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Abstract: In the framework of a Collaboration Agreement between CREA and ARSIAL, a morpho-
phenological, chemical, and genetic characterization of maize populations native to the Lazio region
was carried out. During 2022 and 2023, a set of 50 accessions, belonging both to ARSIAL and CREA
maize collections, were multiplied in Bergamo. Morpho-phenological descriptors were recorded in
the field: plant height, ear height, and male and female flowering time. The grain chemical compo-
sition in terms of protein, lipid, starch, ash and fiber was evaluated by near-infrared spectroscopy
(NIRS). A double-digest restriction-site-associated DNA sequencing (ddRADseq) strategy was used
to genotype the landraces. The two collections were not significantly different in terms of grain
chemical composition. On the other hand, the ARSIAL and CREA germplasm showed a different
distribution in the three cluster-based population structure obtained by ddRADseq, which largely
corresponded to the distribution map of their collection sites. The materials from the Lazio region
maintained by ARSIAL and CREA were revealed to be different. The comparison between the two
groups of landraces showed the importance of characterizing germplasm collections to promote the
recovery and valorization of local biodiversity.
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1. Introduction

Maize (Zea mays L.) is one of the most important cereal crops in human and animal
diets worldwide [1]. Aside from providing nutrients for humans and animals, maize serves
as a basic raw material in the production of starch, oil, protein, alcoholic beverages, food
sweeteners, and fuel.

Open-pollinated populations (i.e., landraces) are genetic materials that have been
cultivated by farming communities at a local level and represent a reservoir of valuable
alleles that can be exploited for different aims. Landraces are characterized by specific
adaptations to the environmental conditions of the cultivation area (tolerant to the biotic
and the abiotic stresses of that area) and are closely associated with traditional farming
strategies, knowledge, habits, and dialects, and celebrations of the people who developed
and continue to grow them [2].

The depletion of genetic resources in food crops was discussed as a public issue in
1992 during the Convention on Biological Diversity [3]. Since then, scientific research has
focused on aiding the recovery and maintenance of agrobiodiversity, recognized as a key
endeavor to support the sustainability of traditional and modern agricultural systems and
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food safety and security. For this purpose, genebanks (ex situ conservation) have acquired
a key role as a source of genetic resources. Genebanks store representative germplasm
samples of crop species and provide access to these materials for their evaluation and
integration into modern breeding programs and for conservation purposes. On the other
hand, in situ conservation, i.e., cultivating and propagating crops in farmers’ fields, com-
plements genebanks in maintaining local intra- and inter-species agrobiodiversity. A study
established to compare in situ and ex situ conservation over 50 years in Mexico [4] indicated
that farmers could maintain the genetic diversity of their landraces, and ex situ accessions
from genebanks were still representative of the diversity present in farmers’ fields.

The Maize Genebank of CREA—Centre for Cereal and Industrial Crops—in Bergamo
maintains the largest Italian ex situ maize collection, with more than 4000 accessions.
Among them, maize landraces (720 are Italian and more than 500 are from other countries),
which, in the past, represented a source of survival for country people, represent a highly
interesting group. They were replaced in the 1950s by hybrids introduced into Italy from
the USA, characterized by higher yield and resistance to pathogens. Thanks to an initiative
of the former Maize Experimental Station (Stazione Sperimentale per la Maiscoltura) of
Bergamo, landraces were collected from Italian regions, stored in Bergamo, and periodically
reproduced to conserve seed viability [5].

In the Lazio region, Central Italy, census, morpho-physiological, and genetic character-
ization of herbaceous germplasms cultivated by local farmers are carried out by ARSIAL
(Regional Agency for Agricultural Development and Innovation of Lazio) according to
CBD, with the application of Regional Law No. 15 (1 March 2000) for the “Protection of ge-
netic resources of agricultural interest, indigenous in Lazio and at risk of erosion” [6]. This
characterization concerns landraces that originated in Lazio territory, that were introduced
and integrated into the agroecosystem of Lazio at least 50 years ago, or that disappeared
from the region and were collected for public or private genebanks of other regions or
countries. As set forth in Article 8 of CBD, the heritage of agricultural genetic resources
indigenous to Lazio belongs to the local communities that have preserved them to date.
Since 2007, ARSIAL has collected about thirty maize accessions of landraces by Lazio local
farmers, conserved ex situ in a regional genebank [7].

A deep characterization is required to aid the monitoring, conservation, and exploita-
tion of agrobiodiversity. Both morphological and molecular methods are employed in
estimating genetic diversity in germplasm collections. Although morphological evaluation
is time-consuming, requires a large population size, and does not cover the entire genome,
it represents an effective approach to identifying phenotypic variation. On the other hand,
it can be limited by the effects of the environment on trait expression, and, for this reason,
this characterization should be combined with molecular approaches, which play an impor-
tant role in identifying diverse germplasms because of their high precision and accuracy.
Several studies on germplasm characterization in recent years have focused on local Italian
varieties [8–15].

High-throughput next-generation sequencing (NGS)-based genotyping technologies
offer the unique advantage of generating a large panel of single-nucleotide polymorphism
(SNP) markers. Indeed, these technologies are starting to represent the best approach to
assessing genetic diversity at different population levels and to de novo SNP discovery,
both in model and non-model species, due to their scalability and the possibility to combine
different enzymes to digest genomic DNA depending on the plant source and the aims of
the research [16–19].

From this perspective, within an ARSIAL-CREA collaboration, a total of 50 landraces
from Lazio were chosen from both genebanks and characterized for morpho-phenological
traits in two growing seasons, and, for genetic analysis, a reduced genome representation
strategy, with the use of ddRADseq to genotype at low coverage, was applied in the
present study.
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2. Results and Discussion
2.1. Morpho-Phenological Logical Parameters

Figure 1 shows the field parameters registered in 2022 and 2023 for VA and VE
accessions: days to tasseling (DT), anthesis–silking interval (ASI), plant height (PH), and
ear height/plant height ratio (EH/PH). The peculiar climatic conditions in 2022, extremely
dry and hot, influenced plant flowering. The mean values for days to tasseling (DT) were
compared by t-test and found to be significantly higher (p ≤ 0.05) in VA accessions than
the values registered for them in 2023 and the VE values. ASI in VA accessions in 2022 had
a larger standard deviation than VE, but the mean values of the two groups were similar
and did not differ significantly from the data registered in 2023. The mean values for plant
height (PH) in 2023 were significantly higher than in 2022 (p ≤ 0.01) for both VA and VE,
due to better growing conditions and the larger availability of water; the EH/PH ratio
remained similar in the two seasons.
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Figure 1. Box-plots of the field traits (DT, days to tasseling; ASI, anthesis–silking interval; PH, plant
height; EH/PH, ear height/plant height ratio) registered during 2022 and 2023.

2.2. Grain Chemical Composition

During multiplication, accessions were revealed to be sensitive to environmental
conditions: in particular, in 2022, tassel fertility was strongly reduced by high temperatures
and drought, and it was only possible to obtain enough seeds to evaluate the grain chemical
composition from half of the harvested accessions. During 2023, eight accessions (VA
383, VE-0220, VE-0320, VE-0369, VE-0528, VE-0531, VE-0568, and VE-0765) again were
almost sterile; therefore, the chemical data reported in the present study are related to the
42 landraces successfully multiplied in 2023 (19 VA and 23 VE).



Plants 2024, 13, 3249 4 of 17

The mean values for the 1000-seed weight and grain chemical compounds for the
two groups (VA and VE), as determined by NIRS (Table 1), were compared by t-test and
were shown to be not significantly different. The range of variation was wider in VE for
all traits except starch. The detailed chemical composition of all accessions is reported in
Table S1. ANOVA analysis indicated a significant effect (p ≤ 0.01) of the factor genotype on
the parameters (Table S2).

Table 1. Mean values and range of variation (% dry matter) of the main grain chemical components
and 1000-seed weight (g) in the two groups of landraces (VA and VE).

Protein Lipid Fiber Ash Starch 1000-Seed Weight

Mean VA ± SD 12.60 ± 0.90 4.84 ± 0.44 2.67 ± 0.32 1.95 ± 0.15 66.01 ± 1.46 269.9 ± 48.0
Range 11.10–13.70 4.18–5.79 2.22–3.44 1.63–2.26 62.37–68.20 163.3–330.7

Mean VE ± SD 12.61 ± 0.69 4.58 ± 0.49 2.55 ± 0.37 1.86 ± 0.30 66.14 ± 0.77 264.0 ± 43.4
Range 10.59–13.90 3.53–5.50 1.35–3.10 0.77–2.24 64.59–67.32 124.0–350.7

A positive and significant correlation (p ≤ 0.01) was found between lipid and starch,
both negatively correlated to protein content; a negative, significant correlation (p ≤ 0.01)
was also found between fiber and starch content. All the correlations between seed weight
and the other traits were not significant (Table S3).

Grain chemical composition is an important trait in the characterization of traditional
germplasm, as it is often used for food production. In industrialized countries, maize is
mainly grown for silage and industrial uses. As compared to commercial hybrids, which
have high yield and better resistance to environmental stresses, landraces are usually richer
in protein and lipid content and show a higher percentage of molecules with a role as
antioxidants [20–24]. For this reason, several national and international research programs
are now underway, focused on the description and valorization of these genetic materials.
Near-infrared (NIR) spectroscopy is a well-established non-destructive screening method
used in plant breeding and in the cereal industry for estimating a wide range of chemical
components and for the screening of many samples. The reproducibility of the acquired
spectra, the number of specific calibrations developed for the main components of plant
tissues, and the high prediction performance make it the most efficient method to acquire
many chemical data in a reduced span of time [25]. It is therefore frequently applied in
quality evaluation.

In a previous study [11], which characterized Italian landraces by NIRS 547, a large
variability was observed for grain chemical composition. The variation ranges observed
were as follows: 7.91–15.42% dry matter for protein, 2.58–7.74% dry matter for lipid
content, and 61.18–67.69% dry matter for starch content. This variability was close to
that determined for the 449 landraces originating from other countries, revealing that
the technique was not effective in discriminating among the landraces on a geographical
basis. An international network (EVA maize) involving European genebanks, research
institutes, and breeders is currently studying traditional European landraces, to explore
their variability and their possible exploitation as pre-breeding materials [26]. In parallel, a
set from these European landraces has been multiplied in Bergamo in recent years and is
being characterized for nutritional characteristics [27].

To understand how the basic chemical composition characterized the landraces, the
results were subjected to a PCA analysis based on a correlation matrix (Figure 2). The first
principal component (PC1) accounted for 35.1% of the variability and correlated especially
with protein, lipid, and starch. The second principal component (PC2) explained 28.8% of
the variability and correlated with the ash and fiber content. VA (red dot) and VE (blue
dot) accessions are evenly distributed across the diagram. The accessions that appear to be
distinguished from the others are highlighted in the PCA. Two landraces from CREA, VA
381 and VA 352, had opposite compositions, with the former being the richest in protein
(13.61%) and fiber (3.44%) and the latter showing the highest starch (68.20%) and lipid



Plants 2024, 13, 3249 5 of 17

(5.79%) content. Among ARSIAL accessions, VE-0346 had high values for 1000-seed weight
(270.0 g) and lipid (5.39%) and fiber (3.15%) content. VE-0176 was high in protein (13%) but
the lowest in lipid content (3.53%). Finally, VE-0439 had a good starch content (66.74%),
but its values for the other traits were lower than the average (Table S1).
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2.3. Genotyping and SNP Calling

Despite the increasing number of studies on the use of ddRADseq in model [28,29] and
non-model crop genotyping [30,31], as well as in the general characterization of the genetic
diversity of different taxa [32], so far, its application in maize is still limited. This approach
applied addRADseq to genotype the collection of 50 landraces. Overall, as shown in Table 2,
after quality-checking the raw data, all the samples preserved >91% of high-quality reads
after trimming and >96% of uniquely mapped reads, with a very low percentages of multi-
and unmapped reads.

Table 2. Trimming and mapping statistics before and after running the analyses. The average values
of the 50 genotypes are reported.

Reads Before
QC

Reads After
QC

Conserved
Reads

Mapped
Reads

% Mapped
Reads

527,313.864 499,626.220 94.76 487,132.236 97.43

After alignment cleanup, the haplotype-based variant detector FreeBayes was em-
ployed to identify genetic variation within each sample’s mapped genome. The minimum
coverage, the minimum genotype quality, and the minimum base quality thresholds to call
a variant were set to 6, 30, and 30, respectively, and the overall statistics of genetic variants
are reported in Tables S4 and S5.

The low-quality variants with a minor allele frequency (MAF) lower than 5%, a quality
score below 30, and a read depth below 6, as well as individuals with missing genotype
data for more than 90% of the variants, were filtered out using VCFtools. Moreover, InDels
were also removed and not considered for downstream population genetic analyses. As
summarized in Table S4, after filtering, all the individuals (50) and a total of 15,166 SNPs
markers were retained; most samples exhibited less than 10% (0.10) of missing loci, while
samples VE-0219 and VE-0346 had higher rates, reaching 15% and 13%, respectively
(Figure S1).
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The annotation and functional impact evaluation of the genetic variants from the
filtered loci was carried out with the VEP (Variant Effect Predictor) software (version
v110). All the variants were classified as SNPs, since InDels had been removed earlier
from the original VCF file, and the results with the most severe consequences and within
coding sequences are reported in Table S4. Overall, the number of SNP loci was uniformly
distributed across the 10 maize chromosomes (), with chromosomes 1 and 2 showing the
highest proportion of identified variants according to their lengths (Figure S2) [33–35].

2.4. Population Structure and Germplasm Diversity

To gain an insight into the population structure and genetic diversity within the
maize collection including VA and VE accessions from the Lazio region, several population
genetic analyses were conducted. Based on the 15,166 filtered loci, a p-distance matrix,
representing the genetic similarity between pairs of samples, was generated. A heatmap
showing the similarity across the entire dataset (Figure 3) reveals three distinct clusters
within the analyzed germplasm collection.
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larger is the discrepancy between two samples. The dendrograms on the top and on the left indicate
the genetic relatedness between samples according to the p-distance matrix.

To further investigate relatedness within the germplasm collection, the genetic distance
between samples was calculated based on the Prevosti distance. Indeed, while the p-
distance considers the overall differences in genetic variants, the Prevosti distance focuses
on shared alleles at specific loci. Based on the calculated Prevosti distance values, an
automated clustering analysis on the top 50 PCs (principal components) was conducted
(Figure 4A). STRUCTURE v 2.3.4 [36] was used to study the population structure and
genetic relations among the 50 maize landraces from the Lazio region. The BIC (Bayesian
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information criterion) values were used to estimate the optimal number of clusters that
define the population structure. Based on the BIC value plot (Figure S3), samples were
grouped into three main clusters in agreement with the PCA. Sample VE-0439, being an
outlier, was further removed from all downstream analyses and PCA plots (Figure 4A)
where PC1 explained the higher proportion of total variability (36.3%) according to previous
results. Clusters 1, 2, and 3 grouped 26, 18, and 5 individuals, respectively. Interestingly,
genotypes from ARSIAL (VE) and CREA (VA) collections are mainly separated into cluster
1 and 2, respectively. The three accessions belonging to the “Mais Agostinella” landrace
(VE-0218, VE-0220 and VE-0341) were found to be grouped in the same cluster (red),
reflecting their origin (Figure 4A). Mais Agostinella is the only landrace registered in the
Regional Voluntary Register (last accessed on 16 July 2024) and is maintained in situ/on
farms by Vallepietra farmers in the mountains of Valle dell’Aniene (Rome). Moreover, the
accession Bufaletta (VE-0219) was also found to be grouped with the Agostinella landrace.
Since it was collected from the same location as VE-0218 and VE-0220 (Vallepietra), it
is probable that the real genetic origin of Bufaletta is the same as that of Agostinella.
Together, the genetic and chemical composition data represent a valuable procedure for
identifying landraces in the Lazio region, thus aiding on the journey to their preservation
and management at the local community level. Indeed, many autochthonous genetic
resources are conserved by farmers and also by participatory methodology; it is therefore
important that specific systems are defined for their management. The population structure
was separately evaluated without the outlier sample VE-0439 as an input, and the resulting
Distruct plot is shown in Figure 4B. Briefly, it assigns individuals to different genetic clusters
based on their genetic variation and provides insight into the admixture proportion within
a population. The number of expected populations was set to 3 (K parameter) in accordance
with the Bayesian clustering results.

Basic population genetic analysis was computed on the STRUCTURE results, and the
genetic diversity index was calculated to provide insights into genetic diversity within
each of the three clusters. The three populations were genetically different at a significant
level based on the p-value equal to zero and had similar expected heterozygosity (He) with
a range of 0.28–0.31, although population 3 was slightly higher than population 1 and 2,
suggesting that it was more diverse at the genetic level than the others.
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structure inferred by STRUCTURE. A Distruct plot representing the admixture of populations with
the number of expected populations set to 3 (K = 3) is shown. Each landrace is represented on the
X-axis and visualized into K colors according to its membership coefficient.

Finally, an SNP panel was obtained describing genetic variability within the popu-
lation; it could represent a valuable genetic resource for further investigations into these
accessions.

2.5. Genetic/Geographical Association of CREA and ARSIAL Maize Collections

In the 1950s, the former Maize Experimental Station in Bergamo organized the collec-
tion of maize landraces grown by farmers in all Italian regions [5]. Forty-nine samples were
obtained from Lazio, most of which (27) were from Rieti province, with 17 from Latina
and 5 from Rome. The group of 20 CREA landraces chosen to be analyzed in the present
study reflected this percentage: 12 VA were from Rieti, 6 were from Latina, and 2 were
from Rome. On the other hand, the 30 accessions included by ARSIAL covered all the
provinces in Lazio: the largest number (14) came from Frosinone, 5 came from Rieti and
Rome, 3 came from Latina, and 2 came from Viterbo (Table 3). Among the two collections,
several phenological differences were found. As an example, four landraces from the CREA
collection (VA 349, VA 352, VA 353, and VA 355), all from Latina province, have white
kernels, whereas no accessions with white kernels were found among those cataloged by
ARSIAL in recent years. This suggests that a loss of biodiversity occurred in that area
during the transition from the cultivation of landraces to the introduction of hybrids. On
the other hand, within the collection from ARSIAL, several accessions showed a dark red
kernel color, a characteristic that is not present in the landraces maintained at CREA.

The maps in Figure 5 compare the sites of collection according to GPS coordinates
(A) and the geographical distribution of landraces according to the clusters obtained by
sequencing (B). Accession VE-0439 originated from another region and was removed from
the map shown in Figure 5B. Genetic clustering corresponded quite well to the geographic
origin of the landraces. Cluster 1 (red dots) is mainly concentrated in the Southern part
of the region, in Frosinone and Latina provinces; cluster 2 (green dots), on the other hand,
can be found in Northern Lazio, in Rieti province. This result suggests a defined relation
between landraces’ genetic characteristics and traditional in situ conservation sites. This
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relation is not applicable to cluster 3 (blue dots), as these landraces are spread throughout
the entire region.

Table 3. List of landraces from CREA and ARSIAL included in this study and sites of collection.

CREA or
ARSIAL

Code
Name Site of Collection Province

Altitude
m Above
Sea Level

VA 349 Bianco perla Cisterna Latina 77
VA 350 Chiaccarino Pontinia Latina 4
VA 352 Quarantino Fondi Latina 8
VA 353 Granoturco di Pantano Fondi Latina 8
VA 354 Quarantino Terracina Latina 22
VA 355 Mazzeco Terracina Latina 22
VA 365 Nostrano Poggio Mirteto Rieti 130
VA 367 Ottofile Fara in Sabina Rieti 482
VA 369 Marano nostrano Farfa-Granica Rieti 138
VA 375 Primaticcio Cantalupo in Sabina Rieti 297
VA 376 Nostrale Cittareale Rieti 962
VA 379 Brigantino Amatrice Patarico Rieti 955
VA 381 Zeppe Magliano Sabina Rieti 222
VA 382 Quarantino Stimigliano Rieti 207
VA 383 Nostrale Stimigliano Rieti 207
VA 388 Nostrale S. Polo-Tarano Rieti 184
VA 390 Nostrale Collevecchio Rieti 245
VA 391 Nostrale Magliano Sabina Rieti 222
VA 395 Locale o Granone o Turco Civitavecchia Roma 10
VA 397 Quarantino Civitavecchia Roma 10

VE-0176 Maranino Settefrati Frosinone 759
VE-0177 Filesedici Villa S. Lucia Frosinone 91
VE-0218 Agostinella Vallepietra Roma 799
VE-0219 Bufaletta Vallepietra Roma 799
VE-0220 Agostinella Vallepietra Roma 748
VE-0251 Vitorchiano Rosso Vitorchiano Viterbo 295
VE-0262 Marano Unknown Rieti 385
VE-0293 Gratigno Veroli Frosinone 765
VE-0320 Rantign Roccasecca Frosinone 177
VE-0341 Agostinella Vallepietra Roma 750
VE-0346 Rantign rosso Campodimele Latina 394
VE-0347 Rantign giallo Campodimele Latina 394
VE-0362 Filesedici Settefrati Frosinone 487
VE-0367 Granturco Collepardo Frosinone 807
VE-0368 Granturco Veroli Frosinone 720
VE-0369 Granturco Veroli Frosinone 942
VE-0439 Granturco da polenta Civitella San Paolo Roma 198
VE-0524 Mais di Alatri Alatri Frosinone 465
VE-0526 Mais Amatrice Amatrice Rieti 965
VE-0528 Quarantino (Borbona) Amatrice Rieti 758
VE-0531 Mais Sezze Sezze Latina 17
VE-0568 Mais rosso Camerata Nuova Roma 1356
VE-0570 Mais ottofila Veroli Frosinone 512
VE-0728 Mais ottofile Aquino Frosinone 110
VE-0764 Mais paesano Veroli Frosinone 551
VE-0765 Sconosciuto Borgorose Rieti 837
VE-0785 Sconosciuto Proceno Viterbo 363
VE-0823 Sconosciuto Campoli Appennino Frosinone 592
VE-0824 Mais nostrano Colle di Tora Rieti 751
VE-0827 Mais ottofile Vallerotonda Frosinone 576
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3. Conclusions

The focus of this research was the characterization of maize germplasm from the Lazio
region. Two groups of materials were compared: one was composed of landraces collected
from farmers in the 1950s and maintained ex situ at CREA Maize Genebank in Bergamo;
the other, managed by ARSIAL, included maize accessions still present and grown in
the region.

In recent years, maize landraces have been considered quite an interesting material
for pre-breeding programs due to their nutritional properties and their characteristics of
resilience to environmental stresses. Several national or regional projects have focused on
the maintenance and the evaluation of these materials; therefore, several landraces from
the CREA maize collection have been studied, with a special focus on those traditionally
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grown in Northern Italy [8–15]. Some landraces from other regions were also selected for a
larger characterization in collaboration with European partners [26,27].

The CREA-ARSIAL agreement offered the opportunity to carry out a detailed de-
scription of the traditional populations from the Lazio region, which had not been studied
before. The results obtained in the present study, especially from the genetic analyses,
indicate that the materials maintained by ARSIAL are mainly different from the germplasm
conserved in Bergamo. It can be suggested that the landraces collected from Lazio in the
1950s did not represent all the genetic biodiversity present in the region at that time or that
some materials were lost in the following years.

The comparison between the two groups of materials highlighted the importance of
germplasm characterization in promoting the recovery and valorization of local biodiversity.
This point also highlights the important role of ex situ conservation in maintaining the allelic
richness of crop species, which can be exploited in future breeding programs to guarantee
food security and safety and to ensure a sustainable relationship with the environment.

4. Materials and Methods
4.1. Plant Material

Twenty maize landraces collected in Lazio in 1954 and conserved in the CREA maize
genebank (code, VA) and 30 maize accessions collected by ARSIAL in Lazio in recent years
(code, VE) were considered in this study (Table 3 and Figure 6).

4.2. Plant Multiplication

Plants of each landrace were sown in 2022 (May 12) and 2023 (May 15) on CREA
experimental Farm “La Salvagna” (Bergamo, 45◦41′42′′ N, 9◦40′12′′ E) in eight plots (4 m
long, 20 plants/plot) and were multiplied by controlled pollination in a dedicated field
sector (nursery). Fertilizer (kg ha−1: N = 280, P2O5 = 115, K2O = 120) and irrigation were
applied during the growing season to limit drought stress. The method of controlled
pollination is used for the multiplication of genebank accessions; to prevent contamination
by pollen migration from outside the multiplication plots, silks are covered with paper
envelopes and tassels with pollen bags, followed by swift and accurate pollination.

4.3. Weather Conditions

The graph in Figure 7 shows the weather conditions in Bergamo (rainfall, colored
bars, mm; temperatures, colored lines, ◦C) during 2022 and 2023. The two years showed
different climate trends; during 2022, a very low amount of precipitation was recorded
compared to 2023, when the rainfall was very high, especially at the end of April, for the
entire month of May, and in July. Temperatures were higher in 2022 than in 2023 from May
through the first ten days in August. On the contrary, in 2023, temperatures were higher
than in 2022 from the 10th August to the 10th October. The combination of low rainfall and
high temperature during flowering time in 2022 determined a high level of stress on plants,
which led to major problems with seed production.

4.4. Field Traits

During the agronomical season, phenological and morphological maize field traits
were evaluated following published descriptors [37], as detailed below.

Days to tasseling (anthesis, male flowering); DT; IPGRI descriptor, 4.1.1: the number
of days from sowing to when 50% of the plants have shed pollen. Days to silking (female
flowering); DS; IPGRI descriptor, 4.1.2: the number of days from sowing to when silks have
emerged on 50% of the plants. Plant height; PH; IPGRI descriptor, 4.1.4: the distance from
ground level to the base of the tassel after the milk stage, measured in cm, with the observed
value recorded for an average of 10 plants per plot. Ear height; EH; IPGRI descriptor, 4.1.5:
the distance from ground level to the node bearing the uppermost ear after the milk stage,
measured in cm, with the observed value recorded for an average of 10 plants per plot.
The EH/PH ratio was calculated using the measurements of 10 plants per plot. These
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traits were chosen for the preliminary phenotypic description of the landraces because they
provide key information related to adaptation in different environments.

Plants 2024, 13, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 6. Grains of the maize accessions from the CREA and ARSIAL collections (with codes VA 
and VE, respectively). 

Figure 6. Grains of the maize accessions from the CREA and ARSIAL collections (with codes VA and
VE, respectively).



Plants 2024, 13, 3249 13 of 17

Meteorological data (max temperature, ◦C; rainfall, mm) were registered in the period
from March to October each year.

Plants 2024, 13, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 7. Weather conditions during 2022 and 2023 in Bergamo: rainfall (mm) and temperatures 
(°C). 

4.4. Field Traits 
During the agronomical season, phenological and morphological maize field traits 

were evaluated following published descriptors [37], as detailed below. 
Days to tasseling (anthesis, male flowering); DT; IPGRI descriptor, 4.1.1: the number 

of days from sowing to when 50% of the plants have shed pollen. Days to silking (female 
flowering); DS; IPGRI descriptor, 4.1.2: the number of days from sowing to when silks 
have emerged on 50% of the plants. Plant height; PH; IPGRI descriptor, 4.1.4: the distance 
from ground level to the base of the tassel after the milk stage, measured in cm, with the 
observed value recorded for an average of 10 plants per plot. Ear height; EH; IPGRI de-
scriptor, 4.1.5: the distance from ground level to the node bearing the uppermost ear after 
the milk stage, measured in cm, with the observed value recorded for an average of 10 
plants per plot. The EH/PH ratio was calculated using the measurements of 10 plants per 
plot. These traits were chosen for the preliminary phenotypic description of the landraces 
because they provide key information related to adaptation in different environments. 

Meteorological data (max temperature, °C; rainfall, mm) were registered in the pe-
riod from March to October each year. 

4.5. Grain Characterization 
At maturity, the materials derived from controlled pollination were manually har-

vested; ears were dried at 40 °C up to 14% relative humidity and then were shelled, and 
the 1000-grain weight was recorded and averaged over three measurements. 

An aliquot of each sample was ground with a Retsch ZM 200 lab mill (sieve: 0.5 mm) 
and kept at 7 °C until analysis. Samples were then analyzed by near-infrared spectroscopy 
(NIRS) using a Spectra-Star XT-R spectrometer (Unity Scientific, USA) in the range 680–
2600 nm. Protein, lipid, starch, fiber, and ash contents were determined using a specific 
calibration curve and expressed as a percentage on a dry matter basis. Each value is the 
average of three replicates. 

4.6. Statistical Analysis 
The mean and standard deviation of the chemical data were calculated by Excel ®. 

The effect of genotypes on the chemical composition was analyzed by a one-way factorial 
analysis of variance (ANOVA) using the open-source software R 4.4.2. [38]. Correlation 

Figure 7. Weather conditions during 2022 and 2023 in Bergamo: rainfall (mm) and temperatures (◦C).

4.5. Grain Characterization

At maturity, the materials derived from controlled pollination were manually har-
vested; ears were dried at 40 ◦C up to 14% relative humidity and then were shelled, and
the 1000-grain weight was recorded and averaged over three measurements.

An aliquot of each sample was ground with a Retsch ZM 200 lab mill (sieve: 0.5 mm)
and kept at 7 ◦C until analysis. Samples were then analyzed by near-infrared spectroscopy
(NIRS) using a Spectra-Star XT-R spectrometer (Unity Scientific, Westborough, MA, USA)
in the range 680–2600 nm. Protein, lipid, starch, fiber, and ash contents were determined
using a specific calibration curve and expressed as a percentage on a dry matter basis. Each
value is the average of three replicates.

4.6. Statistical Analysis

The mean and standard deviation of the chemical data were calculated by Excel®.
The effect of genotypes on the chemical composition was analyzed by a one-way factorial
analysis of variance (ANOVA) using the open-source software R 4.4.2. [38]. Correlation
analysis, a t-test, and multivariate analysis (principal component analysis, PCA) were
carried out using the software PAST version 2.12 according to Hammer et al. [39].

4.7. DNA Extraction, Library Preparation, and Sequencing

Leaves from 50 maize accessions were collected on June 29, 2022, immediately frozen
in dry ice, and stored at −80 ◦C until being processed. Genomic DNA was extracted
from maize leaves using the ReliaPrep™ gDNA Tissue Miniprep System following the
maize-specific protocol provided with the technical information (Promega Italia S.R.L.,
Milan, Italy).

Double-digest RAD sequencing (ddRADseq) [40–42] is a reduced-representation se-
quencing (RRS) method that, by means of double enzymatic digestion, reduces the whole-
genome complexity in order to sequence the genomic fragments associated with restriction
enzyme cut sites. The ddRAD library preparation and sequencing were performed by IGA
technology services S.R.L. (Udine, Italy) using an IGATech custom protocol, with minor
modifications with respect to Peterson’s double-digest restriction-site-associated DNA
preparation [39]. The resulting libraries are checked with both a Qubit 2.0 Fluorometer
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(Invitrogen, Carlsbad, CA, USA) and Bioanalyzer DNA assay (Agilent technologies, Santa
Clara, CA, USA). Libraries were sequenced with 150 cycles in paired-end mode using a
NovaSeq 6000 instrument following the manufacturer’s instructions (Illumina, San Diego,
CA, USA).

4.8. Alignment, Variant Calling, and Annotation

Bioinformatic analysis to define population structure and genetic diversity between
the populations was performed by Mentotech. S.R.L. (Napoli, Italy). Firstly, a quality
check on the Illumina raw sequencing data was carried out with the software BBDuk
v38.90 [43]. Low-quality portions were removed while preserving the longest high-quality
part of NGS reads. The minimum length was set to 35 bp, and the quality score was set
to 35. Trimmed reads were mapped against the reference genome of Zea mays (assembly
Zm-B73-REFERENCE-NAM-5.0; accession number, GCA_902167145.1), employing the
Minimap2 alignment tool [44] with default parameters. Overall, all the samples preserved
above 91% of reads after trimming and above 96% of uniquely mapped reads, with very
low percentages of multi- and unmapped reads.

The FreeBayes v1.3.7 tool [45] was used to identify genetic variations such as single-
nucleotide polymorphisms (SNPs) within each sample’s mapped genome. The minimum
coverage, the minimum genotype quality, and the minimum base quality thresholds to call
a variant were set to 6, 30, and 30, respectively. Additional quality control (QC) checks
on the obtained VCF file were conducted using VCFtools v0.1.16 [46] to discard variants
with a minor allele frequency (MAF) lower than 5%, a quality score below 30, or a read
depth below 6, as well as individuals with missing genotype data for more than 90% of the
variants. InDels variants (insertions and deletions) were also removed and not considered
for downstream population genetic analyses. The software VCFtools (version v0.1.16) was
also used to identify samples with a high rate of missing data.

The annotation and functional impact evaluation of the genetic variants from the
filtered VCF was carried out with the VEP v110 (Variant Effect Predictor) software [47].

4.9. Population Structure and Genetic Diversity

A p-distance matrix, representing the genetic similarity between pairs of samples, was
generated from the filtered VCF file using the tool VCF2Dis v1.50 (https://github.com/
BGI-shenzhen/VCF2Dis, accessed on 1 June 2023). The genetic distance between samples
was calculated based on the Prevosti distance [48]. Briefly, while the p-distance considers
the overall differences in genetic variants, the Prevosti distance focuses on shared alleles
at specific loci. Based on the calculated Prevosti distance values, an automated clustering
analysis was conducted.

The number of unique alleles present in a population, considering both rare and
common alleles, known as the allelic richness measure (AR), was evaluated using the
allel.rich function from the PopGenReport R package [49]. Population structure was
separately evaluated with a parametric strategy, the fastStructure algorithm [50], using
the filtered VCF file without the outlier sample VE-0439 as the input. Briefly, it assigns
individuals to different genetic clusters based on their genetic variation and provides
insights into the admixture proportion within a population. The number of expected
populations was set to 3 (K parameter) in accordance with the clustering results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13223249/s1, Figure S1: Plot depicting the proportion of
missing loci for each sample; Figure S2: Distribution of genetic variants (SNPs) on chromosomes;
Figure S3: Values of BIC versus number of clusters. Table S1: Chemical composition (% dry matter),
1000-seeds weight (g) and kernel type of CREA and ARSIAL accessions multiplied in 2023; Table S2:
Variance analysis of grain chemical compounds and 1000-seeds weight of the landraces (DF = 41);
Table S3: Correlation analysis (n = 42) among the grain chemical compounds of the landraces; Table S4:
Statistics of the number of SNPs and Indels for the entire dataset; Table S5. Number and proportion
of samples and loci kept after Quality Check (QC).

https://github.com/BGI-shenzhen/VCF2Dis
https://github.com/BGI-shenzhen/VCF2Dis
https://www.mdpi.com/article/10.3390/plants13223249/s1
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