Table 1.
Classification results using dataset splitting of 90% for training set and 10% for test set.
Model | Accuracy | Recall | Precision | F1-Score | Time (s) | ||||
---|---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | ||
Ridge | 1.00 | 0.80 | 1.00 | 0.81 | 1.00 | 0.88 | 1.00 | 0.81 | 44 |
QDA | 0.36 | 0.40 | 0.30 | 0.33 | 0.22 | 0.16 | 0.24 | 0.23 | 42 |
NB | 0.52 | 0.50 | 0.52 | 0.53 | 0.53 | 0.68 | 0.51 | 0.46 | 27 |
k-NN | 0.76 | 0.90 | 0.75 | 0.89 | 0.76 | 0.92 | 0.75 | 0.90 | 37 |
SVM | 0.97 | 0.90 | 0.96 | 0.89 | 0.97 | 0.93 | 0.97 | 0.90 | 31 |
MLP | 0.90 | 0.90 | 0.88 | 0.89 | 0.91 | 0.92 | 0.90 | 0.90 | 680 |
RF | 0.64 | 0.90 | 0.61 | 0.89 | 0.63 | 0.93 | 0.62 | 0.90 | 150 |
ET | 0.60 | 0.70 | 0.55 | 0.67 | 0.43 | 0.55 | 0.50 | 0.60 | 46 |
GBM | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 97 |
LightGBM | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 290 |
The best results are shown in bold.