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Abstract: User location has emerged as a pivotal factor in human-centered environments, driving
applications like tracking, navigation, healthcare, and emergency response that align with Sustainable
Development Goals (SDGs). However, accurate indoor localization remains challenging due to
the limitations of GPS in indoor settings, where signal interference and reflections disrupt satellite
connections. While Received Signal Strength Indicator (RSSI) methods are commonly employed,
they are affected by environmental noise, multipath fading, and signal interference. Round-Trip
Time (RTT)-based localization techniques provide a more resilient alternative but are not universally
supported across access points due to infrastructure limitations. To address these challenges, we
introduce DistilLoc: a cross-knowledge distillation framework that transfers knowledge from an
RTT-based teacher model to an RSSI-based student model. By applying a teacher–student architec-
ture, where the RTT model (teacher) trains the RSSI model (student), DistilLoc enhances RSSI-based
localization with the accuracy and robustness of RTT without requiring RTT data during deploy-
ment. At the core of DistilLoc, the FNet architecture is employed for its computational efficiency
and capacity to capture complex relationships among RSSI signals from multiple access points. This
enables the student model to learn a robust mapping from RSSI measurements to precise location
estimates, reducing computational demands while improving scalability. Evaluation in two clut-
tered indoor environments of varying sizes using Android devices and Google WiFi access points,
DistilLoc achieved sub-meter localization accuracy, with median errors of 0.42 m and 0.32 m, re-
spectively, demonstrating improvements of 267% over conventional RSSI methods and 496% over
multilateration-based approaches. These results validate DistilLoc as a scalable, accurate solution
for indoor localization, enabling intelligent, resource-efficient urban environments that contribute to
SDG 9 (Industry, Innovation, and Infrastructure) and SDG 11 (Sustainable Cities and Communities).

Keywords: indoor localization; deep learning; fingerprinting; round trip time; knowledge distillation

1. Introduction

User location has emerged as a key factor in human-centered environments, greatly en-
hancing applications and services such as tracking, navigation, healthcare, and emergency
response [1–3]. For instance, improving localization accuracy to cut emergency response
times by even one minute could save over 10,000 lives each year in the United States [4].
Since people spend the majority of their time indoors, considerable attention has been
focused on indoor localization. Although GPS is the standard for outdoor localization, it
is ineffective indoors due to high levels of signal interference and reflections [5], which
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disrupt the line-of-sight to satellites. Consequently, indoor localization has become a focal
point for research aiming to find accurate and ubiquitous alternatives to GPS in indoor
settings [6–11]. Various technologies have been explored for this purpose, including WiFi,
Radio Frequency Identification (RFID), Bluetooth, Ultra-Wideband (UWB), cellular, Zigbee,
and Inertial Measurement Units (IMU) [12–16]. Each technology has unique advantages
that make it suitable for specific applications. WiFi has become widely adopted, largely
due to its extensive coverage and the IEEE 802.11 standard’s support across most mobile
devices [8,17–25].

Various techniques have been proposed to tackle indoor localization challenges, in-
cluding multilateration, fingerprinting, angle of arrival, and time-based methods [26,27]. Of
these, fingerprinting and time-based techniques are the most widely studied. Fingerprint-
ing [28–30] is particularly popular for its strong performance, especially when enhanced
with deep learning. This approach involves creating a fingerprint database, which stores
WiFi signal signatures collected at specific reference points throughout the area of interest.
The database is then used to develop a model for estimating user location based on re-
ceived signals during runtime. The models used in fingerprinting can be deterministic [31],
probabilistic [32], or based on machine learning [33]. Probabilistic models that generally
handle the inherent noise in wireless signals are better than deterministic models [27].
However, they often assume in-dependency among access points (APs) to avoid the curse
of dimensionality [34], which can lead to information loss [27]. Deep learning has been
widely employed to model the joint distribution of signals received from APs, resulting in
enhanced localization accuracy. However, fingerprinting methods frequently encounter
challenges due to RSSI fluctuations and signal interference from obstacles, multipath fading,
indoor noise, and hardware variability.

To tackle these challenges, time-based techniques have been explored. These methods
calculate the distance between a mobile device (e.g., a smartphone) and access points
(APs) by measuring the signal’s propagation time and knowing the speed at which the
signal travels. Some common approaches include Time of Arrival (ToA) [35,36], Time
Difference of Arrival (TDoA) [37], and RTT (Round-Trip Time) [38,39]. ToA and TDoA
require precise time synchronization between all devices. In contrast, RTT measures the
time for a signal to travel to a target node and return, requiring only one clock, thus
reducing synchronization issues.

Unlike RSSI-based methods, RTT is more resilient to the challenges posed by cluttered
indoor environments. RTT is less affected by multipath interference, where signals bounce
off surfaces and cause multiple signal paths. This interference can severely distort RSSI
measurements but has a diminished effect on RTT due to its ability to distinguish between
the direct signal path and reflected paths based on time delays. Additionally, RTT is less
vulnerable to signal attenuation, which occurs when signals weaken as they pass through
walls or obstacles. Even with reduced signal strength, RTT can maintain accurate time
measurements. Furthermore, RTT is more robust against variations in transmission power
and radio interference, as these factors do not significantly influence the time it takes for the
signal to travel between the device and the access point. The Fine Time Measurement (FTM)
protocol introduced by the IEEE 802.11-2016 standard facilitates the measurement of RTT
between mobile phones and APs. This protocol’s adoption is growing among commercial
APs and consumer mobile phones, making time-based techniques increasingly viable for
practical indoor localization solutions.

Despite these advantages, the adoption of RTT-based localization solutions is limited
by the fact that not all access points and devices are RTT-capable. In contrast, most devices
can measure RSSI. This disparity restricts the widespread implementation of RTT-based
solutions, as relying solely on RTT would necessitate significant infrastructure upgrades,
which can be costly and impractical. To address this limitation, we present DistilLoc: a cross-
knowledge distillation framework that leverages machine learning to transfer knowledge
from an RTT-based teacher model to an RSSI-based student model. Our approach involves
constructing a fingerprinting database where both RSSI and RTT measurements are col-
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lected during the offline phase at various reference points within the area of interest. These
fingerprints serve as the training dataset for the teacher and student models. By using the
RTT model as the teacher, which offers more accurate distance measurements and is more
resilient to environmental challenges such as multipath interference, signal attenuation,
transmission power variations, and radio interference, the RSSI model is trained to emulate
the RTT measurements. This teacher–student framework allows the RSSI model to inherit
the robustness of RTT while maintaining lower computational demands, particularly in
environments where RTT data are unavailable during runtime.

During the training phase, the RTT model (teacher) is used to generate high-precision
localization predictions, which are then used as the ground truth for training the RSSI
model (student). The F-Net architecture is employed to effectively capture the complex
relationships and dependencies between the RSSI signals from different access points,
allowing the student model to learn a robust mapping from RSSI measurements to accu-
rate location estimates. This cross-knowledge distillation approach enables the seamless
integration of heterogeneous network data, creating a unified localization system that
operates effectively irrespective of the specific capabilities of individual access points or
devices. Given that RTT-capable devices and access points can be cost-prohibitive and
less prevalent, relying exclusively on RTT is not feasible. The proposed DistilLoc system,
therefore, offers a practical solution by enhancing the performance of existing RSSI-based
systems without necessitating a complete overhaul of the existing infrastructure. This
approach not only improves localization accuracy but also ensures scalability and cost-
effectiveness in diverse indoor environments. By using RTT as the teacher model, which
generally provides more precise distance measurements, the RSSI model can be trained
to mimic the more accurate RTT measurements. This process can significantly improve
the accuracy of the RSSI-based localization, especially in environments where RTT is not
available at all points. The approach facilitates the seamless integration of heterogeneous
networks, enabling a unified localization system that can operate effectively regardless
of the capabilities of individual access points or devices. Since RTT-capable devices and
access points can be more expensive and less widespread, relying solely on RTT could be
impractical. Cross-knowledge distillation allows for improved performance without the
need for a complete overhaul of the existing infrastructure.

By enabling accurate and real-time indoor positioning on resource-constrained de-
vices, DistilLoc provides a practical solution that can be deployed in diverse environments,
from smart factories to smart homes, fostering innovation in industries that rely on precise
indoor navigation and improving the infrastructure that supports these technologies. Thus,
the proposed approach makes a significant contribution to the achievement of Sustainable
Development Goal (SDG) 9: Industry, Innovation, and Infrastructure. Additionally, this
work supports Sustainable Development Goal (SDG) 11: Sustainable Cities and Commu-
nities, by enabling the creation of intelligent, resource-efficient urban environments. As
cities increasingly embrace smart technologies, accurate and scalable localization solutions
are essential for enhancing urban mobility, improving safety, and enabling better manage-
ment of public spaces. DistilLoc’s ability to achieve high accuracy across heterogeneous
devices and diverse indoor environments makes it a key enabler for applications like smart
buildings, indoor navigation for the visually impaired, and more efficient use of urban
infrastructure, contributing to more sustainable and livable cities.

We implemented and evaluated DistilLoc using different Android phones in two dif-
ferent cluttered environments. A large environment 629 m2 in area and a small one of
141 m2 was used. Seven commercial Google WiFi access points (APs) are deployed in each
environment, alongside traditional non-RTT-enabled APs, which can serve as additional
sources of interference. The obtained results show that DistilLoc achieves a sub-meter
localization accuracy for both indoor environments with a median localization error of
0.42 m and 0.32 m for the two environments, respectively. These results demonstrate an
improvement of at least 267% in accuracy over traditional RSSI fingerprinting methods,
and an enhancement of at least 496% compared to the accuracy of the ranging-based multi-
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lateration localization approach. This level of accuracy is sustained across heterogeneous
devices, establishing DistilLoc as a robust and precise indoor localization technique.

The developed DistilLoc approach is novel compared to existing methods in sev-
eral ways:

• Cross-Modal Distillation with Softened Outputs: The use of temperature-scaled soft-
max outputs for distillation is specifically tailored for cross-modal scenarios, allowing
the student model to benefit from the richer feature set of the RTT model without
requiring access to RTT data during deployment. A novel data-driven fusion and
feature learning method has been developed to extract a correlated representation of
RTT and RSSI.

• Integration of F-Net: Unlike traditional localization methods that rely on simple
feature extraction techniques, our use of F-Net enables the efficient handling of high-
dimensional signal data, providing a more scalable solution for real-time applications.

• Scalability and Practicality: By focusing on enhancing RSSI-based models, the pro-
posed approach does not require significant infrastructure changes, making it highly
practical for deployment in existing networks. This is in contrast to other methods that
either require dedicated hardware for RTT measurements or complex fusion strategies
that are not easily scalable.

• Empirical Validation: The proposed system has been rigorously tested in two indoor
environments, demonstrating its robustness and superior performance compared to
the state-of-the-art localization systems.

The remainder of this paper is organized as follows. Section 2 offers a brief introduction
to RTT and knowledge distillation. Section 3 reviews the most pertinent work related to
the proposed system. In Section 4, we provide a comprehensive overview of the DistilLoc
system architecture and its various components. The proposed localization system is
detailed in Section 5. Section 6 assesses the different parameters of DistilLoc and compares
its overall performance to other approaches. Finally, Section 7 wraps up the paper and
discusses potential future work.

2. Background
2.1. Round Trip Time (RTT)

RTT is a time-based technique primarily used for determining distance. In this study,
it will be employed to measure the distance between two WiFi stations: the user’s mobile
device and the access point. A key advantage of the RTT technique is that it can measure
the distance between two stations without requiring explicit synchronization, which is a
significant challenge in time-based localization.

RTT works by measuring the time it takes for a signal to travel from one device to
another and back. In the context of WiFi, a signal is sent from a mobile device to AP. The
AP immediately sends a response back to the mobile device. By calculating the time taken
for this round trip and knowing the speed of the signal, the distance between the two
devices can be estimated. This process does not require precise synchronization between
the devices, making it an effective technique for distance measurement in wireless networks.
Another advantage of using the RTT technique is its capability to calculate distance on the
edge, thereby ensuring user privacy.

As depicted in Figure 1, the process starts with the mobile device sending an FTM
request to the access point to check its availability. Upon receiving the request, the access
point responds with an ACK signal if it is available. Following this, the mobile device can
calculate the round trip time by transmitting multiple FTM packets. The mobile device
processing time (TP) is computed by Equation (1).
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Figure 1. FTM protocol.

Tp = t3 − t2 (1)

The round trip time (RTT) is calculated as in Equation (2).

RTT = t4 − t1 − Tp (2)

Equation (3) shows how to compute the distance (D) between the mobile device and
the access point.

D =
1
2

RTT × C (3)

The light speed C = 3 × 108 m/s.
In contrast to multi-lateration approaches [20,40,41], DistilLoc employs the collected

RTT values (acquired through the FTM protocol) as fingerprints, providing unique signa-
tures for each location. This will be outlined in detail in the following section.

2.2. Knowledge Distillation

Knowledge distillation (KD) is a powerful technique for transferring knowledge from
a larger, more complex model (the teacher) to a smaller, more efficient model (the student).
The goal is to retain the performance benefits of the larger model while reducing the
computational complexity, enabling deployment in resource-constrained environments.

In the knowledge distillation framework, let x ∈ Rd denote the input data, and let
y ∈ {1, 2, . . . , C} represent the corresponding true labels, where C is the number of classes.
The teacher model is a pre-trained model with parameters θT , and it outputs a set of logits
zT = fT(x; θT). These logits are then passed through a softmax function to obtain the
predicted probability distribution:

pT = softmax(zT) =

[
exp(zT,1)

∑C
j=1 exp(zT,j)

, . . . ,
exp(zT,C)

∑C
j=1 exp(zT,j)

]
(4)

Similarly, the student model, with parameters θS, produces its own set of logits
zS = fS(x; θS) and corresponding probability distribution:



Sensors 2024, 24, 7322 6 of 28

pS = softmax(zS) =

[
exp(zS,1)

∑C
j=1 exp(zS,j)

, . . . ,
exp(zS,C)

∑C
j=1 exp(zS,j)

]
(5)

The central idea in knowledge distillation is to train the student model such that its
output distribution pS closely matches the teacher’s output distribution pT , while also
ensuring that the student performs well on the actual classification task.

A key component of knowledge distillation is the use of softened probability distribu-
tions, achieved by introducing a temperature parameter T > 1 in the softmax function. The
logits from both the teacher and the student are softened as follows:

p(T)
T = softmax

(zT
T

)
=

[
exp(zT,1/T)

∑C
j=1 exp(zT,j/T)

, . . . ,
exp(zT,C/T)

∑C
j=1 exp(zT,j/T)

]
(6)

p(T)
S = softmax

(zS
T

)
=

[
exp(zS,1/T)

∑C
j=1 exp(zS,j/T)

, . . . ,
exp(zS,C/T)

∑C
j=1 exp(zS,j/T)

]
(7)

The temperature T controls the softness of the output distribution. When T = 1, the
distribution is the same as the original softmax output. When T > 1, the distribution
becomes softer, spreading the probabilities more evenly across the classes. This softened
distribution contains richer information about the inter-class relationships, which the
student model can learn from.

The loss function used to train the student model is a weighted combination of two
components: the supervised loss and the distillation loss. The supervised cross-entropy loss
ensures that the student model performs well on the actual classification task by minimizing
the cross-entropy between the true labels, denoted as y, and the student’s predictions, pS.
This loss is calculated as follows:

LCE = −
C

∑
i=1

yi log(pS,i), (8)

where yi represents the one-hot encoded true label. In addition to this, the distillation loss
encourages the student model to mimic the softened output distribution of the teacher
model. This loss is typically defined using the Kullback–Leibler (KL) divergence between
the softened distributions of the teacher and the student, formulated as follows:

LKD = T2 · KL(p(T)
T ∥p(T)

S ) = T2
C

∑
i=1

p(T)T,i log

 p(T)T,i

p(T)S,i

. (9)

The KL divergence measures how one probability distribution diverges from an-
other reference distribution. The factor T2 is introduced to adjust the gradients during
backpropagation, ensuring that the distillation loss is appropriately scaled despite the
temperature’s effect.

The total loss function used to train the student model is as follows:

L = (1 − α) · LCE + α · LKD (10)

where α is a hyperparameter that balances the importance of the two losses.
Knowledge distillation is effective for several reasons. First, the softened labels from

the teacher model provide richer information than hard labels, as they include not only
the correct class but also the relative probabilities of incorrect classes. This enables the
student model to learn smoother decision boundaries, which can generalize better to new
data. Additionally, training on the softened outputs of the teacher model reduces the
likelihood of overfitting, as these outputs are generally more generalized compared to
hard labels, particularly when the teacher is a high-capacity model. Furthermore, the
student model benefits from learning from a stronger, more powerful teacher model that
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has captured complex patterns in the data. By mimicking the teacher, the student inherits
some of these learned patterns, leading to improved performance. Finally, the softened
probabilities create a smoother optimization landscape, resulting in more stable and efficient
optimization during backpropagation, which is especially advantageous when training
deep neural networks are used.

3. Related Work

In the pursuit of creating smart buildings, many researchers have focused on the
challenge of indoor localization. While GPS is widely regarded as a superior localization
technology, it is not suitable for indoor positioning due to significant signal loss in such
environments. As a result, alternative sensors and technologies like Bluetooth, ultrasound,
and RFID have been explored. However, these options are often limited by factors such as
energy consumption, cost, and bandwidth constraints. Conversely, WiFi technology has
gained considerable attention recently, especially with the widespread use of smartphones
in daily activities. This has made the development of WiFi-based systems more feasible and
cost-effective, as they do not require specialized infrastructure. Among the most commonly
used WiFi techniques are RSSI and time-based methods, which are discussed in this section
concerning their relevance to our work. Leveraging Knowledge distillation in localization
is also discussed in this section.

3.1. RSSI-Based Techniques

RSSI-based localization is a method used to determine the position of a device by
measuring the strength of the wireless signals it receives. The basic idea is that the signal
strength decreases as the distance from the transmitter, like a WiFi access point, increases.
The accuracy of RSSI positioning techniques is often compromised by factors such as
NLOS, fading, and data noise [42,43]. Despite these challenges, The simplicity of RSSI
techniques has encouraged many researchers to explore ways to address and minimize
these challenges. The RSSI-fingerprinting technique is one of the widely used and effective
methods for overcoming these limitations [28–30]. This approach is a prime example of
probabilistic localization techniques operating through two main stages: the offline phase
and the online phase. In the offline phase, RSSI fingerprints of objects are gathered at
designated reference points to build a database of these fingerprints. During the online
phase, this database is utilized to estimate the positions of objects at new, unmeasured
locations. Different features can be employed as system fingerprints.

Similarly, channel state information (CSI) techniques provide detailed insights into the
signal conditions between two communicating nodes. Both RSSI and CSI localization meth-
ods are significantly influenced by fluctuations in WiFi node power, which is a common
occurrence. Additionally, the performance of these techniques can be compromised by the
variability among different WiFi devices. Although fingerprinting approaches are widely
utilized for developing effective indoor localization systems, they face challenges such as
sensitivity to signal interference, diffraction, and fading. Additionally, achieving efficient
localization with fingerprinting requires a well-distributed and homogeneous placement of
access points (APs).

3.2. Time-Based Techniques

Alternatively, time-based methods are frequently employed for indoor localization.
These techniques calculate the positions of objects by measuring time and applying the
known speed of the transmitted signal. Among the most widely used methods for this
purpose are ToA [35,36], TDoA [37], and RTT [38]. The ToA technique measures the time it
takes for a signal to reach the receiver station (timestamp). For precise time estimation, strict
synchronization between both sides is crucial [35,36]. In contrast, TDoA techniques involve
sending signals from three or more stations and measuring the differences in arrival times
and signal propagation times to estimate the user’s location. While TDoA also requires
time synchronization, it is needed only among the transmitters, unlike in ToA [37]. Both
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Time of Arrival (ToA) and Time Difference of Arrival (TDoA) are one-way measurement
techniques. In contrast, Round-Trip Time (RTT) is a two-way measurement technique that
determines the round-trip duration of a signal traveling from the transmitter to the receiver
and back. A significant advantage of the RTT technique over ToA and TDoA is that it does
not necessitate synchronization between the transmitter and receiver, as it relies on a single
clock. However, traditional multilateration systems that utilize RTT measurements often
face challenges with accuracy due to non-line-of-sight (NLOS) conditions and multipath
effects [38].

Various WiFi-RTT techniques have been seen in the literature to minimize the impact
of NLOS and multi-path effects. For instance, in [44], a real-time WiFi-RTT model was
developed to address the errors caused by multipath and NLOS issues. In [45], the authors
introduced a calibration model designed to correct transmitter RTT range offsets, thereby
enhancing accuracy. Additionally, ref. [46] proposed a WiFi FTM geomagnetic positioning
method to reduce the effects of NLOS, incorporating an enhanced mind evolutionary
algorithm (EMEA) to improve localization accuracy. Meanwhile, ref. [47] developed
a WiFi-RTT approach utilizing line-of-sight identification and range calibration. Other
studies focus on detecting and classifying NLOS and multipath signals into low and high-
quality categories using support vector machines [48]. To enhance positioning accuracy,
ref. [9] proposes a hybrid RTT-RSSI technique that employs a new, straightforward multi-
lateration model combining RTT and RSSI methods. This approach aims to improve
localization precision, although it may not consistently achieve optimal results due to the
potential signal attenuation caused by NLOS conditions. Additionally, ref. [17] introduces a
hybrid RTT-RSSI fingerprinting localization method. However, the results indicate that this
approach falls short of the desired accuracy because it does not account for the correlation
between the different modalities.

3.3. Knowledge Distillation in Localization

Knowledge distillation is widely used in scenarios where maintaining model perfor-
mance is important, but computational efficiency is also critical such as in real-time appli-
cations including smart home automation, emergency response systems, healthcare, etc.
Localization plays a very important and crucial role in these applications. Leverag-
ing knowledge distillation in localization shows its superiority as it runs efficiently on
resource-constrained devices while still providing accurate location estimates. Thus, it
becomes feasible to deploy high-performing localization models on smartphones or IoT
devices. By utilizing knowledge distillation on localization, it is easier to scale across
multiple devices or larger environments, allowing for the more widespread adoption of
localization technology.

Several research efforts in the literature have explored the use of knowledge distil-
lation in localization. For example, knowledge distillation is leveraged with RF-based
localization to replace the sophisticated RF signal processing algorithm that is run based on
visual signals with a simplified version designed to operate with limited computational
resources [49]. Also, knowledge distillation has been employed to combine Bluetooth and
ultrasound modalities in a lightweight model for people tracking in factories [50].

On the other hand, WiFi fingerprinting is a widely used technology for indoor lo-
calization due to the widespread availability of WiFi access points [51–53]. Knowledge
distillation can make the WiFi more robust to environmental variations, such as changes
in WiFi signal strength due to interference or obstacles. This adaptability enhances the
model’s performance across different environments without needing extensive retraining.

In this paper, we introduce DistilLoc, a cross-knowledge distillation framework that
transfers knowledge from an RTT-based teacher model to an RSSI-based student model.
This teacher–student setup allows the highly accurate RTT models to inform more efficient
RSSI models, making them better suited for real-time applications. The F-Net architecture
is employed to capture complex relationships and dependencies between RSSI signals from
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multiple access points, enabling the student model to create a precise mapping from RSSI
data to accurate location estimates.

4. System Overview

Figure 2 illustrates the architecture of DistilLoc, which operates in two primary stages:
an offline calibration and training stage, followed by an online localization stage.
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Figure 2. DistilLoc system architecture.

WiFi data are gathered during the offline phase from predefined reference points that
are evenly distributed across the area of interest. The collected data typically consist of
RTT and RSSI measurements from the overheard access points at each reference point,
forming a comprehensive fingerprint map. This fingerprinting process is facilitated by the
Fingerprint Recorder App, operating on a mobile device, and utilizing the Android RTT
API [54] to detect both RTT and RSSI signals.

Once the fingerprint map is constructed, it is uploaded to the DistilLoc server for
further processing. The Pre-processor module standardizes the data by constructing fixed-
size vectors for both RSSI and RTT measurements, collected simultaneously from the
APs. These vector pairs are then forwarded to the Cross-Knowledge Distillation module,
where an F-Net-based teacher model is trained using both modalities. The teacher model
extracts high-level, location-discriminative features, which are critical for precise location
estimation. This high-quality teacher model is used to train a student localization model,
which only relies on RSSI data during the runtime. By leveraging cross-modal knowledge
distillation, the student model learns the complex signal relationships present in RTT data,
allowing it to perform with high accuracy using only RSSI data during the online phase.
The result of this stage is a trained student model, stored for future use.

In the online localization stage, real-time tracking begins as users carry their mobile
devices in unknown locations. The devices continuously scan for APs, collect RSSI signals
and forward these data to the DistilLoc server. The Pre-processor module constructs unified
RSSI vectors from the collected signals, which are then passed to the trained student model.
The student model, enriched by the knowledge distilled from the teacher model, predicts
the most probable reference locations using the RSSI data. Despite not utilizing RTT during
runtime, the student model provides high localization accuracy, effectively approximating
the performance of RTT-based systems. The system ultimately outputs the user’s location
in continuous spatial space, ensuring accurate, real-time localization.

5. The DistilLoc System

Figure 2 illustrates the various modules of the DistilLoc system. In this section, we will
detail each module.

5.1. The Pre-Processor Module

The pre-processor module is tasked with mapping the RTT and RSSI measurements
to pairs of fixed-length feature vectors. Each entry in a feature vector corresponds to a
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measurement from an AP, either RSSI or RTT. It is important to note that not all installed
APs can be detected during every scan due to range limitations. Consequently, only a
subset of the APs may be visible in any given scan, resulting in variable-length feature
vectors. To address this issue, APs that are not detected during a specific scan are assigned
an RTT value of 0.2 × 10−3 ms, which is equivalent to a distance of approximately 60 m.
This value exceeds any RTT measurement for the APs within the scanning range. Similarly,
an RSSI value of −100 dBm is assigned to any unheard AP, as this value is lower than
all RSSI readings obtained from the reachable APs in the collected scans. Thus, a short
RTT or low RSSI value is allocated to any AP that is far from the mobile device carried
by the user. Moreover, it has been observed that when the mobile device is very close
to an AP, the Android API [54] may report a negative distance. This can be attributed
to the internal configuration and calibration of the WiFi cards, as well as the multipath
compensation algorithms that process the measurements in firmware before they reach the
driver. Additionally, RTT measurements can experience latency when used with rapidly
moving mobile devices. The presence of such negative values (in the former case) or latency
(in the latter case) typically results in a significant decline in the performance of traditional
multilateration methods [20]. However, this does not adversely affect the performance of
DistilLoc, as it employs a fingerprinting-based approach where such negative values or
delays can serve as distinctive signatures for specific locations.

5.2. The Cross-Modal Knowledge Distillation Module

In this module, we present our methodology for improving the performance of an
RSSI-based localization model (student) by distilling knowledge from a more accurate
RTT-based model (teacher). We first introduce the structure of the teacher model, followed
by a detailed explanation of the knowledge transfer mechanism to the student model.

5.2.1. F-Net Architecture Details

The F-Net architecture, depicted in Figure 3, serves as the backbone for both the
teacher and student models, offering an efficient alternative to traditional transformers by
replacing the self-attention mechanism with a Fast Fourier Transform (FFT)-based feature
extraction process. This substitution significantly reduces computational complexity while
preserving the model’s ability to capture global dependencies. Specifically, the complexity
reduction from O(N2) in self-attention to O(N log N) in FFT makes F-Net highly efficient
for tasks such as localization, where real-time inference and global correlation modeling
are crucial.

In DistilLoc’s teacher model, the input is typically a sequence of RTT measurements
from multiple access points. To process this input effectively within the F-Net framework, it
is necessary to tokenize the RTT values and prepare them in a format that the network can
interpret. Tokenization (illustrated in Figure 4) is a critical step, as it enables the network to
handle the sequential structure of the data while maintaining the relationships between
the measurements from different APs over time. Unlike natural language processing,
where tokens typically represent words or subwords, RTT tokenization requires careful
consideration of the temporal and spatial relationships between measurements. Each RTT
value xi, where i represents the i-th access point, can be considered a token. However, since
RTT data are collected over time, DistilLoc considers the input as multiple time windows,
where each window xt = [x1,t, x2,t, ..., xn,t] serves as a token, where t denotes the time
step and n is the number of APs. Tokenizing the RTT values into time-based (AP-based
groups) allows the model to treat each group as an independent input unit, which is then
processed through the network. This tokenization process is also essential for the model
because it ensures that the RTT measurements are structured in a way that enables the
network to capture both local interactions (e.g., between APs) and global dependencies
(e.g., long-range correlations between APs over time).
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Figure 3. The network structure of the F-Net student model.
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Figure 4. The Tokenization Process.

Once the RTT input is tokenized, the tokens are embedded into a higher-dimensional
space using a linear embedding layer. This is crucial for the model to learn complex
interactions between the RTT readings. The embedding process is formalized as follows:

Xemb = XWemb + bemb (11)

where X ∈ RT×n represents the tokenized RTT measurements over T time steps, and n is
the number of APs (or groups of APs). Wemb ∈ Rn×demb is the embedding weight matrix,
and bemb ∈ Rdemb is the bias term. The resulting Xemb is a high-dimensional representation
of the tokenized RTT data, which facilitates the learning of complex signal interactions that
are critical for accurate localization.

After embedding, the core operation of the F-Net applies the Fast Fourier Transform
(FFT) to each row of Xemb. The Fourier Transform is particularly well-suited for time-series
and spatial data, as it enables the model to capture both periodic and global patterns in the
signal, which are essential for accurately modeling the relationships between RTT readings
from different APs. The Fourier Transform is defined as:

F(Xemb) = FFT(Xemb) (12)
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This transformation moves the data from the time (or spatial) domain to the frequency
domain, where the periodic structures of the measurements can be analyzed more effec-
tively. By capturing the frequency components of the RTT measurements, the FFT helps
the model recognize correlations between signals that might not be evident in the raw data,
such as periodic fluctuations caused by environmental dynamics.

The FFT produces complex-valued output, but for the sake of simplicity and computa-
tional efficiency, only the real part of the transformed data is used in subsequent layers:

XFFT = Re(FFT(Xemb)) (13)

The real-valued FFT output retains the critical frequency-based information needed
to model long-range dependencies between readings from different APs. This ability to
capture global interactions efficiently is key to the success of F-Net in localization tasks,
where signal interference, reflection, and multi-path effects can complicate the relationship
between the user’s location and the observed RTT values.

Once the Fourier-transformed features are obtained, they are passed through a series
of feed-forward neural networks, which introduce non-linearity and further refine the
learned features. These layers are crucial for capturing non-linear relationships in the data
and allow the model to build more salient representations of the input. The feed-forward
operation is defined as follows:

XFF1 = ReLU(XFFTW1 + b1) (14)

XFF2 = ReLU(XFF1W2 + b2) (15)

where W1, W2 ∈ Rdemb×demb are the weight matrices, and b1, b2 ∈ Rdemb are the bias
terms. The use of the ReLU activation function ensures that the network can model
complex decision boundaries between different reference locations, which are necessary for
precise localization.

The final output of the network is a set of logits z, which represent the predicted
location classes. These logits are computed as follows:

z = XFF2Wcls + bcls (16)

where Wcls ∈ Rdemb×C is the classification weight matrix, C is the number of reference
locations, and bcls is the bias term. The logits are passed through a softmax function to
produce the final location predictions, where the predicted probability of each reference
location i is given by the following:

P(ri) =
exp(zi)

∑j exp(zj)
(17)

The model is trained using cross-entropy loss, which is well-suited for classifica-
tion tasks:

L = −
C

∑
i=1

yi log(ŷi) (18)

where yi is the true label for the reference location, and ŷi is the predicted probability for
the corresponding location. The model is optimized using Adam with momentum, and the
weight decay regularization technique is applied to prevent overfitting.

5.2.2. Knowledge Transfer Mechanism

DistilLoc leverages Cross-Modal Knowledge Distillation (CMKD), integrating feature-
stage and output-stage distillation within the F-Net architecture. RSSI-based models
(e.g., WiDeep [51], and a Ranging-based system [20]) are limited by environmental factors
such as signal multipath, interference, and obstacles, which degrade accuracy. On the other
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hand, RTT-based models (e.g., RRLoc [55], WiNar [17]) provide more reliable distance
estimates but require specialized hardware that is not widely available. The DistilLoc
approach addresses this gap by using a pre-trained RTT-based teacher model to improve
the accuracy of an RSSI-based student model, allowing for the deployment of a highly
accurate system using ubiquitous RSSI measurements.

Given input features xRTT ∈ Rdt and xRSSI ∈ Rds corresponding to RTT and RSSI
measurements, respectively, our objective is to train a student model fs(xRSSI ; θs) that can
predict the location y ∈ R2 with accuracy comparable to that of a teacher model ft(xRTT ; θt),
where θs, and θt are the learnable parameters for student and teacher models, respectively.
The student model is trained using a combination of supervised learning, feature-stage
distillation, output-stage distillation, and adversarial training.

Feature-stage distillation is a core component of our methodology, allowing the student
model to learn hierarchical representations by aligning its intermediate feature maps
with those of the teacher model. This process is critical because intermediate features
often capture essential patterns that contribute to the final prediction, particularly in the
localization tasks where spatial and contextual understanding are required.

Let hl
t ∈ RN×dl and hl

s ∈ RN×dl represent the feature maps at layer l of the teacher
and student models, respectively, where N is the batch size and dl is the dimensionality of
the feature map at layer l. The feature-stage distillation loss is defined as follows:

LFD =
L

∑
l=1

1
N

N

∑
i=1

∥hl
t,i − hl

s,i∥2 (19)

This loss encourages the student model to produce feature maps similar to those of
the teacher, thereby inheriting the teacher’s ability to capture the complex relationships
in RTT data. The novelty of this approach lies in its ability to transfer rich, intermediate
representations across modalities, which is less explored in traditional distillation methods
that focus primarily on output-stage distillation.

Output-stage distillation complements feature-stage distillation by aligning the final
predictions of the teacher and student models. The logits (pre-softmax outputs) zt ∈ RC and
zs ∈ RC from the teacher and student models, respectively, where C is the number of classes
or output dimensions (i.e., reference locations), are transformed using a temperature-scaled
softmax function:

pt = softmax
(zt

T

)
, ps = softmax

(zs

T

)
(20)

The distillation loss LKD is then computed as the Kullback–Leibler (KL) divergence
between these softened distributions:

LKD(pt, ps) = T2 · KL(pt∥ps) = T2 · ∑
i

pt[i] log
(

pt[i]
ps[i]

)
(21)

This output-stage distillation ensures that the student model mimics the final decision-
making process of the teacher model. The introduction of temperature T in the softmax
function serves to smooth the probability distribution, providing more informative gra-
dients during training. This is crucial in order to allow the student model to learn from
a teacher who operates on a different feature space. The temperature parameter T > 1
controls the smoothness of the probability distributions, which helps in capturing the more
nuanced relationships between classes that the student model can learn. The temperature
scaling reduces the sharpness of the predictions, providing a richer set of target distri-
butions that carry information beyond the hard labels, thus facilitating a more effective
distillation process. The inclusion of the T2 factor is crucial as it compensates for the tem-
perature scaling in the gradient calculations, ensuring that the gradients remain meaningful
and contribute effectively to the optimization process.

To ensure that the student model remains grounded in the actual location data, we in-
corporate a supervised loss based on the Mean Squared Error (MSE) between the predicted
location ŷs ∈ R2 and the true location y ∈ R2:
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LMSE(y, ŷs) =
1
N

N

∑
i=1

∥yi − ŷs,i∥2 (22)

This supervised loss directly optimizes the student model’s predictions against the
true labels, ensuring that the distillation process does not divert the model from the primary
task of accurate localization.

To further enhance the robustness of the student model, we employ adversarial
training, which is a novel addition to the CMKD framework. The goal of adversarial
training is to make the student model’s features indistinguishable from those of the teacher
model, even in the presence of adversarial perturbations. This method improves the student
model’s resilience to variations in input data, such as noise or signal interference, which are
common in indoor localization scenarios. In this setup, we introduce a generator network
G(hl

s; θG) that learns to produce feature representations for the student model that are
indistinguishable from those of the teacher model. The discriminator network D(h; θD)
is trained to distinguish between the teacher’s feature maps hl

t and the student’s feature
maps hl

s. The adversarial loss is defined as follows:

Ladv = Ex∼X
[
log D(hl

t)
]
+Ex∼X

[
log(1 − D(G(hl

s)))
]

(23)

The generator G aims to minimize the adversarial loss Ladv by generating features
that the discriminator D cannot distinguish from the teacher’s features. Meanwhile, the
discriminator seeks to maximize this loss to enhance its ability to differentiate between
the generated and the teacher’s features. This adversarial framework is integrated into
the training process to better align the student model’s feature space with the teacher’s,
ultimately making the student model more resilient to adversarial conditions.

The final training objective for the student model integrates feature-stage distillation,
output-stage distillation, supervised learning, and adversarial training:

Ltotal = λFD · LFD + λKD · LKD + λMSE · LMSE + λadv · Ladv (24)

where λFD, λKD, λMSE, λadv are hyperparameters controlling the weight of each loss component.
The combination of knowledge distillation with F-Net introduces several novel as-

pects. First, Feature-Stage Distillation Across Modalities goes beyond traditional distillation
methods that focus mainly on output predictions by incorporating the distillation of inter-
mediate features. These features are crucial for capturing spatial and contextual information
necessary for accurate localization. Second, Adversarial Training for Cross-Modal Distil-
lation is introduced within the CMKD framework, an area that has not been extensively
explored in the literature. This component improves the student model’s ability to resist
adversarial perturbations and noise, making it more robust in real-world scenarios. Lastly,
F-Net integration enhances the efficiency and effectiveness of both the teacher and student
models by using the F-Net architecture, which employs the Fourier Transform for feature
extraction. This architecture is particularly well-suited for handling time-series data like
RTT and RSSI, which is essential for localization tasks requiring the capture of periodic and
global patterns in signal data.

The theoretical justification for CMKD stems from information theory. The KL diver-
gence minimization in the distillation process reduces the information discrepancy between
the teacher and student models. By aligning the output distributions, the student model
effectively learns the decision boundaries and feature representations that the teacher
model (trained on more accurate RTT data) has already learned. This process allows the
student model to inherit the robustness and accuracy of the RTT model, even when only
RSSI data are available at runtime.
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5.3. Online Phase

The primary objective of the online phase is to estimate the user’s location in real-time
using the signals received from overheard APs within the area of interest. This is achieved
by processing the scanned AP information, extracting the corresponding feature vector
through the trained F-Net student model, and feeding it into the localization head to obtain
a location estimate at one of the pre-defined fingerprint points from the calibration phase.
The reference point r∗ with the highest probability, given the input vector x, is selected as
the estimated location. Formally, we aim to find the following:

r∗ = argmax
r

[P(r|x)] (25)

However, a challenge arises in that the Localization Model predicts user locations only
at discrete reference points. Even with a highly accurate model, the predictions are limited
to these fixed points, potentially leading to a suboptimal user experience due to the spacing
between these reference points. To address this issue, DistilLoc aims to track the user’s
movement in continuous spatial space, allowing for localization at any point, even those
not directly corresponding to the predefined reference points.

To achieve this, DistilLoc computes the center of mass of all reference points by ap-
plying a spatially weighted average. The weights for each point are determined by the
softmax likelihood output from the classifier network, ensuring that the estimated location
reflects a continuous space rather than being confined to discrete points. More formally,
the estimated location lx and ly coordinates are calculated as follows:

lx =
∑n

i=1 Pirix

∑n
i=1 Pi

, ly =
∑n

i=1 Piriy

∑n
i=1 Pi

(26)

where rix and riy are the spatial coordinates of reference point i, and Pi represents the
softmax likelihood for that point. This approach enables DistilLoc to provide a more
seamless and accurate user experience by tracking the user in a continuous spatial domain,
rather than limiting location estimates to the predefined reference points.

6. Evaluation

This section first outlines the data collection setup and the tools employed. Next, we
demonstrate the system’s performance by varying different system parameters. Finally, we
compare DistilLoc’s performance to that of state-of-the-art techniques.

6.1. Collection Setup and Tools

To analyze and evaluate the performance of the DistilLoc system, we deployed it in
two realistic indoor testbeds. Table 1 summarizes the characteristics of these two testbeds.

Table 1. Summary of the testbeds used to evaluate the DistilLoc system.

Criteria Lab Testbed Office Testbed

Area (m2) 17 × 37 4.5 × 31.5
No. of training points 143 76
No. of testing points 30 21

Spacing of seed points (m) 1 1
Building Material Brick Brick and Wood

No. of APs 7 7
Total fingerprinting time

(hrs:mins) ∼08:39 ∼04:51

Training time (hrs:mins) ∼01:05 ∼0:43

The first testbed, referred to as “Lab”, is a full floor in our university campus, covering
an area of 629 m2. It includes nine rooms of various sizes and a long corridor, as illustrated
in Figure 5.
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The second testbed, labeled “Office”, is depicted in Figure 6. It is an administrative
building with an area of 141 m2, featuring a large meeting room, a long corridor, and five
additional rooms. Seven Google WiFi APs are evenly distributed in both testbeds to ensure
comprehensive coverage of the entire area of interest.

Training point 
Testing point 

Figure 5. The Lab testbed layout. Blue circles represent training points, while red circles indicate
testing points.

Figure 6. The Office testbed layout.

The area of interest in both testbeds is uniformly divided into various reference
points, spaced one meter apart from each other (the impact of altering the spacing between
reference points will be evaluated later in this section). The Lab testbed features 143 distinct
reference locations, whereas the Office testbed comprises 76 locations. Each reference
location is guaranteed to be covered by at least one Google WiFi access point (AP).

Data were gathered using an Android application installed on various Android phones,
including the Google Pixel XL and Pixel 2 XL. The application continuously searches
for nearby APs. To ensure accurate ground-truth profiling, the employed data collector
application operates synchronously on all mobile devices, with one device designated to
manage ground-truth collection for all devices. The user inputs the coordinates of their
current location (ground truth) and initiates the data collection process. At each reference
location, a minimum of 100 samples is gathered within a 3-min timeframe for training
purposes. Independent hold-out test sets were collected, comprising 21 and 30 locations
(distinct from the training points) in the Office and Lab testbeds, respectively. This data
collection occurred over several days during working hours to account for the temporal
variation of indoor signals.

6.2. Ablation Study

In this section, we analyze the impact of various system parameters on the per-
formance of DistilLoc. These parameters include reference point spacing, AP density,
temperature for distillation, modality, and distillation type, The goal is to understand
how these parameters and modalities influence localization accuracy and system robust-
ness, particularly under different environmental conditions. For clarity of presentation,
the results in the following subsections focus on the Lab testbed. However, in Section 6.3.1,
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we compare the system’s performance across both the Lab and Office testbeds to provide a
more comprehensive evaluation.

Table 2 summarizes the default values of the system parameters that are used through-
out the evaluation section. These values serve as a baseline, with variations applied to
individual parameters to assess their effect on the system’s overall performance.

Table 2. Default parameters values used in the evaluation.

Parameter Range Default

Learning rate 0.0001–0.2 0.001
Batch size 1-Dataset size 128

Number of layers 1–30 3
Early Stopping Patience (epochs) 1–10 40

Number of samples per reference point 20–100 100
Number of epochs Automatic by Early stopping

Used devices Google Pixel XL, Google Pixel 2XL
Number of users 3

Update rate (scan/sec) 2

6.2.1. Effect of Temperature Parameter

In this section, we study the effect of different temperature values used in the knowl-
edge distillation process on the performance of the DistilLoc system. The temperature
parameter plays a critical role in the softmax function used during distillation, controlling
the smoothness of the output probability distribution from the teacher model. Figure 7
shows the relationship between temperature (T) and the median localization error. As
shown in the figure, the system’s performance is highly sensitive to the choice of temper-
ature. At lower temperatures (e.g., T = 1), the system achieves a relatively high error of
0.7 m, indicating that the output distributions from the teacher model are not sufficiently
softened, resulting in the student model struggling to effectively learn from the teacher. As
the temperature increases, we observe a steady improvement in performance, with the error
dropping to 0.5 m at T = 5. This indicates that at this temperature, the softmax function
smooths the teacher’s output distribution just enough to provide meaningful gradients,
allowing the student model to learn a more generalized and effective representation of the
localization task. Beyond T = 5, however, the performance starts to degrade. At T = 10,
the median localization error increases to 0.6 m, and at T = 20, the error further worsens,
reaching 1.0 m. This decline suggests that excessively high temperatures overly soften the
teacher’s output, causing the student model to lose the sharp distinctions between classes.
As a result, the model becomes less effective in distinguishing the correct location. The
results indicate that T = 5 is the optimal temperature for the distillation process in the
DistilLoc system. At this temperature, the student model effectively balances learning from
the teacher’s softened output while maintaining accurate class distinctions.

The optimal temperature may vary with environmental conditions, particularly in
spaces with unique characteristics like high interference, reflective surfaces, or significant
multipath effects. For instance, environments with complex layouts or dense obstruc-
tions might benefit from a slightly adjusted temperature to improve the robustness of
feature transfer. While our experiments confirmed T = 5 as effective in two different en-
vironments, in other environments, fine-tuning the temperature could further optimize
model performance.
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Figure 7. Effect of temperature parameter on median localization error during the distillation process.

6.2.2. Effect of Reducing the Density of APs

In this section, we analyze the impact of reducing the number of RTT-capable and RSSI-
capable access points (APs) on the performance of the DistilLoc system. The experiments
simulate the effect of removing APs, and the corresponding percentage reductions.

Figure 8 shows how the median localization error is affected by reducing the number
of RTT-capable APs during the offline phase. Starting with seven RTT-capable APs, no
reduction (0%), the system achieves a median localization error of 0.5 m. As the number of
RTT-capable APs decreases, we observe a steady increase in localization error. A reduction
of one RTT-capable AP (approximately 14%) increases the error to 0.55 m. Further reduction,
removing six of the seven APs (86%), leads to a significant deterioration in performance,
with the error rising to 1.0 m. This trend demonstrates the sensitivity of the DistilLoc
system to the availability of RTT-capable APs. RTT measurements offer high precision
in distance estimation, and reducing the number of such APs compromises the system’s
ability to maintain accurate location estimates. The results suggest that at least three
RTT-capable APs are required in the offline phase to keep the localization error below
0.7 m. In environments where high accuracy is critical, maintaining a sufficient density of
RTT-capable APs is essential.

Figure 8. Impact of reducing the density of RTT-capable APs on median localization error in the
offline phase.
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Figure 9 presents the effect of reducing the density of RSSI-capable APs during the
online phase. Starting with 136 APs, the system initially achieves a median error of 0.5 m.
Removing 10 APs (approximately a 7% reduction) causes the error to increase slightly to
0.6 m. A reduction of 60 APs (44% reduction) leads to an error of 1.0 m, showing a gradual
performance decline. The results indicate that the system is more resilient to RSSI-capable
AP reduction compared to RTT-capable AP reduction. This highlights the advantage of
the proposed DistilLoc system that enhances the performance of RSSI-based localization
leveraging RTT-capable APs only during the offline phase. While RTT-capable APs provide
higher precision and more immediate localization benefits, the system can tolerate a higher
reduction in RSSI-capable APs, making it a practical solution for dynamic environments.

Figure 9. Impact of reducing the density of RSSI-capable APs on median localization error in the
online phase.

6.2.3. Effect of Fingerprint Points Density

In this section, we examine the effect of increasing the spacing between fingerprint
points on the performance of DistilLoc. As shown in Figure 10 , larger spacing between
reference points leads to a gradual degradation in localization accuracy. However, com-
pared to traditional RSSI-based systems [51], DistilLoc demonstrates greater robustness to
reductions in fingerprint density. Specifically, the system’s median localization error only
increases by 30 cm when the spacing is doubled from 1 m to 2 m. This modest performance
loss can be attributed to DistilLoc’s cross-modal knowledge distillation approach, where
the teacher model, trained on more reliable RTT measurements, helps the student model
(which relies on noisier RSSI data) generalize better even with fewer reference points. The
distillation process ensures that the student model can extract more informative and robust
features from the available fingerprints, thus reducing the dependency on the density of
the fingerprint grid. This robustness is further reinforced by DistilLoc’s feature extraction
process, which uses deep learning models capable of capturing the nonlinear relationships
between RTT and RSSI signals. However, beyond a spacing of 2.5 m, the system begins
to show a more significant drop in accuracy. At 3 m, the median error reaches 2.7 m, and
at 3.5 m, it rises sharply to 4.4 m. This sharp increase can be explained by the reduced
granularity in the spatial representation of the environment. At larger spacings, the system
has fewer reference points to accurately capture the subtle variations in signal strength,
making it harder to precisely estimate the user’s location. Moreover, the system’s ability to
handle multipath effects and environmental clutter is diminished as fewer fingerprints are
available to account for these variations.
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Figure 10. Impact of increasing reference point spacing on median localization error.

6.2.4. Performance Comparison of Different Modalities

Figure 11 presents the localization error for four techniques: RSSI Only, RTT Only, Hy-
brid (RSSI + RTT), and DistilLoc. The results clearly demonstrate that DistilLoc outperforms
the other methods, achieving the lowest median error with minimal outliers. The RSSI-only
method shows the highest median error (around 2.5 m) due to the inherent variability in
signal strength, resulting in a wide error distribution and numerous outliers. RTT-only, on
the other hand, achieves better accuracy with a median error of around 0.5 m, leveraging
more stable time-based measurements. The Hybrid approach, combining both RSSI and
RTT, further reduces the error (approximately 0.3 m), demonstrating the benefits of fusing
both modalities. DistilLoc performs comparably to the hybrid method but with a slightly
narrower error distribution, indicating its stable performance. This improvement can be
attributed to the knowledge distillation process, which enables DistilLoc to maintain high
accuracy using only RSSI during runtime. The significantly reduced number of outliers in
DistilLoc highlights its robustness and consistency in various environments.

Figure 11. Performance of different modalities.

6.2.5. Distillation Type Impact on Localization Accuracy

To evaluate the impact of different distillation techniques on the performance of
the proposed DistiLoc system, we conducted a series of experiments comparing four
distinct approaches: no distillation, feature-stage distillation, output-stage distillation, and
a combined approach that leverages both feature-stage and output-stage distillation.
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Figure 12 shows that the DistiLoc system, without any distillation technique, served as
the baseline, yielding a median localization error of 1.8 m. This relatively high error under-
scores the challenges faced by the system when relying solely on raw signal data without the
refinement provided by distillation. The introduction of output-stage distillation resulted
in an improvement, reducing the median error to 1.2 m. This reduction can be attributed to
the model’s ability to align its output predictions more closely with those of the teacher
model, which has been trained on more accurate RTT data. By focusing on the final output
probabilities, the student model benefits from the well-established decision boundaries of
the teacher, leading to enhanced localization accuracy. Feature-stage distillation further
improved the performance, bringing the median localization error down to 1.1 m. This
approach enables the student model to learn richer hierarchical representations by aligning
its intermediate feature maps with those of the teacher model. By capturing more nuanced
patterns within the signal data, feature-stage distillation enhances the model’s robustness
and ability to generalize across varying environments. The most substantial improvement
was observed with the combined approach of all distillation, achieving a median localiza-
tion error of just 0.5 m. The combined approach leverages the strengths of both distillation
methods, providing the student model with comprehensive guidance throughout the entire
learning process. The alignment of both intermediate features and final predictions ensures
that the student model not only captures detailed patterns within the data but also makes
decisions that closely mirror those of the more accurate teacher model. These findings not
only validate the efficacy of knowledge distillation in the DistiLoc system but also highlight
the potential of combining multiple distillation techniques to transfer knowledge from
more accurate but less accessible models (e.g., RTT-based models) to those that rely on
more ubiquitous but noisier data sources like RSSI.

Figure 12. Distillation type impact in the Office testbed.

6.3. Comparative Evaluation

This section compares the performance of DistilLoc with four WiFi-based localization
systems: RRLoc [55], WiNar [17], WiDeep [51], and a Ranging-based system [20].

RRLoc [55] fuses RTT and RSSI with the deep network version of canonical correlation
analysis to obtain embeddings, which are then used for location classification. It necessitates
the presence of both RTT and RSSI during both the offline and online phases. WiNar [17]
utilizes a deterministic method that aligns captured RTT measurements with a pre-recorded
fingerprint map to estimate the user’s location while incorporating RSSI values to adjust the
weight of the estimated locations. WiDeep [51] constructs an RSSI-based localization system
using a deep denoising autoencoder neural network. The system described in [20] (referred
to as Ranging) utilizes a multilateration approach based on RTT for indoor localization
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while detecting NLOS conditions. All techniques were assessed using the same dataset to
ensure a fair comparison.

6.3.1. Localization Accuracy

Figures 13 and 14 present the CDF of localization errors for various techniques across
two different testbeds. The results demonstrate that DistilLoc achieves substantial improve-
ments in localization accuracy compared to other systems. Figure 13 which represents
the smaller testbed, DistilLoc outperforms WiNar [17], WiDeep [51], and Ranging-based
systems [20] by 48.98%, 138.78%, and 377.55%, respectively, in terms of median localization
error. Additionally, DistilLoc achieves a performance comparable to RRLoc [55], with only
a marginal difference of 17 cm. This improvement is significant, as DistilLoc operates
without requiring RTT during runtime, unlike RRLoc, which relies on both RTT and RSSI
for accurate positioning. The key advantage of DistilLoc stems from its use of knowledge
distillation, allowing it to learn from RTT data during the training phase while solely
relying on RSSI measurements during operation. This innovative approach ensures similar
performance to RTT-based systems, even in environments where RTT data are unavailable.
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Figure 13. Comparison of CDFs of different systems in the office testbed.
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Figure 14. Comparison of CDFs of different systems in the Lab testbed.

In Figure 14, which focuses on the larger Lab testbed, the results show that DistilLoc
continues to exhibit superior performance. The median localization error is improved
by 5.00% over RRLoc [55], 52.50% over WiNar [17], 360.00% over WiDeep [51], and
an impressive 527.50% over the Ranging-based systems. These findings underline
the scalability and robustness of DistilLoc when applied in larger and more complex
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environments. This remarkable improvement in both testbeds can be attributed to
DistilLoc’s ability to transfer knowledge from RTT-based models (teacher) to RSSI-based
models (student) via cross-modal knowledge distillation. By distilling the more accurate
RTT signal characteristics into the RSSI-based system, DistilLoc significantly enhances its
ability to mitigate signal noise, interference, and multipath effects—common challenges
in indoor localization. Additionally, the F-Net architecture’s ability to capture complex
signal relationships further enhances DistilLoc’s capacity to generate accurate localization
estimates even in cluttered environments.

In summary, as shown in Tables 3 and 4, DistilLoc outperforms all other systems
across all percentiles in both testbeds. This improvement is primarily due to its advanced
knowledge distillation mechanism, enabling it to emulate the high precision of RTT-based
systems while maintaining the simplicity and accessibility of RSSI-only systems.

Table 3. The localization error percentiles in the Office testbed.

Technique Average 25th Percentile 50th Percentile 75th Percentile Maximum

DistilLoc 0.68 m 0.21 m 0.49 m 1.21 m 2.11 m
RRLoc 0.51 m (25.0%) 0.19 m (9.5%) 0.32 m (34.7%) 0.79 m (34.7%) 1.70 m (19.4%)

WiNar [17] 0.89 m (−30.9%) 0.34 m (−61.9%) 0.73 m (−48.9%) 1.20 m (0.83%) 2.99 m (−41.7%)
WiDeep [51] 1.46 m (−114.7%) 0.58 m (−176.2%) 1.17 m (−138.8%) 1.97 m (−62.8%) 4.49 m (−112.8%)
Ranging [20] 2.59 m (−280.9%) 1.44 m (−585.7%) 2.34 m (−377.5%) 3.68 m (−204.1%) 4.92 m (−133.2%)

Table 4. The localization error percentiles in the Lab testbed.

Technique Average 25th Percentile 50th Percentile 75th Percentile Maximum

DistilLoc 0.629 m 0.28 m 0.40 m 0.94 m 2.19 m
RRLoc 0.59 m (6.2%) 0.12 m (57.1%) 0.42 m (−5.0%) 1.08 m (−14.9%) 1.83 m (16.4%)

WiNar [17] 0.99 m (−57.4%) 0.19 m (32.1%) 0.61 m (−52.5%) 1.77 m (−88.3%) 3.00 m (−37.0%)
WiDeep [51] 1.92 m (−205.2%) 1.06 m (−278.5%) 1.84 m (−360.0%) 2.69 m (−186.1%) 6.00 m (−173.9%)
Ranging [20] 2.86 m (−354.7%) 1.46 m (−421.4%) 2.51 m (−527.5%) 3.85 m (−309.5%) 7.38 m (−237.0%)

6.3.2. Time per Location Estimate

We evaluated the running time of the different systems using a Lenovo Thinkpad
X1 laptop equipped with a 2.2 GHz Intel i7-8750H processor, 64 GB of RAM, and an
Nvidia GTX1050Ti 4GB GPU. The results are presented in Figure 15. As expected, DistilLoc,
RRLoc [55], and WiDeep [51], being deep learning-based systems, require more time for
each location estimate compared to traditional methods. This is because these systems must
pass the input through multiple layers of the network to produce an estimate, whereas
deterministic methods like WiNar [17] and Ranging-based techniques [20] rely on simpler
calculations, leading to shorter response times. However, DistilLoc demonstrates a sig-
nificant advantage over WiDeep [51]. WiDeep assigns a separate neural network to each
reference point, which greatly increases its computational overhead. In contrast, DistilLoc
uses a more efficient model architecture that generalizes across reference points, resulting
in faster location estimates. Additionally, DistilLoc shows a slightly faster response time
compared to RRLoc [55], which relies on a complex network of multiple subnetworks (one
for each modality), adding extra layers of computation. Despite these differences in run-
ning time, all systems, including DistilLoc, are capable of providing real-time tracking. The
current response times are well within acceptable limits for most applications and could
be further optimized through parallelization if necessary. This makes DistilLoc not only a
highly accurate system but also a practical choice for real-time localization applications,
striking a balance between computational efficiency and localization precision.
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Figure 15. Comparison of run time of the different systems.

6.3.3. Device Heterogeneity

In this section, we evaluate the robustness of DistilLoc to device heterogeneity, where
training data are collected on one device and testing is performed on a different device.
Specifically, we examine the performance when training is conducted on a Pixel 2 XL and
testing is performed on a Pixel XL, and vice versa, across both the Lab and Office testbeds.
Figure 16 demonstrates that DistilLoc consistently performs well, regardless of which device
is used for testing, with only a slight performance advantage observed when the Pixel 2
XL is used. This consistency is significant, as different mobile devices exhibit hardware
variations that directly impact RSSI measurements. These variations include differences
in form factors, antenna locations, chipset designs, and signal processing capabilities.
These hardware-related factors often introduce offsets in the measured RSSI, as seen in
prior studies [56], leading to performance variability in traditional RSSI-based systems.
However, DistilLoc successfully mitigates these challenges through the use of cross-modal
knowledge distillation, which incorporates both RSSI and RTT data during training. While
RSSI is prone to hardware-induced variations, RTT measurements are largely unaffected
by device-specific factors due to their time-based nature [38]. By leveraging the stability of
RTT signals during the training phase, DistilLoc reduces the impact of device heterogeneity
on localization accuracy. The system learns a more robust feature representation that
generalizes well across different devices, thus minimizing the influence of hardware-
specific RSSI variations during testing. This approach ensures that DistilLoc maintains high
localization accuracy, even in heterogeneous device scenarios.

While our proposed system demonstrates significant improvements in localization
accuracy, several practical challenges must be considered for large-scale deployment. The
main obstacles include:

• Infrastructure and Hardware Costs: Achieving high localization accuracy with RTT-
capable APs requires a level of infrastructure upgrade, as these APs are not yet widely
available and may be cost-prohibitive in large installations. Many existing buildings
rely on standard WiFi APs, which lack RTT capabilities, meaning a full transition to
RTT-capable APs could necessitate substantial investments in both new hardware
and installation.

• Compatibility with Legacy Devices: For effective localization, user devices need to be
RTT-compatible. Although RTT support is growing, especially in newer smartphones,
many legacy devices lack this capability, limiting the system’s reach and effectiveness
if used in environments with diverse device types.

• Environmental Constraints: Real-world environments present unique challenges, such
as uneven AP distribution, signal interference, and varying construction materials
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that affect signal propagation. In such cases, selective deployment strategies or hybrid
models may be needed to balance coverage, accuracy, and cost. Adjusting the density
and location of APs to accommodate specific building layouts or high-traffic areas can
mitigate some of these issues but requires careful planning.

• Maintenance and Scalability: The cost and complexity of maintaining a high-accuracy
localization infrastructure can be substantial, especially in large facilities with fre-
quently changing layouts or usage patterns. Scalability is also a concern, as additional
APs may be required in new areas, necessitating further costs and calibration efforts.

Figure 16. Effect of varying the testing device on DistilLoc performance in the two testbeds.

To address these obstacles, we suggest a phased approach to deployment, beginning
with hybrid solutions that combine existing RSSI-based APs with strategically placed
RTT-capable APs in high-priority areas. This approach minimizes initial costs while
ensuring a foundation for gradual infrastructure enhancement. Additionally, knowledge
distillation allows the student model to leverage RTT-based accuracy even when RTT
data are unavailable at runtime, enabling the system to maintain higher accuracy in
mixed AP environments.

7. Conclusions

Indoor localization remains a challenging problem due to factors such as environmen-
tal noise, multipath fading, and signal interference, particularly those relying on WiFi RTT.
These challenges hinder the development of efficient, real-time localization systems, espe-
cially for resource-constrained devices. To address these limitations, we have introduced
DistilLoc, a novel cross-knowledge distillation framework that transfers the precision of
RTT-based models to more efficient RSSI-based models. By employing a teacher–student
approach, where the teacher model uses WiFi RTT and the student model relies on WiFi
RSSI, DistilLoc enables the transfer of high accuracy to less computationally demanding
models, making it suitable for real-time applications. The incorporation of the FNet archi-
tecture further enhances the system by capturing the complex relationships among RSSI
signals from multiple access points, enabling the student model to generate precise location
estimates with reduced computational overhead. The experimental results, conducted
across two indoor testbeds, demonstrate that DistilLoc outperforms traditional RSSI fin-
gerprinting and ranging-based multilateration techniques, achieving high accuracy even
across heterogeneous devices.

Beyond its technical achievements, this work also contributes to the broader goals
of Sustainable Development Goals SDG 9 and SDG 11. By improving the efficiency and
scalability of indoor localization systems, DistilLoc supports the development of smart,
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resource-efficient technologies that are critical for building sustainable, connected urban
environments. As such, DistilLoc represents not only an advancement in localization
technology but also a step forward in the creation of smarter, more sustainable cities.
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