M. g. silvestris) are more resistant. A lack of functional isoforms of hepatic glutathione S-transferases
(GSTs), an enzyme that plays a role in the detoxification of aflatoxin, is suspected as the reason for
the increased sensitivity. Previous studies comparing the gene expression of domesticated and wild
turkeys exposed to AFB1 identified hepatic genes responding differentially to AFB1, but could not
fully explain the difference in response. The current study examined differences in the expression of
microRNAs (miRNAs) in the livers of wild and domesticated turkeys fed dietary AFB1 (320 µg/kg
in feed). Short-read RNA sequencing and expression analysis examined both domesticated and
wild turkeys exposed to AFB1 compared to controls. A total of 25 miRNAs was identified as being
significantly differentially expressed (DEM) in pairwise comparisons. The majority of these have
mammalian orthologs with known dysregulation in liver disease. The largest number of DEMs
occurred between controls, suggesting an underlying difference in liver potential. Sequences of the
DEMs were used to identify potential miRNA binding sites in target genes, resulting in an average of
4302 predicted target sites per DEM. These DEMs and gene targets provide hypotheses for future
investigations into the role of miRNAs in AFB1 resistance.

Keywords: aflatoxin B1; domesticated turkey; wild turkey; liver; RNA-seq; microRNA

Key Contribution: Results from this study identify differentially expressed miRNAs (DEMs) in
turkeys in response to Aflatoxin B1 challenge. This response differed between domesticated birds
and wild turkeys of the Eastern subspecies (Meleagris gallopavo silvestris), previously shown to have
greater AFB1 resistance. The majority of the identified DEMs have human orthologs with known
associations with liver disease.

1. Introduction

Aflatoxin (AFB1) is a mycotoxin of significant economic importance to the poultry indus-
try. Previous studies have identified differential susceptibility to AFB1 between domesticated
(Meleagris gallopavo) and wild turkeys (M. g. silvestris). In humans and in most animals,
resistance is determined primarily by the expression of protective hepatic AFB1-detoxifying
glutathione S-transferases (GSTs). Livers of domesticated turkeys lack AFB1-detoxifying activ-
ity, whereas wild turkeys express functional AFB1-protective GSTs [1–3]. Recombinant GSTAs
cloned from domesticated and wild turkeys are comparable in function (in vitro), unlike the
hepatic forms (in vivo) from which they were amplified, implying that these enzymes are
downregulated, silenced, or otherwise modified by one or more possibly epigenetic mecha-
nisms [4]. In a series of studies, we have investigated the comparative molecular responses
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in the hepatic and splenic transcriptomes directly affected by dietary challenge to AFB1 in
turkeys and in developing turkey embryos. Pathways significantly dysregulated by AFB1 in
the liver included cancer, apoptosis, cell cycle, and lipid regulation, reflecting molecular mech-
anisms of inflammation, proliferation, and liver damage in aflatoxicosis [5–7]. In the spleen,
AFB1 suppressed innate immune transcripts, especially from antimicrobial genes indicative of
either increased cytotoxic potential or activation-induced cell death during aflatoxicosis [8].
In an in ovo exposure model, controlled AFB1 exposure of developing embryos similarly
revealed differential responses in wild vs. domesticated birds [9].

The unique susceptibility of domesticated turkeys to the effects of AFB1 compared to
wild turkeys is likely due to a lack of functional hepatic GSTs. Extended studies of juvenile
birds aimed at contrasting the gene expression response of susceptible (domesticated) to
more resistant wild birds by characterizing transcriptional changes induced by AFB1 in the
liver, spleen, and cecal tonsil [10–12]. RNA sequencing found statistically significant differ-
ences in gene expression in AFB1-treated birds compared to controls. Characterization of
the differentially expressed genes found dysregulation in response to AFB1 with significant
association of Phase I and Phase II genes and genes associated with cellular regulation,
modulation of apoptosis, and inflammatory responses. The expression of GSTA3 was signif-
icantly higher in AFB1-treated birds versus controls for both genetic groups. Interestingly,
wild birds had higher GSTA3 expression compared to domesticated birds, even when fed
the control diet. Results of this study supported the hypothesis that the greater resistance
of wild turkeys to AFB1 is related to a higher constitutive expression of GSTA3 coupled
with other differences in functional gene expression and that these are likely caused by
downregulation, gene silencing, and/or other mechanisms [13].

The non-coding RNAs, microRNAs (miRNAs), are a class of small (18–25 nucleotides)
regulatory RNAs that play an important role in controlling the abundance of transcripts in
the vertebrate transcriptome [14]. By recognizing target sites predominantly in the 3′UTRs
of mRNAs, these molecules bind to destabilize mRNAs, resulting in mRNA cleavage or
posttranscriptional repression of gene expression [15]. Gene silencing mediated by miRNAs
plays an important role in animal development and disease [16] and in the animal response
to environmental stressors [17–20].

Tissue-specific expression of miRNAs is common in vertebrates [21], and relatively
little is known about their expression in the turkey. Characterization and computational
prediction of miRNA is the first step in identifying miRNA:mRNA target interactions.
Previous work by our group examined the role of miRNAs expressed in skeletal muscle
satellite cells [22], where more than 350 miRNAs were identified through small RNA
sequencing. Differential expression of several miRNAs was found in response to thermal
stress, suggesting an important role for miRNAs in response to heat stress (altered cellular
proliferation and differentiation) with notable differences in birds selected for their modern
commercial growth traits. Studies in humans and model species such as mice and rats
have shown that the expression of miRNAs and miRNA:mRNA interactions are specifically
altered in almost all liver diseases [23]. This study was designed to characterize the
expression of miRNAs in turkey liver in the context of AFB1 exposure. Here, we performed
miRNA-seq on the same animals used in the challenge studies described above [10–12] and
contrasted miRNA expression in both wild and domesticated birds. We hypothesized that
the expression of miRNAs would be significantly altered by AFB1 treatment and would
vary between domesticated and non-selected wild birds.

2. Results
2.1. Small RNA Sequencing

Results of small RNA sequencing are summarized in Table 1. The number of raw
sequence reads per library ranged from 5.4 M to 17.7 M, with the total number of reads
being slightly higher in the EW control and EW-AFB1 treatment groups with an average
of 10.47 M reads per library. Read quality was consistently high, with an average mean Q
score of 37.
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Table 1. Summary of RNA-seq data used for miRNA discovery and expression analysis. For each
library, the total number of sequence reads, percent GC content, and mean quality (Q score) are given.

Group Replicate Total Reads % GC Mean Read Quality

EW-Control EW9L 14,151,896 55 36.8
EW10L 17,696,678 55 36.9
EW12L 14,450,425 54 37.0
EW13L 5,439,559 55 36.9

EW-AFB1 EW1L 14,406,168 54 36.9
EW2L 12,879,470 54 36.9
EW3L 8,418,981 55 37.0
EW4L 6,979,042 53 37.1

NT-Control N11L 8,598,754 54 37.0
N12L 6,605,326 54 37.0
N13L 10,318,300 54 37.0
N14L 12,049,804 54 37.0

NT-AFB1 N1L 6,796,414 54 37.0
N2L 9,351,794 54 37.0
N3L 9,381,403 54 36.9
N4L 10,029,675 54 37.0

Mean 10,472,105.6 54.2 37.00

2.2. Identification and Expression of Conserved and Novel miRNAs

Clean reads obtained from all sequencing libraries were used for miRNA prediction
using miRDeep2. Although the total number of reads mapping to the miRNA precursors
varied across libraries, the averages per treatment group were similar, ranging from 2.04 M
to 2.36 M reads (Figure 1A). The performance of miRDeep2 in the detection of known
miRNAs (those identified based on sequence comparison of their miRNA precursors with
previously reported turkey miRNAs and the G. gallus in the miRBase dataset) and novel
miRNAs is presented in Table S1. A total of 529 miRNAs (52 known and 477 novel) was
detected (Supplementary Materials File S1) across all libraries. Combined, this represented
451 unique miRNAs (41 known and 410 novel) with duplicates removed. The expression of
the putative novel miRNAs was lower than that of the known miRNAs.

Novel miRNAs were considered as high confidence when the putative mature and
star miRNA sequence were detected in at least two independent samples, having the exact
same 5′- and 3′-ends with no mismatches. Based on cutoff values for confidence (miRDeep
score > 1.0, significant RNAfold p-value, and mature reads > 10), 322 of the 477 detected
novel miRNAs (67.5%) were considered high confidence.

The distribution of the expressed miRNAs is summarized in Figure 2. Of the 529 pre-
dicted miRNAs, the expression of 168 (31.7%) fell below our analysis cutoff. Of the remain-
ing 361 miRNAs, 248 (46.8%) were expressed in all treatment groups, 32 were expressed in
3 groups, 29 in two groups, and 48 were uniquely expressed in single treatments (Figure 2).
The principal component (PCA) plot shown in Figure 1B visualizes variation in expression
among treatment groups. Here, treatment groups clustered distinctly with separation by
genotype along the first principal component (PCA1) and separation by treatment along
PCA2. The variance partition plot (Figure 1C) shows a similar contribution of genotype
and AFB1 treatment to the overall experimental variance.
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Distribution of sample variance by treatment factor: Genotype (Line, Eastern Wild (EW) and Nich-
olas (NT) turkeys), AFB1 treatment, interaction, and residual. 

Figure 1. (A). Distribution of sequencing reads (Millions of fragments) in sequencing libraries of
treatment groups (Control and AFB1). (B). Principal component analysis (PCA) plots of normalized
read counts. Sample-to-sample distances (within- and between-treatments) are illustrated for each
treatment sample on the first two principal components and plotted according to treatment. (C). Dis-
tribution of sample variance by treatment factor: Genotype (Line, Eastern Wild (EW) and Nicholas
(NT) turkeys), AFB1 treatment, interaction, and residual.
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Log2FC < −1.0. Five DEMs occurred in the comparison of control vs. AFB1-treated NT do-
mestic birds (Table 2). These included miR-30d, miR-125b-5p, miR-99a, miR-221 and miR-
N60. With the exception of miR-30d, these showed increased expression with AFB1 treat-
ment. Only a single DEM (miR-N60) occurred in comparison of control vs. AFB1-treated 
EW wild birds. This miRNA, identified as novel in our previous study [22], had seed 
match similarity to chicken miR-3529 but significant BLAST similarity to gga-miR-7-1. 
This DEM (likely a 7-1 ortholog) was similarly regulated with higher expression in the 

Figure 2. UpSet plot of expressed miRNAs in turkey liver. For inclusion, miRNAs must first have at
least three assigned reads in at least two libraries and, secondly, a treatment group with an average
number of reads > 2.0. The horizontal bars on the left (Set size) indicate the number of miRNAs
expressed in each treatment. Individual points in the matrix represent miRNAs expressed in each
treatment, and the lines between points represent shared expression. The vertical bars above indicate
the number of miRNAs specific to or common to different treatments.

2.3. Identification of Differentially Expressed miRNAs (DEMs)

A counts matrix of 238 miRNAs was created from normalization by library size
for analysis with EdgeR (Table S2). A total of 25 miRNAs with significant differential
expression (DEMs) was identified in the treatment group comparisons (Table 2, Figure S1).
In the control birds, 15 DEMs occurred between the NT domestic and EW wild birds, with
8 being upregulated and 7 downregulated in the NT domestic birds relative to the EW
wild birds. Four of these, miR-N210, miR-138 (2 isoforms) and miR-190a had Log2 fold-
change (Log2FC) > 1.0 and five, miR-29b, miR-27b, miR-N424, miR-1768 and miR-N224,
had Log2FC < −1.0. Five DEMs occurred in the comparison of control vs. AFB1-treated
NT domestic birds (Table 2). These included miR-30d, miR-125b-5p, miR-99a, miR-221 and
miR-N60. With the exception of miR-30d, these showed increased expression with AFB1
treatment. Only a single DEM (miR-N60) occurred in comparison of control vs. AFB1-
treated EW wild birds. This miRNA, identified as novel in our previous study [22], had
seed match similarity to chicken miR-3529 but significant BLAST similarity to gga-miR-7-1.
This DEM (likely a 7-1 ortholog) was similarly regulated with higher expression in the AFB1
treatment groups in both lines (Log2FC = −1.5247). Finally, comparison of the AFB1-treated
animals found six DEMs (Table 2). With the exception of miR-130b, these showed higher
expression in the EW birds than NT domestic.



Toxins 2024, 16, 453 6 of 14

Table 2. Differentially expressed miRNAs (DEMs) in turkey liver.

Comparison Turkey miRNA Similar Seed Match Log2FC FDR

NT vs. EW
(Control) mga-miR-N210 NA 1.6067 0.0302

mga-miR-138 gga-miR-138-5p 1.1568 0.0106
mga-miR-138 gga-miR-138-5p 1.1254 0.0106

mga-miR-190a gga-miR-190a-5p 1.0744 0.0123
mga-miR-429 mga-miR-429 0.7412 0.0353

mga-miR-181b gga-miR-181a-5p 0.7256 0.0353
mga-miR-1559 gga-miR-1559-5p 0.7221 0.0353
mga-miR-128 gga-miR-128-3p 0.4804 0.0353
mga-miR-24 gga-miR-24-3p −0.7883 0.0123

mga-miR-23b gga-miR-23b-3p −0.9695 0.0106
mga-miR-29b gga-miR-29a-3p −1.0786 0.0152
mga-miR-27b gga-miR-27b-3p −1.1868 0.0106

mga-miR-N424 NA −1.5619 0.0152
mga-miR-1768 gga-miR-1768 −1.5732 0.0406
mga-miR-N224 NA −2.6583 0.0106

NT (Control
vs. AFB1) mga-miR-30d gga-miR-30d 0.4608 0.0175

mga-miR-125b-
5p gga-miR-125b-5p −0.4150 0.0407

mga-miR-99a gga-miR-99a-5p −0.6275 0.0250
mga-miR-221 gga-miR-222a −1.2598 0.0415
mga-miR-N60 gga-miR-3529 −1.4936 0.0002

EW (Control
vs. AFB1) mga-miR-N60 gga-miR-3529 −1.5247 0.0298

NT vs. EW
(AFB1) mga-miR-130b gga-miR-130b-3p 0.5476 0.0482

mga-miR-204 gga-miR-204 −0.7917 0.0482
mga-miR-N195 NA −0.7982 0.0482
mga-miR-29c gga-miR-29a-3p −0.8797 0.0482
mga-miR-N63 mga-miR-N63 −1.5288 0.0482

mga-miR-1388a gga-miR-1388a-5p −1.8226 0.0278

2.4. MicroRNA Target Predictions

The mature consensus sequences of the 25 DEMs identified in the pairwise compar-
isons were used to query the transcript sequences in the turkey genome for potential target
sites. Target predictions identified 61,527 potential interactions (alignment score > 150)
involving 8933 genes. The number of target sites per miRNA ranged from 251 (miRNA-99a)
to 8780 (two isoforms of miR-138), with an average of 2641. Gene transcripts containing pre-
dicted sites with the highest alignment score (≥170) are highlighted in Table S3. The highest
target scores were observed for mga-miR-211 (SLC6A12, solute carrier family 6 member
12), mga-miR-1768 (LOC100542432, histamine N-methyltransferase-like), mga-miR-221
(GABRD, gamma-aminobutyric acid type A receptor delta subunit), mga-miR-181b (COMP,
cartilage oligomeric matrix protein), and mga-miR-30d (LOC100541720, Fanconi-associated
nuclease 1).

For the 15 DEMs of the control comparisons (NT vs. EW), 41,302 gene target in-
teractions were predicted with MiRanda. Of these, 749 (occurring in 394 genes) had
alignment scores ≥ 170. Interestingly, one DEM (mga-miR-27b) had predicted target sites
in two alpha-class GSTs (GSTA3 and GSTA4), although with somewhat lower alignment
scores (160 and 152, respectively). Predicted target-binding sites for the five DEMs in the
NT domestic bird comparison (control vs. AFB1-treated) totaled 6353, with 138 (occurring
in 83 genes) having alignment scores ≥ 170. Of the 138 high-score targets, 26 were predicted
for miR-N60, which was also found in the control vs. AFB1-treated comparison in EW wild
birds. One DEM (mga-miR-221) in the NT domestic birds also had a target site in GSTA3
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(alignment score = 150). Finally, in the six DEMs of the AFB1-treated bird comparison (NT
vs. EW), 13,872 targets were predicted, with 254 (occurring in 185 genes) having alignment
scores ≥ 170.

GO analysis of the high score (≥170) gene targets did not indicate significant gene
enrichment for any of the comparison sets. However, combined GO analysis of the top-
scoring targets (Table S4) found significant (FDR = 2.52 × 10−2) enrichment (36.73×)
for the GO molecular function category. This combined GO analysis also found histone
methyltransferase binding and several GO biological function categories, including ox-
alate transport (27.55×, FDR = 3.49 × 10−2), aspartate transmembrane transport (13.36×,
FDR = 4.20× 10−2), C4-dicarboxylate transport (13.12×, FDR = 1.60 × 10−2), and dicar-
boxylic acid transport (10.49×, FDR = 5.43 × 10−5). Functional annotation clustering
of the 3000 genes (2900 DAVID IDs) with the top target MiRanda alignment scores in
DAVID found one KEGG annotation cluster (enrichment score: 1.81×) that included the
pathways mgp01040:Biosynthesis of unsaturated fatty acids (12 genes, P = 1.26 × 10−2),
mgp01212:Fatty acid metabolism (18 genes, P = 1.45 × 10−2), and mgp00062:Fatty acid
elongation (11 genes, P = 2.04 × 10−2).

3. Discussion

Non-coding RNAs help regulate diverse biological functions, including cell prolif-
eration, differentiation, cell death, organ development, and physiology. Downregulation
of miRNAs typically increases the translation of target genes, whereas upregulation has
a negative effect. Importantly, as negative regulators of gene expression, miRNAs can
function as tumor suppressors or oncogenes. In humans, it is estimated that 70% of all de-
scribed miRNAs are expressed in the liver, with some, such as miR-122, comprising > 70%
of all hepatic miRNAs [24]. In the past 20 years, the number of miRNA studies has grown
exponentially, with several studies demonstrating altered the expression of miRNAs in nu-
merous acute and chronic liver diseases [23]. Due to their stability in body fluids, miRNAs
are also useful as biomarkers for liver dysfunction.

The most likely mechanism for the extreme sensitivity of domesticated turkeys to
AFB1 is dysregulation/dysfunction in hepatic GSTs, rendering them unable to detoxify
AFB1 [1–4,25]. The liver is the principal site of AFB1 metabolism. In the turkey, AFB1 is
first bioactivated by high-efficiency cytochrome P450s (1A5 and 3A37) to the reactive and
electrophilic exo-AFB1-epoxide (AFBO) [26–29]. Subsequent binding of AFBO to DNA
and other macromolecules results in immunotoxicity, mutations, and aflatoxicosis [5,30].
Aflatoxicosis in the turkey is characterized by an enlarged and pale liver resulting from
increased vacuolation of AFB1 -exposed hepatocytes with accumulation of high levels
of lipids (reviewed in Monson et al. [31]. As in human liver diseases, dysregulation of
miRNAs in the turkey was hypothesized in response to AFB1 exposure.

3.1. Differential Effects of AFB1 Challenge

Many vertebrate genes are miRNA targets [32], and numerous studies have now
demonstrated associations between miRNA expression and human liver disease. Many
miRNAs and their targets are highly conserved [33], and the majority of DEMs identified in
this study have mammalian orthologs associated with human liver disease. For example, a
comparison of NT domestic birds fed AFB1 found four such DEMs (mga-miR-99a, mga-miR-
221, mga-miR-125b-5p, and mga-miR-30d) compared to controls. In humans, the expression
of miR-99a correlates with the inhibition of hepatocellular carcinoma (HCC) by inducing the
G(1) phase cell cycle arrest [34]. In addition, Zhang et al. [35] found that a central component
of the RNA-induced silencing complex (Argonaute-2, AGO2), was translationally repressed
by miR-99a in HCC. Similarly, studies have found miR-221 to be a biomarker of chronic
liver injury [36], and it is dysregulated in multiple cancers [37]. This miRNA is upregulated
in liver fibrosis, and overexpression contributes to liver tumorigenesis [38]. In the case
of the third DEM (miR-125b-5p), Hua et al. [39] demonstrated this miRNA as a tumor
suppressor in HCC through inhibition of the antioxidant thioredoxin reductase 1 (TXNRD1).
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Yang et al. [40] also found miR-125b-5p to regulate hepatocyte proliferation during liver
regeneration by targeting ankyrin repeat and the BTB/POZ domain containing protein
1 (ABTB1). Target prediction in the turkey also found ABTB1 as a predicted target of
mga-miR-125b-5p (alignment score = 154, Table S3). Orthologs of the single miRNA with
lower expression in NT domestic birds fed AFB1 (mga-miR-30d) also play a role in HCC.
By targeting the G protein (Galphai2, GNAI2), miRNA-30d promotes tumor invasion and
metastasis [41].

Following AFB1 challenge, a single miRNA (mga-miR-130b) was expressed to a higher
degree in the NT domestic than in EW birds. As with other miRNAs, miR-130b is associated
with human HCC and is significantly dysregulated in tumors [42]. In HCC cells, miR-130b
expression is inversely correlated with peroxisome proliferator-activated receptor gamma
(PPAR-γ) [43]. Targeting and inhibition of PPAR-γ, a regulator of adipocyte differentia-
tion, promotes HCC aggressiveness (cell migration and invasion). Although PPAR-γ was
not predicted as a target of turkey mga-miR-130b, PPAR-α transcripts were (alignment
score = 152). miR-130b is also a stimulator of hepatic very-low-density lipoprotein assembly
and secretion [44].

Furthermore, two miRNAs (mga-miR-29c, mga-miR-204) had lower expression in NT
domestic birds compared to EW birds. As a member of the miR-29 family, miR29c is also
associated with HCC by directly targeting oncogenic sirtuin 1 (SIRT1, [45]). Inhibition by
miR-204 of the key enzyme in the carnitine-dependent transport pathway (cpt1a) in mouse
hepatocytes promotes non-alcoholic fatty liver disease [46]. CPT1A was predicted as a
potential target for eight of the turkey DEMs identified in this study. Finally, an ortholog
of the third DEM (mga-miR-1388) regulates the expression of antiviral genes via tumor
necrosis factor receptor-associated factor 3 in fish [47].

A single DEM (mga-miRNA-N60) with significantly higher expression with AFB1
treatment was shared between the NT and EW control vs. AFB1 comparisons. As mentioned
above, this miRNA is an ortholog of miR-7-1. In mammals, miR-7-1 is regulated by PPAR-α,
and has been shown to control cell growth, proliferation, invasion, metastasis, metabolism,
and inflammation [48]. miR-7 also promotes hepatocellular lipid accumulation [49] and has
tumor-suppressive effects in hepatocarcinogenesis through the suppression of the oncogene
cyclin E1 (CCNE1, [50]).

3.2. Genetic Background and Hepatic miRNA Expression

The majority of miRNAs with elevated expressions in the control group of NT domestic
birds also have mammalian orthologs with demonstrated roles in liver disease. Higher
expression of this group of miRNAs (Log2FC = 0.48 to 1.61, Table 2) in the NT domestic
controls would likely result in reduced expression in their target genes and is the result of
the genetic background and history of commercial selection in these birds as compared to
their wild counterparts. For example, the DEM ortholog (miR-128) suppresses CYP2C9,
the most abundant CYP2C subfamily enzyme in the human liver [51]. Huang et al. [52]
found miR-128-3p to regulate phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1)
and suppress the proliferation of HCC. Two isoforms of mga-miR-138 were upregulated in
control turkeys. This miRNA induces cell cycle arrest in HCC by targeting cyclin D3 [53].
Both miR-190a and miR-429 are involved in HCC tumor-related biological processes,
including proliferation, apoptosis, metastasis, and drug resistance [54–57]. In contrast,
miR-181b has been shown in mice to target early growth response 1 (EGR1), and inhibition
of miR-181b-5p reduces glycogenesis in hepatocytes through the AKT/GSK pathway [58].
This miRNA activates the PTEN/Akt pathway in stellate cells during the initiation and
progression of liver fibrosis [59]. EGR1 was identified as a potential target for two other
DEMs identified in this study (mga-miR-N224 and mga-miR-N424). The last DEM (mga-
miR-1559) does not have a known mammalian ortholog but is found in both the chicken
and zebra finch genomes (miRbase, [60]).

In control turkeys, the miRNAs with lower expression in NT domestic compared
to EW also have human orthologs associated with HCC promotion. Lower expression



Toxins 2024, 16, 453 9 of 14

of this group of miRNAs in the NT domestic (Log2FC = −0.79 to −2.66) would likely
result in increased expression in their target genes. For example, miR-23b is significantly
downregulated in primary HCC [61], miR-24 promotes cell growth and is a prognostic
indicator for multiple cancers [62], and miR-27b-3p inhibits HCC by targeting TGF-Beta
Activated Kinase 1 (MAP3K7) Binding Protein 3 (TAB3, [63]). TAB3 was predicted as a
potential target for seven of the turkey DEMs identified in this study, including mga-
miR27b. When inhibited, miR-27b-3p, miR-24, and miR-23b also mediate hepatic lipid
accumulation and hyperlipidemia [64–66]. One of the most abundantly expressed miRNAs
in the human liver is the miR-29 family [67]. The expression of miR-29b reduces liver
fibrosis [68,69]. The remaining DEM in this group (mga-miR-1768) occurs in both chicken
and zebra finch but does not have a known mammalian ortholog.

This study identified miRNAs expressed in turkey liver, characterized differential ex-
pression in response to AFB1, and predicted miRNA:mRNA interactions. Our prior studies
supported the contention that the expression of GSTA3 coupled with other differences in
functional gene expression underlie the differences in AFB1 susceptibility between domes-
ticated and wild turkeys. With the exception of mga-miR-27b, we did not identify evidence
for robust targeting of GSTA3 transcripts by the DEMs, as the mga-miR-27b binding sites
had lower-quality alignment scores. However, the suite of DEMs identified in the present
study provides insight into the biological response to AFB1 and how commercial selection
for the modern domesticated turkey has altered this response.

Although not mechanistically tested, our analyses identified several DEMs and a
number of genes potentially targeted by miRNAs following AFB1 exposure. For example,
in addition to GSTA3, potential DEM target sites for 10 other genes of the Glutathione
Conjugation super pathway (CHAC1, CNDP2, ESD, GCLM, GGCT, GSS, GSTA4, GSTK1,
GSTZ1, and MGST2) are included in our predicted DEM target-binding sites. Although
target sites for miRNAs are amongst the most highly conserved motifs within mRNA
3′UTRs [15], the functionality of individual miRNAs may be different in this species
compared to mammals. In any event, further validation of miRNA/mRNA interactions is
needed. This resource provides new hypotheses for future research, which are supported
by the link of the turkey DEMs identified in this study to orthologs implicated in human
liver disease.

4. Materials and Methods

This study used RNA samples extracted from our previous study of two turkey
subspecies in the context of AFB1 treatment [10]. These subspecies had previously demon-
strated varying AFB1-detoxifying GST activity. Briefly, hatchling birds were acclimated
for two weeks on an ad libitum standard grow-up soy-based diet. Males from each line
(n = 8 for Eastern wild (EW) and n = 10 for Nicholas Turkey (NT, domestic) were then
assigned to one of two treatment groups (Control of AFB1) and the AFB1 groups (EW-AFB1
and NT-AFB1) subjected to a short-term AFB1-treatment protocol [1]. The diet of challenge
birds was amended beginning on day 15 with 320 µg/kg (320 ppb) AFB1 (Sigma-Aldrich,
Inc., St. Louis, MO, USA) for 14 days. The AFB1 concentration used in the challenge study
was chosen with the aim of observing sub-clinical molecular pathologies while avoiding
significant clinical hepatotoxic effects [70]. Control birds continued on the standard diet
with AFB1 levels below detection limits (<10 µg/kg, 10 ppb) based on testing of feed via
HPLC [10]. Birds were euthanized, and livers were removed and infused with RNAlater
(Thermo Fisher Scientific, Waltham, MA, USA) for subsequent RNA isolation.

4.1. RNA Isolation and Sequencing

Total RNA was isolated using RNAzol RT extraction, DNase-treated (Turbo DNA-free
Kit, Thermo Fisher Scientific Wilmington, DE, USA), and stored at −80 ◦C until use. Initial
RNA concentration and quality were assessed using spectrophotometry (Nanodrop 1000,
Thermo Fisher Scientific Wilmington, DE, USA), and samples were submitted for QC and
library preparation and sequencing at the University of Minnesota Genomics Center. Each
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sample was quantified by RiboGreen Assay (Thermo Fisher Scientific Wilmington, DE,
USA) on the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) to confirm RNA
integrity. Indexed libraries (n = 16, 4 per treatment group) were constructed with the TruSeq
smRNA library preparation kit (Illumina, Inc., San Diego, CA, USA) and size selected.
Libraries were multiplexed and sequenced on the HiSeq2500 platform (Illumina, Inc.) to
produce 50-bp single-end reads (data accessioned as part of NCBI SRA BioProject 342653).

4.2. Illumina Sequencing Data Handling

Low-quality bases and adaptor contamination were removed from the Illumina se-
quencing reads and with FastQC 0.11.9 (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/, accessed 20 October 2024) and FastQC reports combined with MultiQC
1.13 [71]. Sequencing adaptors were removed with cutadapt 4.2 [72]. Reads shorter than
15 nucleotides after trimming were removed and cleaned of ribosomal sequences with
BBDuk 39.01 (https://sourceforge.net/projects/bbmap/, accessed 20 October 2024) using
reference sequences (large and small ribosomal subunit) retrieved from SILVA release
132 [73]. Reads with an exact match (min 15 nt) to one of the reference sequences were
removed. Only reads trimmed of adaptors and depleted of ribosomal sequences were used
downstream for analysis.

4.3. miRNA Prediction

For the prediction of novel miRNAs against the turkey genome, cleaned reads from all
libraries were combined into a single file. The turkey genome assembly (GCA_943295565.1)
was prepared for mapping with Bowtie 1.3.1 [74]. Novel miRNAs were predicted using
miRDeep2 0.1.2 [75], and miRNA sequences with miRDeep2 scores > 0 were retained. Char-
acterized mature miRNAs from turkey [22] and from chicken (Gallus gallus) (downloaded
from miRBase release 22.1) were used as previously known miRNAs. Sequence similarity
of the novel miRNAs to those predicted previously in Reed et al. [22] was further confirmed
via sequence alignments in Sequencher (v 5.1, Gene Codes, Corp, Ann Arbor, MI, USA).

4.4. miRNA Expression Profiling

Reads from each library were separately mapped to the turkey genome with Bowtie
1.3.1 [74] using the options “-n 0 -e 80 -l 15 -m 5 --best --strata” to recreate the parameters
used for miRNA discovery. SAM to BAM file conversion was conducted with Samtools
1.14 [76], and parallel processing of alignment files was performed with GNU parallel
version 20210822 [77]. miRNA regions identified by miRDeep2 were converted to SAF
files for expression quantification with ‘featureCounts’ version 2.0.3 [78]. Only reads with
a minimum mapping quality of 10 were counted. Expression values were normalized
by library size (total number of reads mapping to miRNA precursors) and multiplied by
a factor of 1 × 106 (corresponding to counts per million mapped miRNA reads, CPM).
Differentially expressed miRNAs (DEMs) were determined with the ‘edgeR’ package [79]
in the R statistical computing environment version 4.2.2 [80] using the counts matrix from
featureCounts. MicroRNAs with low expression (at least three assigned reads in at least
two libraries) were filtered. Differential expression analyses were carried out with the quasi-
likelihood F test in edgeR [81]. Global miRNA expression was assessed with principal
components analysis using the prcomp() function in R. Variance partitioning analyses were
conducted with the ‘variancePartition’ package [82] in R to estimate the contributions of
genotype, AFB1 treatment, and an interaction of genotype and AFB1 treatment to variance
in miRNA expression.

4.5. miRNA Target Prediction

Potential miRNA target genes were predicted in MiRanda 2.0 by aligning the miRNA
sequences against RNA transcripts in the annotated UMD5.1 genome build (NCBI annotation
104) with position-weighted scoring, alignment score > 150 and |Energy-Kcal/Mol| > 7.0.
Enrichment tests for target genes were performed using the PANTHER Overrepresenta-

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://sourceforge.net/projects/bbmap/
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tion Test [GO Consortium release 20150430 [83,84]; http://geneontology.org/, accessed
20 October 2024]. GO analysis utilized the chicken (G. gallus) reference gene set. Functional
annotation of target genes was performed with DAVID [85,86].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxins16110453/s1, Figure S1: MA plot showing the relationship between
average count (logCPM) and fold-change (log2FC) across the miRNAs; File S1: miRDeep summary
results; Table S1: Summary of miRDeep2 performance; Table S2: Normalized read counts; Table
S3: Predicted target gene of differentially expressed turkey miRNAs (DEMs); Table S4: PANTHER
Overrepresentation Test for target genes of turkey miRNAs.
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