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Abstract: This paper proposes DigitalUpSkilling, a novel IoT- and Al-based framework for improving
and personalising the training of workers who are involved in physical-labour-intensive jobs. Digi-
talUpSkilling uses wearable IoT sensors to observe how individuals perform work activities. Such
sensor observations are continuously processed to synthesise an avatar-like kinematic model for each
worker who is being trained, referred to as the worker’s digital twins. The framework incorporates
novel work activity recognition using generative adversarial network (GAN) and machine learning
(ML) models for recognising the types and sequences of work activities by analysing an individual’s
kinematic model. Finally, the development of skill proficiency ML is proposed to evaluate each
trainee’s proficiency in work activities and the overall task. To illustrate DigitalUpSkilling from
wearable IoT-sensor-driven kinematic models to GAN-ML models for work activity recognition
and skill proficiency assessment, the paper presents a comprehensive study on how specific meat
processing activities in a real-world work environment can be recognised and assessed. In the study,
DigitalUpSkilling achieved 99% accuracy in recognising specific work activities performed by meat
workers. The study also presents an evaluation of the proficiency of workers by comparing kinematic
data from trainees performing work activities. The proposed DigitalUpSkilling framework lays the
foundation for next-generation digital personalised training.

Keywords: wearable sensors; internet of things; machine learning; work activity recognition;

worker training

1. Introduction

A work skill is the ability of a worker to perform a specific task that usually requires
different modes of action and body movements with frequent repetition [1,2]. Training is
vital for any worker to enhance his/her proficiency in skills that are required to proficiently
complete the assigned task [3]. Therefore, work training helps individuals acquire and
refine their skills, leading to improved proficiency and productivity [4]. A crucial step
in training a worker is to identify the individual’s current proficiency in performing any
specific work activities required for the task he/she is assigned to complete [5]. In tradi-
tional training, a human trainer is primarily responsible for recognising and assessing the
work activities of the trainees [6]. However, the trainer’s abilities to observe and analyse
information from the trainees are limited, and the trainer’s evaluations of the activities
and skills of each trainee are often subjective. These challenges are due to well-understood
human limitations in observing and analysing vast amounts of information from trainees,
which leads to poor skill proficiency improvement [7]. Moreover, traditional training often
uses a one-size-fits-all approach [8]. Whereas, in addition to each trainee’s baseline profi-
ciency level, individual trainees also exhibit differences in their capacity to acquire new
information, as well as in their preferred learning styles and cognitive approaches to skill
acquisition [9]. By not considering each trainee’s skill proficiency level in performing spe-
cific activities, they undergo unnecessary training or are not trained enough to perform the
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activities that are required to improve their skills [10]. In current training practices, trainers
typically rely on easily trackable parameters, such as distance covered, materials produced,
or time taken to complete tasks [3]. Several studies have used production output, faster
completion time and quality of work as metrics for measuring work skill proficiency [11].
However, in improving work proficiency, these measurements are not always sufficient.
The movement patterns of workers, particularly hand and other body parts movements,
can significantly contribute to proficiency [12]. To address these issues, this paper proposes
DigitalUpSkilling, a novel wearable IoT-ML-based framework for digital and personalised
worker training. DigitalUpSkilling supplements the human trainer’s partial observations
and related subjective skill evaluation of the trainees, with comprehensive observations
performed by IoT sensors [13] and smart ML-based models for recognising and evaluating
skill proficiency, providing a data-driven and personalised worker training solution.

For any sensor-based training, the first and most crucial step is human activity recog-
nition. Related work on human activity recognition (HAR) can be classified as either
sensor-based or vision-based HAR. Existing vision-based HAR solutions typically analyse
camera images [14] and thermal images [15], or they propose human pose recognition algo-
rithms [16]. As such, research typically focuses on detecting any activity, and the accuracy
of vision-based HAR algorithms is usually limited in real-world work environments [17].
Sensor-based HAR is gaining momentum due to recent advancements in wearable sensor
technology and accuracy [18-21]. Currently, wearable sensors can collect data from real-
life environments without any visual obstruction and with great accuracy. Furthermore,
no related study has used workers” kinematic data from body movements during work
activities to improve worker skills and work performance. Some related work has pro-
posed combining sensors and ML for improving performance in sports [22-24]. Another
advantage of using sensors is the easy creation of digital twins, which have proved to be
useful in digitalising manufacturing activities [25], but currently, their use is very limited
in real-world activity recognition. Finally, while some related works [26] on Al-based
personalised worker training showed improved training and worker performance, they
did not consider improving workers’ skills in physical work activities.

To illustrate the proposed DigitalUpSkilling framework and its benefits, the paper
presents a study on training meat processing workers in a real-life production environment.
The meat processing industry is one of the biggest export industries in Australia [27], and a
significant portion—57%—of the production cost is attributed to workers” expenses [28].
Inefficiency in training can lead to higher labour costs and less productivity. By enhancing
training methods, the proposed framework can reduce these inefficiencies, enabling work-
ers to perform their tasks faster and with greater accuracy, ultimately reducing labour costs
and improving overall productivity. One key aspect of the DigitalUpSkilling framework
is its evaluation of work activity recognition accuracy in meat processing tasks; then, it
compares the performance attributes of the recognised activities. However, challenges such
as limited datasets and a small number of participants complicate its study. Additionally,
like other real-world job activities, these tasks are not time-bound, increasing the likelihood
of activity class imbalance. To overcome these limitations, the study proposes a hybrid
GAN-ML activity classification model that leverages generative techniques to augment
data and enhance classification performance.

In summary, the novel contributions of this paper are the following:

e  Digital twins of workers that continuously synthesise avatar-like kinematic models of
the activities for each worker being trained. In doing so, it uses wearable sensors that
observe how individual workers perform physical work activities;

e A hybrid GAN-ML work activity recognition model for recognising the types of work
activities each worker performs;

e  Skill proficiency recognition analysis for evaluating how well each trainee performs
specific work activities and the overall task he/she is responsible for;
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e  Anindustry study that illustrates how highly accurate work activity recognition GAN-
ML models can detect complex meat processing activities using body movement data
from full-body wearable IoT sensors.

The remainder of the paper is organised as follows: Section 2 presents related work
on IoT-GAN-ML-based HAR and skill assessment. Section 3 describes the proposed
DigitalUpSkilling framework. Section 4 presents a study on activity recognition involving
complex work activities performed by meat processing workers. Section 5 discusses the
performance of the activity recognition GAN-ML model in the study, while Section 6
discusses work skill proficiency measurement from sensor data and digital twins. Section 7
concludes the paper and provides directions for future research.

2. Related Work

As discussed in Section 1, the DigitalUpSkilling framework involves steps for auto-
matically recognising and measuring the proficiency of individual workers conducting
specific work. The steps include collecting body movement data, synthesising kinematic
digital twins of the workers being trained, and training and using GAN-ML models for
work activity classification and for skill assessments. This section provides an overview of
the relevant literature related to these steps.

IoT sensors for digitally capturing human movement from work activities: Because
of its versatile nature and performance, wearable sensor-based technology is now used
in various fields, including smart homes, healthcare, and sports [29-32]. Wearable IoT
sensors gained popularity in work activity recognition because they can easily be integrated
into garments and accessories or even directly attached to the body, enabling unobtrusive
monitoring during activities [33]. Also, IoT sensors are great tools for human activity
recognition for users who are involved in rigorous activity and movement [34,35]. The
accelerometer and gyroscope in an IoT sensor can connect body movement data from
individuals. These sensors can capture kinematic data from work activity and create a
kinematic model. The abundance of data collected by sensors enables the tailoring of
training programmes according to individuals” specific needs and capabilities, thereby
optimising their proficiency during training activities [23,36]. Recently, smartphones and
wristbands have become popular tools for activity recognition in real-world environments
due to their portability and the ability to collect continuous sensor data [37,38]. These
devices, equipped with accelerometers, gyroscopes, and heart rate sensors can effectively
monitor physical activities, such as walking and running, as well as even stress, providing
valuable data for health and fitness applications when combined with ML models [39].
However, there are limited studies focusing on body movement metrics such as joint angles,
smoothness of movements, and abduction, which are crucial to work proficiency.

Moreover, several studies have used IoT sensors on participants’ hands to analyse
their movement [35,40], and other studies [32,34,35,41] have mounted sensors on other
body parts of participants, such as on the sacrum and shoulder. Studies show that placing a
single sensor on the human body allows for the detection of movement with that particular
body part [42]. In contrast, full-body sensors allow for the capture of full-body movements
and, hence, can provide more precise feedback about body movement and proficiency with
a full-body kinematic model [42—44], which is important for work activities.

Research has also shown good accuracy in terms of recognising human activity from
sensor data [45-47]. For posture recognition of construction workers, Subedi et al. [48] used
a depth sensor camera to collect movement data and an ML algorithm for work activity
classification.

IoT-sensor-based digital twins for capturing human movement: The integration of the
IoT and digital twins for human training has created new possibilities for data-driven and
personalised learning. By gathering real-time data from IoT devices, including wearable
sensors, digital twins—a virtual representation of a physical entity—are produced, enabling
continuous monitoring and feedback on performance [49]. Though the use of digital twins
is not new in the field of manufacturing in the Industry 4.0 era [50,51], in human training,
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particularly in physically intensive activities, it is underutilised. Digital twins have the
ability to track detailed human body movements in real time [43], provide insights into
skill proficiency [52], and contribute to next-generation training [43]. IoT devices, like
inertial measurement units (IMUs) or smart wearables, stream real-time data to digital
twins, representing and analysing human movements in real time [42], thus facilitating
adaptive training environments.

GAN-ML-based work activity classification: From IoT sensor data, activities can be
recognised and measured using machine learning algorithms [21]. ML-based HAR can
detect physical activity, identify areas for improvement, and suggest actions for improve-
ment [53]. The last decade witnessed ML-based activity recognition in different domains,
including smart homes, healthcare, rehabilitation, security, and the sports industry, which
includes both simple and complex physical activities by humans [18-21].

In a literature review [54] of daily activities, such as running, jogging, eating, and
biking, various ML-based HAR models achieved high accuracies of 80-98%. In another
literature review, Yadav et al. [55] present a summary of seven studies that used wearable
IoT sensors with different machine learning algorithms, such as random forest (RF) and
support vector machine (SVM), showing accuracies of 72% to 98%. Research by Forkan
et al. [56] on the meat industry used IoT- and ML-based models to recognise work activities,
resulting in good accuracy in activity recognition. Subedi et al. [48] used an ML algorithm
for activity classification on construction workers but in a non-work environment. In
addition, other studies exist on ML-based activity recognition for workers [57,58]. So, from
these studies it can be concluded that human activity recognition models, such as RF and
SVM, are widely used and provide good accuracy.

To address the issue of small datasets for human activity recognition, some stud-
ies used the generative adversarial network (GAN), conditional generative adversarial
networks (CGAN), etc., as data augmentation models [59,60]. In addition to GANs, ML
models, such as the synthetic minority oversampling model (SMOTE) [61,62] and adaptive
synthetic sampling approach (ADASYN) [63], have been applied to mitigate the challenges
of imbalanced datasets of real-world scenarios. Among these approaches, the combination
of GAN and SMOTE often outperformed other models [64]. Furthermore, to enhance the
data quality and remove overlapping instances, techniques such as Tomek links and edited
nearest neighbours (ENN) are frequently used [65,66].

ML-based skill proficiency measurement and assessment: Several studies have been
conducted to understand human proficiency using IoT and ML models, mainly in sports.
In one study, Su and Chen [22] used IoT and Al models to predict the scores of basketball
players and support the team’s decision-making process. The data used in the research
were from an existing dataset of NBA league players, and proficiency was predicted based
on the players’ salaries. Another study [67] used an ML model to predict and evaluate the
proficiency of female handball players using their physiological characteristics, such as
BMI and height. Pappalardo et al. [68] evaluated the proficiency of soccer players using
ML models. A systematic review by Lam et al. regarding proficiency in technical skills
in surgery by ML models showed good accuracy [69]. However, these studies focused on
external factors like salaries and physiological characteristics rather than measuring their
proficiency based on their actions or body movements when performing the tasks.

Machine learning (ML) models are increasingly being used to analyse complex biome-
chanical data, such as flexion, abduction, and acceleration of body parts, which are tradi-
tionally overlooked during training because of the limitations of human observation [70].
ML can process large datasets generated from sensors to extract meaningful patterns and
insights about movement efficiency, enabling real-time feedback and performance improve-
ment [71]. By leveraging ML, these methods can provide precise, data-driven insights that
help optimise worker training and enhance proficiency [72].

Al and IoT solutions for personalised training frameworks for workers: Fraile et al. [73]
proposed a methodological framework for personalised training programmes for industry
workers using artificial intelligence (Al) and neural language processing (NLP). The study
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focused on the internal conversations of workers in the workplace and determined their
skills from these conversation. One study [74] proposed an Al-based framework for
personalised employee training to improve the overall learning models and abilities. In the
study, a questionnaire and feedback were collected from employees. Then, the NLP model
was used for skill extraction and assessment of the questionnaire and feedback. Butean
et al. [75] proposed an Al- and VR-based solution for improving training methods for
industry workers, where they proposed a learning platform for training humans, including
industrial workers.

Research gaps: Related work that employs wearable IoT sensors for work activity
recognition is in the early stages. Existing GAN-ML models for work activity recogni-
tion and skill proficiency measurement have been trained with work data collected in
laboratories, not real-life production settings. Similarly, there are currently no studies
using GAN-ML models that are trained and developed using human movement data from
work-related activities specifically to assess work skill proficiency. Finally, to the best of
our knowledge, we could not find any frameworks or studies that combined IoT, GAN,
and ML models for work activity recognition and work skill proficiency measurement for
the training of workers.

3. DigitalUpSkilling Framework for Digital Personalised Training

The proposed DigitalUpSkilling framework includes the following three major parts,
as depicted in Figure 1: (1) development of digital twins (i.e., kinematic models) of each
trainee from sensor data observations that are produced by the wearable sensors he/she is
wearing; (2) selection and training for work activity recognition using a hybrid GAN-ML
activity classification model; and (3) development of the skill proficiency assessment ML model.
Sections 3.1-3.3 present these parts of the DigitalUpSkilling framework in further detail.

Activity Skill Proficiency

Digital Twin e
8 Recognition Assessment

A — N

15)

Development of the Selection and training of Skill proficiency assessment
digital twin from sensor work activity recognition from sensor data and digital
data GAN-ML model twins

Figure 1. DigitalUpSkilling framework.

3.1. Data Collection Using Wearable IoT Sensors and Generation of Workers” Digital Twins

As work activities have many variations without set patterns, it is difficult to dis-
tinguish them. Therefore, to capture work activities, the DigitalUpSkilling framework
employs full-body wearable IoT sensors that collect kinematic data from inertial mea-
surement units (IMUs) attached to different parts of each worker’s body. The sensor
data observations include body joint rotations, movements, and related accelerations that
determine a participant’s orientation, position, and movement in real time.

The DigitalUpSkilling framework uses all of the kinematic data that are collected by
these sensors on each worker to generate real-time digital twins of their movements. The
workers’ digital twins are used to capture and observe the movements that are necessary to
perform specific work activities and the sequence of such activities in the completion of
tasks. Ground truth is provided by a camera that records the training and corresponding
work session, and the resulting video is then used for data labelling during ML training.
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3.2. Work Activity Recognition

The DigitalUpSkilling framework proposed a hybrid GAN-ML activity classification
model that can be trained to recognise specific work activities from human body movement
(Figure 2). First, the accuracies of the ML models are evaluated on the original sensor data.
Then, the classification accuracies for combinations of sensors on different body parts, as
well as the combination of sensors, are evaluated. Then, the proposed model’s GAN uses
a generator and discriminator to generate synthetic data and distinguish synthetic data
from original sensor data, respectively. This process enhances the size of the collected data
set. After, to balance out any kind of class imbalance, the SMOTE model is used, which
conducts minority oversampling and balances the dataset. In the next step, ENN is used to
filter out noise to decrease misclassification in the nearest classes with the closest values.
Finally, the RF model is used to classify the activity. In the proposed model, supervised
ML models are trained to recognise specific work activities that are typically performed by
workers who work on the same activities. The proposed classification model takes IMU
sensor data as inputs and analyses the kinematic data on the body parts of the trainees
while they are performing work activities and classifies their activities.

Input: IMU Sensor

Data

Non-linear Feature Synthetic Data Minority
Transformation Generation Oversampling

Real Data
GAN
LeakyRelLU
Generator
— Synthetic Data

Discriminator

Classification Cleaned Balanced
Data
Output: Activity Random <Data— ENN —
Classification
Forest

Figure 2. Hybrid GAN-ML activity classification.

SMOTE —
Dense (128 Unit)

3.3. Skill Proficiency ML

The DigitalUpSkilling framework uses ML-based work performance classification
and assesses work skill proficiency related to physically intensive jobs. The training of
the skill proficiency ML models is achieved as follows: (1) first, it uses the kinematic data
collected from digital twins of all workers who perform that work activity; (2) using the
proposed GAN-ML-based work activity recognition model, it divides this comprehensive
dataset into work activity-specific datasets (each of which contains kinematic data from
all workers performing that type of activity); (3) finally, for each type of activity detected
by the work activity recognition ML model, it trains the model with data from workers
that performed the best in this activity type (e.g., produced more of the product, fewer
defects, and better quality products, or a combination of these) to classify proficiency. This
approach to proficiency assessment using the DigitalUpSkilling framework is depicted in
Figure 3.

For certain work tasks, the skill proficiency model may need to be tailored to each
specific activity type; in other cases, a single model may suffice for assessing skill proficiency
across various activities. We define the test data and training dataset for activity recognition
using ML models. This approach can be refined further to account for the activity’s
difficulty level or the gender, age, and past work experience of the workers being trained.
This enables a more personalised and accurate skill proficiency assessment, allowing for
the customisation of ML training models to better evaluate individual skill levels.
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Figure 3. Skill proficiency assessment.

Furthermore, the ground truth is updated whenever a new dataset is added to this
framework. Hence, the framework will help improve the overall training approach for
industrial workers and make the training and assessment digitalised and personalised.

4. Study of Work Activity Recognition for Meat Processing Activities

We conducted a real-world study on the meat processing industry based on the
proposed DigitalUpSkilling framework. This section depicts the design of the study.

Sensor selection for data collection: The study used the Movella Awinda Suit [76],
which has 17 IMU sensors. It provides data in 60 Hz from a 100 m range. The 17 IMU
sensors were placed on the participants” wrists, forearms, upper arms, shoulders, feet,
lower legs, and upper legs, as well as on hips, chests, and necks (Figure 4), which provided
a full-body kinematic model and could capture the movement of any type of work activity.

@) (b)

Figure 4. (a) Placement of sensors; (b) sensors and straps; (c) alignment of sensors with the partici-
pant’s movements.

Participants and datasets: In this study, we had two male participants with more than
fifteen years of work experience who are experienced trainers. We had fewer participants
in this study, as obtaining such data from participants working in real work environments
is challenging (Figure 5).

Moreover, no public datasets contained data on work activities in real work envi-
ronments that were suitable for our study [77]. The entire data collection procedure was
carried out inside the meat processing factory while participants performed their regular
meat processing tasks.
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(b)

Figure 5. Work environment for the data collection: (a) boning area; (b) slicing area.

The participants performed two repetitions with two different knives for each activity
set, boning and slicing, to achieve a balanced dataset with different sets of body movements.
Hence, the study had eight sets of activity data from the participants. We asked participants
to use knives with varying levels of sharpness during the data collection to obtain broad
variations in body movements and actions to ensure that the study included diversified
data on real-work activities. The activities were based on two different meat processing
plant assembly lines. Each activity set with different knives was performed for 5 to 15 min.

Activity selection: To incorporate real-life data, we chose meat processing workers
involved in work activities such as boning and slicing meat in a meat processing plant.
Both are crucial meat processing activities involving specific types of complex physical
activities and techniques.

Boning: Boning is the removal of bones from large meat cuts. This physical activity requires
steady hand control and attention to detail. Meat processors utilise various tools, such as knives
and cleavers, to carefully separate meat from bones. They also trim excess fat and connective
tissue. Boning requires repetitive motions to extract meat from the bones efficiently.

Slicing: Slicing involves cutting meat into thin, uniform slices. This task demands
repetitive movement of the hand and body of meat workers. Different knives are used
to create slices with a consistent thickness. Like boning, slicing also requires steady hand
control and attention to detail.

Data Collection: For collecting data, 17 IMU sensors were mounted on workers, using
straps and a body vest. Then, they put on their uniform, performed the calibration, and
entered the meat processing area to perform their work activities. We collected sensor
data on the following activities they performed: boning and slicing. Sensor data were
transmitted via Bluetooth to a computer system, where digital twins visualised worker
movements in real time. Movements were also recorded using a video camera. The overall
setup, data collection process, and data processing are presented in Figure 6.

Meat Processing
Workers Multiple

l / IoT sensors
PR
;

1

I

i

! 1/1/ Activity Recognltlon

I

; o Sensor Data

i A \/\/\/W\/ Proficiency Measurement
NaaY'= . -—@

! k

1 1

i : @_f Data P Personallsed Assessment
' ! .@ Annotation & ata Processing

: °. DlgltalTwm

\

))) e°‘ %‘0

Figure 6. Dataflow of the study.

Digital twins from IMU data: Initially, we took the participants’ body measurements
and placed the sensor as depicted in Figure 4. For initialisation of the digital twins repre-
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sentation, we calibrated the sensors before the worker started their regular work activity.
We collected data from wearable full-body IoT sensors, which were recorded using the real-
time digital twins created with MVIN Analyse software (version: 2024.2.0) [76] (Figure 6).
We also checked for magnetic interference, as this could possibly affect the quality of the
digital twins and their live representations. The digital twins not only represented body
movements via a 3D avatar, but we could also monitor any particular joint’s angle rotation,
acceleration, and flexion, which are important factors in body movements and workers’
skills, as depicted in Figure 7c. The session was also recorded using a camera, which served
as the ground truth for the digital twins. With the help of the calibration process, all sensors
were properly aligned, and the digital twins’ representations were real representations of
the participants” body movements.

Figure 7. (a) Worker performing boning; (b) worker’s real-time digital twin; (c) digital twins showing
body movements along with real-time graphs of the joint’s movements.

Data annotation from digital twins: We recorded each session using a video camera
for record the ground truth. We annotated each microstep by synchronising the video with
the real-time kinematic digital twins generated from the wearable full-body sensor data
using MVN Analyse software. We synchronised the signals from each sensor, the video,
and the associated timestamps to annotate data accurately.

Collected data included activities such as idleness, walking, steeling, reaching, cutting,
slicing, pulling, placing/manipulating, and dropping. Each activity contained several sin-
gle actions by different body parts, such as closing, reaching, opening, moving, unlocking,
holding, cutting, spreading, releasing, dropping, picking, throwing, etc., as shown in Table
3. The dataset consists of 529,718 data samples from the IMU sensors, collected at a 60 Hz
sampling rate.

The study found many low-level actions that make up complex work activities as
shown in the Table 1.

Table 1. Actions and activities.

Actions and Activities Names

Work Activities Idleness, walking, cutting, reaching, slicing, dropping

body locomotion: sit, stand, walk, bend
left-hand actions: spread, reach, open, close, move, unlock, hold,
cut, spread, release, drop, pick, throw

Single Actions right-hand actions: spread, reach, open, close, move, unlock, hold,
cut, spread, release, drop, pick, throw
left-leg actions: still, move, spread, straighten, bend, lift
right-leg actions: still, move, spread, straighten, bend, lift

4.1. Data Labelling
Activity labelling was conducted for each timestamp as given in the Tables 2 and 3:
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Table 2. Activity Labelling—Boning.

Activity Label Observation

Idle 0 The participant keeps a hand stationary and
waits for the next piece to arrive in the carcass.

Walking 1 The participant walks to get the next piece of
meat in the carcass or to move around.

Steeling ’ The parF1c1pant sharpens 'the knife with
sharpening tools; to do this, they use both hands.

. The participant reaches for a new piece of meat

Reaching 3 from the carcass.

Cutting 4 Uﬁlng the kmfe, the part1c1p.ant turns a large
piece of meat into smaller pieces.

Dropping 5 The participant grabs a small piece of separated

meat and throws it away on the conveyor belt.

Table 3. Activity Labelling—Slicing.

Activity Label Actions Description
The participant keeps a hand stationary and
Idle 0 : : o
waits for the next piece to arrive in the carcass.
Walking 1 The p'art1c1pant walks to get the next piece of
meat in the carcass or to move around.
. The participant sharpens the knife with
Steeling 2 sharpening tools; to do this, they use both hands.
. The participant reaches for a new piece of meat
Reaching 3 on the belt or table.
. The participant turns a large piece of meat into a
Cutting 4 smaller piece with the help of a knife.
Slicing 5 The participant cuts fats from a meat piece.
Pulling 6 The participant rips away fat/meat from the

meat piece.

The participant manipulates the meat placement

Placing/Manipulating 7 or pinches the meat.

The participant grabs a small piece of separated

Dropping 8 meat and throws it away.

Data Preprocessing: After the annotation, we performed data preprocessing to clean
raw sensor data and prepare them for activity classification. First, we removed missing data
from the dataset using imputation techniques to fill in missing values, and we removed
irrelevant or redundant features from the dataset, ensuring the data was clean and consis-
tent. We applied data augmentation techniques using a generative adversarial network
(GAN), with utilisation of a Leaky ReLU activation function and dense layers (128 units),
to generate synthetic data and increase the size of the dataset, which initially contained
529,718 data samples from two participants. To address the issue of class imbalance, we
then applied SMOTE (synthetic minority oversampling technique) to further balance the
data by oversampling the minority classes, followed by edited nearest neighbours (ENN)
to remove noisy or misclassified samples. The dataset was split into training and test sets
with a 75/25 ratio using stratified sampling to preserve the class distribution. For each
participant, a 969-dimensional matrix was created by the sensors, where 969 represents the
features collected from 17 sensors for each data sample.
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ML model selection for work activity recognition: For the study, we chose existing
ML models that have been proven as effective at human activity classification. For this
research, we chose RM, SVM, DT, and KNN for the work activity classification and then
compared the accuracy of the ML models to find the most accurate one for this study. After
computing the features, we split the training and test data to train the ML models. These
ML models were trained on a labelled dataset comprising various work activities.

Feature selection: To classify data in the ML models, we extracted the 3D coordinates,
velocity, acceleration, and rotational data for each of the 17 sensors. After, we selected
the features of body parts that were active during the activities, and then the features that
promised a high contribution to the recognition of the activity were selected. For each
of the timestamps, we computed the mean (X _) and standard deviation (sigma), where
the cap X bar signifies the magnitude, and ¢ presents the variability. These values depict
orientation-related data. The sensor readings for each variable were combined (X, Y, and
Z) separately and the weighted sum of squares was calculated.

Then, the combined values for X, Y, and Z were calculated as follows:

Sensor Fusion = \/(27—1 XZZ) + (Z:.l:l Yf) T (Z?:] le) (1)

Here

n represents the total number of sensors;
X, Y;, and Z; represent the sensor readings for the ith sensor for X, Y, and Z, respectively.

This expression represents a form of vector magnitude or Euclidean norm that com-
bines the contributions from all three components (X, Y, and Z) across the 17 sensors.

4.2. Data Preprocessing
Let the dataset be represented as D = {(x;,y;)}"_,, where x; is the feature vectors
(sensor data), and y; is the corresponding activity labels.

e Handling Missing Values

For any feature vector, x;, with missing data, the model applied an imputation function
Impute(x;), replacing the NaN values with the mean of the corresponding feature.

x; = Impute(x;) 2)

e  Train-Test Split
Split D into the training set, D}y, and the test set, Dy, at a 75—25% ratio.

4.3. Generating Synthetic Data Using GAN

e  Generator: The generator G(z) takes a random noise vector, z ~ N(0, 1), and outputs
synthetic data, x ¢4, in the same feature space as real data. The generator uses Leaky
ReLU activations for hidden layers.

o Leaky ReLU activation

X, x>0
s ={% 20 ®
where « is a small slope (e.g., 0.01) for negative inputs.
Generator output:

Xsynthetic=G(z) (4)
e  Discriminator: The discriminator, D(x), takes input, x, and outputs a probability, D(x),
that the input is real. It is trained to distinguish between real data, x,.,;, and synthetic
data, Xsynthetic-
e  Discriminator loss for real data
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Lyear = _log(D(xreal)) 6)
e Discriminator loss for fake data
Lsynthetic = _log(D <xsynthetic>) (6)
e  Training GAN
The generator is trained to minimise the following:
Lo = ~log(D(G(2))) %
The discriminator is trained to minimise the following:
Lp = Lyea + Lsynthetic 8)

e  Synthetic data generation

After training, synthetic samples, Xy spetic, are produced by the generator, as follows:
Xsynthetic=G(z)-

4.4. Handling Class Imbalance with SMOTE

Let us assume Dyyinority i @ subset of Dy, representing the minority class data.
Here, we use SMOTE to generate synthetic samples between the nearest neighbours of the
minority class, as follows:

Xnew = X; + A(x; — x;)whereA ~ U(0,1) 9)
This creates new synthetic data points, Xy, to balance the class distribution.

4.5. Data Cleaning with ENN

After SMOTE, we applied edited nearest neighbours (ENN) to remove noisy or mis-
classified data points.
For each sample, x;, check its K-nearest neighbors, as follows:

KNN(x;) = {x1,x2,... x¢} (10)

If x;’s label disagrees with the majority label in its neighbourhood, it removes x; from
the dataset.

4.6. Classification with RF Model

Then, we trained the RF model, F(x), on the resampled and cleaned dataset, D jese4-
RF consists of T decision trees, F;(x)), each trained on a bootstrapped subset of the training
data. Where the prediction for each sample, x;, is given by the following:

F(x;) = majorityyote(F1(x;), F2(x;), ..., Fr(x;)) (11)

Here, each tree outputs a classification, and F(x;) is the final prediction.

Evaluation matrix of the study: We used accuracy, precision, recall, and the F1-score
to evaluate various ML models’ performances. The following are the formulas for these
metrics:

Accuracy: It presents the ratio of accurately classified samples to the total data samples

in the model.
Number of Correct Predictions

Total Number of Predictions

Accuracy = (12)
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Precision: It presents the ratio of correctly predicted positives to the total predicted
positives, representing the accuracy of the positive predictions.

Precision — True Positives (13)
"~ True Positives + False Positives

Recall: It represents the ratio of accurately predicted positives to all data samples.

True Positives
Recall = 14
eca True Positives + False Negatives (14)

F1-Score: It presents the harmonic mean of the precision and recall of the data samples.

Precision x Recall
F1 —Score = 2x Precision + Recall (15)

In these formulas:

True positives: Data correctly predicted as positive;
False positives: Data incorrectly predicted as positive;
False negatives: Data incorrectly predicted as negative;
True negatives: Data correctly predicted as negative.

We also used the confusion matrix (CM) to evaluate the performance of the selected
ML classification models. CM is a square matrix where the rows signify the true class labels,
and the columns show the predicted activity labels. The diagonal element of the matrix
depicts the percentage at which the predicted activity label matched the true activity label.

5. Performance of the Work Activity Recognition Model

We used several feature combinations and algorithms to obtain good accuracy in
activity recognition. We used classification accuracy as the primary decision criterion and
drew direct comparisons regarding classification accuracy. We compared the classification
with all 969 features from 17 sensors for the full body movements. Our experiment shows
that the RF model had the best classification accuracy for full-body sensor data. KNN and
SVM showed higher error rates, as given in Figure 8, whereas the RF model had the least
mean squared error (MSE). Therefore, we chose the RF model for the rest of the study to
obtain the most accurate classification results.

Comparison of Mean Squared Errors

Mean Squared Error

10-NN Decision Tree Multiclass SYM  Random Forest
Madels

Figure 8. Comparison of the error rates of the different ML models.

Then, we compared the accuracy of the RF model using various single features and
fused features for different combinations of sensors. The right hand is the most prominent
part of the body that is actively involved in physical tasks. Later, we combined data from
eight sensors that were placed on both hands and 17 sensors placed over the entire body.
Table 4 represents the classification accuracy using RE, where we used single features, such
as acceleration and magnitude, and then combined the features. The results show that the
accuracy was slightly higher when using data from both hands and the full body rather
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than just the right hand. The most accurate results came from the pitch and roll data and
the fused data on velocity, magnitude, and pitch and roll.

Table 4. Accuracy comparison with sensor data from different body parts.

Velocity + Magnitude +

Sensors Activity Velocity Magnitude Pitch and Roll Pitch and Roll
. Boning 0.7371 0.8372 0.9936 0.9921
Right Hand (4 Sensors)
Slicing 0.4972 0.5648 0.9779 0.9737
Boning 0.8062 0.9158 0.9984 0.9992
Both Hand (8 Sensors)
Slicing 0.5275 0.7359 0.9923 0.9897
Boning 0.8372 0.8713 0.9984 0.9984
Full Body (17 Sensors)
Slicing 0.5563 0.5988 0.9962 0.9962
Table 5 represents the classification accuracy using RF, single, and combined features.
The results show that the accuracy was different for different activity sets, such as boning
and slicing, and for slicing, the accuracy was lower than for boning. When fusing different
features, the accuracy increases, and the accuracy for boning and slicing is similar.
Table 5. Accuracy comparison with data fusion.
Data Activity Accuracy Precision Recall F-Score
Boning 0.8362 4 0.0011 0.8516 + 0.0048 0.8362 £ 0.0011 0.8032 + 0.0101
3D acceleration —
Slicing 0.596 + 0.0397 0.69 £ 0.0346 0.596 + 0.0397 0.5188 + 0.0604
. Boning 0.8682 4 0.0031 0.8651 + 0.0056 0.8682 + 0.0031 0.8531 + 0.0087
Magnitude
Slicing 0.6213 + 0.0225 0.6854 + 0.0082 0.6213 £ 0.0225 0.566 £ 0.0356
Boning 0.9979 =+ 0.0005 0.998 £ 0.0004 0.9979 + 0.0005 0.9979 + 0.0005
Pitch and roll —
Slicing 0.9961 =+ 0.0001 0.9962 + 0.0001 0.9961 + 0.0001 0.9961 =+ 0.0001
3D Acceleration, Boning 0.9982 + 0.0002 0.9982 + 0.0002 0.9982 + 0.0002 0.9982 =+ 0.0002
magnitude, pitch and roll Slicing 0.9963 =+ 0.0001 0.9964 =+ 0.0000 0.9963 + 0.0001 0.9963 = 0.0001
3D Acceleration, Boning 0.9978 + 0.0006 0.9978 + 0.0006 0.9978 £ 0.0006 0.9978 + 0.0006
magnitude, pitch and roll, .
centre of mass Slicing 0.9962 =+ 0.0009 0.9962 + 0.0009 0.9962 + 0.0009 0.9962 + 0.0009

Based on the results in Tables 4 and 5, we used the random forest (RF) model for the
confusion matrix of boning and slicing using pitch and roll data from four sensors on the
right hand. The matrix depicts that the RF algorithm was effective for identifying simple
activities, such as idleness, standing, and walking, as well as complex work activities, such
as steeling, cutting, and slicing, which are recognised with high accuracy. This approach
shows the accuracy of the ML model in recognising work activities for each participant
using minimal features (Figure 9).

After classification, the distribution of activity classes is given in Figure 10. The figure
depicts that in boning, the number of data samples for cutting was significantly higher
than for other activities. Similarly, for slicing, the data samples for cutting and slicing were
much higher in number than the rest of the activities. Both figures indicate that there is an
imbalance in the classes.

A total of 529,718 data samples were collected while performing boning and slicing.
As the collected datasets show an imbalance in the classes as depicted in Figure 10, to
make these data more robust, as well as to solve the data imbalance, we used a generative
adversarial network (GAN) to generate synthetic data in different percentages: 25%, 50%,
and 75%. The result show that 50% of the synthetic data yielded great accuracy with
60-80 epochs, as presented in Figure 11.
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Figure 9. Confusion matrices: (a) boning; (b) slicing with pitch and roll from right-hand sensors.
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Figure 10. Distribution of the activity classification: (a) boning; (b) slicing.
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Figure 11. Accuracy of the GAN for different percentages of synthetic data: (a) boning; (b) slicing.

The model created synthetic data using a general GAN with a generator, and then we
utilised a discriminator to distinguish between synthetic and real data. Along with the
synthetic data generated by the GAN, to solve the class imbalance, the SMOTE was applied.
The classification results are depicted in Figure 12.



Sensors 2024, 24, 7351

16 of 24

Actual

Reaching

Actual

Reaching

Walking \dle

Steeling

Cutting

Dropping

Confusion Matrix - Boning (Original Sensor Data and 50% Synthetic Data)

Idle

Walking

Steeling

Cutting

Dropping
°
2
8

Confusion Matrix - Boning (Original Sensor Data and 50% Synthetic Data + ENN)

0.00

Idle

Idle

Walking

0.00

0.00

Walking

Confusion Matrix - Slicing (Original Sensor Data and 50% Synthetic Data)

Idle

004 0.00
Walking
0.00 0.00
Steeling
Reaching
002 0.00
3
2 Cutting
<
099
Siicing
Pulling
0.04
Placing/Manipulating
0.00
Dropping
Steeling Reaching Cutting Dropping 2 o 2 2 e 2 2 2 -
Predicted 2 2 3 2 8 3 £ £ 3
2 ] 8 3 @ [ 3 8
s 8 : g
§
=
)
5
§
g
a
Predicted
@) (b)

Figure 12. Accuracy of the GAN with different percentages of synthetic data (circled area showing
drop in the accuracy): (a) boning; (b) slicing.

The results in Figure 12 depict that after combing the synthetic data and combining the
SMOTE, the accuracy of the major classes in both boning and slicing decreased. Especially
for slicing activities, with 8% of the cutting class data being identified as slicing. Similarly,
7% of the slicing class data were identified as cutting. To overcome this misclassification,
we applied another ML model, ENN, which removed nearest neighbours to decrease
misclassifications. Hereafter, the classification results improved with an accuracy over 90%,
as shown in Figure 13.

Confusion Matrix - Slicing (Original Sensor Data and 50% Synthetic Data + ENN)
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g
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2
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Placing/Manipulating
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Figure 13. Classification accuracy with the GAN, SMOTE, and ENN (circled area showing improve-
ment in the accuracy): (a) boning; (b) slicing.

After performing the activity recognition, we gathered preliminary findings of work
proficiency analysis as per the proposed DigitalUpSkilling framework depicted in this
paper. The preliminary analysis of body movement data demonstrates an influential use of
the IoT-GAN-ML model to support the proposed framework. For example, Figure 14 shows
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that steeling, reaching, and dropping activities involve the most varied hand movements,
with a wider range of pitch and roll values. In contrast, cutting, slicing, and pulling have
more stable hand orientations, with pitch and roll values concentrated around the median.

Distribution of Right Hand Pitch and Roll Mean Values Distribution of Right Hand Pitch and Roll Mean Values

g ‘meall

200 ' ' -200 |

20

Combined Pitch and Rollin Degrees.

Combined Pitch and Roll in Degrees.

§ 5 &
& & & & F & o« & & & & & @

Slicing Activities

Figure 14. Distribution of right-hand pitch and roll mean (in degree).

The initial results from the study show that workers” engagement, as well as the
effectiveness of the tools used for work activities, can be determined from the proposed
GAN-ML-based HAR. Figure 14 suggests a correlation between the sharpness and idle time
of the workers, as using sharp knives allows participants to work less while maintaining
their productivity. For instance, worker 2 with a sharp knife was more idle but remained
more productive compared to when using a dull knife.

Furthermore, the model can also determine the effectiveness of the sharp tools.
Figure 15 demonstrates that as the knives became dull, workers were exerting more effort
and remained more engaged in cutting rather than slicing, as slicing mostly depends on
the sharpness of the knife and requires less effort than cutting.

Boning Activities with Different Knives
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70%

o
S 60% N\
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W1 - Sharp Knife 14% 9% 14% 5% 54% 4%
W2 - Sharp Knife 24% 4% 13% 5% 52% 3%

Figure 15. Comparison of the engagement in boning (W1: Worker 1, W2: Worker 2).

The evaluation of participants’ proficiency suggests that there is a correlation between
the sharpness of a knife and performance, as their body movement changed accordingly.
To prove this, we conducted a preliminary analysis to demonstrate that the proposed
framework can be used for recognising work activities and analysing individualised profi-
ciency. For this, initially, we used 12 features out of 969 features (right-hand acceleration
features) with dull and sharp knives for both participants. Part of the results are presented
in Figure 16.
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Figure 16. Comparison of the engagement in slicing.

The top two graphs in Figure 17 depict the magnitude of acceleration for the right hand
of worker 1 with different knives, and the bottom two graphs show the acceleration of the
right hand of worker 2 with knives. Here, data from sensors from the right shoulder, right
upper arm, right forearm, and right hand are presented, which represents their prominent
hand acceleration during cutting while boning the meat. From the analysis, it has been
observed that for both, workers” acceleration of their hand increased with a dull knife,
which indicates that their performance decreased and their effort level increased because of
the knife’s lack of sharpness.

Worker 1 with a Dull Knife Worker 1 with a Sharp Knife

Worker 2 with a Dull Knife Worker 2 with a Sharp Knife

= Right Shoulder =m=Right Upper Arm Right Forearm emmm=Right Hand

Figure 17. Comparison of the accelerations of the right hand.

6. Discussion of Skill Proficiency

Section 5 presents the performance of the proposed model of work activity classifica-
tion, as well as comparisons of the body movements of the workers, to understand work
proficiency. In addition, with the use of the IoT-GAN-ML-based classification model, we
also identified the idle times for each worker, the wait times while sharpening the knife, and
total active time contributing to work, and, most importantly, we compared the proficiency
for various dimensions. Hence, similarly, the proposed framework can be used to detect the
effectiveness of tools used during work, unusual body movements, and recommend areas
for improvement via training for real-life work activities. The above findings prove that the
proposed framework can assess proficiency in work activities, which in turn can contribute
to personalising and digitalising the training of workers. Therefore, if sensor data are
continuously fed into the proposed model, the proposed DigitalUpSkilling framework is
capable of producing activity recognition and proficiency measurement with more features
provided by the sensors, which will suit any dynamic work or sports environment with
real-life physical work or sports activities.

In addition to work proficiency, identifying body movements such as unusual ac-
celeration or other movement during work can help us prevent potential work-related
injury from repetitive limb movements [20]. Studies show that there are ergonomic risk
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Worker 1 vs. Worker 2—Dull Knife
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factors for people who are engaged in repetitive tasks in physical-activity-based industries.
The risk can come from excessive force, stressful posture, repetitive movement, lifting,
climbing, etc. [19]. In the extended experiment, initially, we compared the accelerations of
the participants’ body parts when performing a similar activity to determine the difference
in acceleration for the same activity. For instance, Figure 18 shows a comparison of the
accelerations of both workers” hands. Here, we observed that, previously, both workers
showed a significant increase in acceleration for different parts of their hands. However, it
was found that worker 1 was consistently generating more acceleration and, thus, rapid
hand movement than worker 2, regardless of the knife’s sharpness.

Worker 1vs. Worker 2—Sharp Knife

-nNo
o~

875
921
967
397
685
793

[} -~ )
o IR N
- NN ©

145

=N OO W = DAV EN®D
® = O NW© MOOSN = I
-FNNNO® S ITOOL OO

«=@==\//1 - Sharp Knife- Right Hand ==@==\N2 - Sharp Knife- Right Hand

Figure 18. Comparison of the accelerations of the right-hand.

Furthermore, we compared the joint angles and abduction of both participants with
similar knives for boning activity represented by digital twins. The live representations
from sensor data in Figure 19 show that the right and left shoulder joint movements, such
as abduction and rotation, especially flexion/extension of worker 1, exhibited greater
variability and amplitude, especially during peak activity periods. Worker 2 had more
controlled and less intense activity for both the right and left shoulder joints and showed
smoother and more consistent movement patterns with lower variability across the same
joint movement parameters. Shoulder flexion is the forward motion of the arm, usually
lifting the arm in front of the body. Increased shoulder flexion variability is a sign of
irregular or excessive body motions, especially while doing repetitive tasks like those in a
meat processing facility.
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Figure 19. Comparisons of abduction, rotation, and flexion of the right shoulder during boning
activities: (a) worker 1; (b) worker 2.

Both results, acceleration from sensor data (Figure 18) and abduction graph from
digital twins (Figure 19), demonstrate that worker 2 had smoother hand movements
than worker 1. These are the attributes that are usually difficult to oversee by a human
trainer. These findings will help both the trainer and trainee to focus on particular areas
for improvement to further improve work proficiency, as well as to practice healthy body



Sensors 2024, 24, 7351

20 of 24

movements during work. Hence, the proposed framework can provide better input for
trainees and trainers and improve the current approach to training.

Here the comparisons were conducted based on 8-12 features. With the digital twins
and a hybrid GAN-ML model, the DigitalUpSkilling framework can explore results from
many more features from a total of 969 features for a more comprehensive analysis. This
data can be used to train an ML model to identify unusual body movements and cate-
gorise those that are potentially harmful. These findings can be utilised in personalised
rehabilitation exercises, assuring optimal recovery and lowering the risk of injury [78,79].
Thus, these findings using the DigitalUpSkilling framework have the potential to be used
in rehabilitation and sports to prevent injuries during training and exercise [80].

7. Conclusions and Future Directions

In this study, we proposed DigitalUpSkilling, a framework for digital and personalised
worker training. The framework advances current IMU-based activity recognition by inte-
grating digital twins with a combination of GAN advanced machine learning techniques,
particularly focusing on addressing challenges in real-time body movement through dig-
ital twins and data augmentation for small datasets. Unlike traditional approaches, we
utilised a hybrid GAN-ML model that enhances data through GAN-based synthetic data
generation, combined with SMOTE and ENN to handle class imbalance and remove noise,
ultimately improving classification accuracy. Additionally, the model leverages sensor
fusion techniques and non-linear feature transformation with Leaky ReLU and Dense
(128 units) layers, resulting in refined body movement assessment. The integration of these
methods demonstrates improved robustness in varying work environments with limited
data availability. To illustrate the framework and its benefits, the paper presented a case
study on meat processing. The study’s results show that the proposed hybrid GAN-ML-
based work activity recognition can recognise work activities using loT sensor data with an
accuracy of over 90%.

The study also included preliminary work skill proficiency assessments, such as accel-
eration of hand, rotations and movement smoothness, using 12 out of 969 possible features
obtained from wearable sensors. While a trainer’s observation can consider only a few
work-skill proficiency assessment parameters, the proposed models can potentially take
into account other important features from these 969 features, achieving a more compre-
hensive and specific skill proficiency assessment. This study can be further improved to
analyse proficiency in terms of body posture, and smoothness of movement during work
activities from abduction data, which would not only contribute to work proficiency but
also contribute to preventing injurious movements during work activities.

The future areas for improvement in this paper are as follows: first, both of the
participants in the study were professional trainers in the meat industry, so there was
no significant difference in skill proficiencies and body movements. In future work, we
intend to include participants with more diverse skill proficiencies. Moreover, we also
plan to apply the use of semi-supervised learning models and deep learning models for
activity recognition and skill proficiency measurement. Finally, we aim to upgrade the
DigitalUpSkilling framework to include more metrics from body movements, such as
calculating jerk metrics and RULA scores from digital twins, which would be beneficial
to other areas of physical training beyond specialised work tasks, such as sports, post-
operative rehabilitation, and prevention of occupational injuries.
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