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The biphasic force-velocity relationship in frog muscle fibres
and its evaluation in terms of cross-bridge function

K. A. P. Edman, A. Mansson and C. Caputo

Department of Pharmacology, University of Lund, S-223 62 Lund, Sweden

1. The relationship between force and velocity of shortening was studied during fused tetani of
single fibres isolated from the anterior tibialis muscle of Rana temporaria (1-5-3-3 °C;
sarcomere length, 2-20 ,um). Stiffness was measured as the change in force that occurred in
response to a 4 kHz length oscillation of the fibre.

2. The results confirmed the existence of two distinct curvatures of the force-velocity
relationship located on either side of a breakpoint in the high-force, low-velocity range.
Reduction of the isometric force (P0) to 83 f4 + 1 7% (mean + S.E.M., n = 5) of the control
value by dantrolene did not affect the relative shape of the force-velocity relationship. The
breakpoint between the two curvatures was located at 75 9 + 0 9% of P0 and 11 4 + 0 6%
of maximum velocity of shortening (Vmax) in control Ringer solution and at 75x6 + 0 7% of
P0 and 12-2 + 0 7% of Vmax in the presence of dantrolene. These results provide evidence
that the transition between the two curvatures of the force-velocity relationship is primarily
related to the speed of shortening, not to the actual force within the fibre.

3. The instantaneous stiffness varied with the speed of shortening forming a biphasic
relationship with a breakpoint near 0-15Vmax and 0-8PO, respectively. The force/stiffness
ratio (probably reflecting the average force per cross-bridge), increased with force during
shortening. The increase of the force/stiffness ratio with force was less steep at forces
exceeding 0818Po than below this point.

4. A four-state cross-bridge model (described in the Appendix) was used to evaluate the
experimental results. The model reproduces with great precision the characteristic features
of the force-stiffness-velocity relationships recorded in intact muscle fibres.

The force-velocity relationship represents a fundamental
property of the contractile system: the ability of muscle to
adjust its active force to precisely match the load by varying
the speed of shortening appropriately. Fenn & Marsh (1935)
were the first to describe the inverse relationship between
force and velocity of shortening in frog skeletal muscle. Hill
(1938) later extended these studies and characterized the
force-velocity relationship as a rectangular hyperbola. He
further emphasized the usefulness of the force-velocity
relationship as a relevant index of muscle activity. The
force-velocity relationship has attracted much new interest
in recent years as it has become clear that it contains
relevant information concerning the cross-bridge mechanism
of muscle contraction (Huxley, 1957; Eisenberg & Hill,
1978; Eisenberg, Hill & Chen, 1980; see also Edman, 1979
and Woledge, Curtin & Homsher, 1985).

Studies on isolated skeletal muscle fibres have shown that the
force-velocity relationship is not a simple hyperbolic function
as was originally thought, but that it contains two distinct
curvatures located on either side of a breakpoint at 75-80%
of the isometric force, P0 (Edman, Mulieri & Scubon-Mulieri,
1976; Edman, 1988). The composite form of the force-
velocity relationship can be fitted well by an extended version

of Hill's (1938) hyperbolic equation (Edman, 1988), the latter
function providing a useful tool for expressing the inter-
relationship between the two curvatures. There is reason to
believe that the biphasic shape of the force-velocity
relationship represents the contractile behaviour at sarcomere
level. This is indicated by the fact that the force-velocity
relationship has the same biphasic shape when measurements
are made from the whole fibre and from short segments along
the same intact muscle fibre (Edman, 1988). The biphasic
nature of the force-velocity relationship has also been
demonstrated in skinned muscle fibres (K. A. P. Edman,
unpublished observations; Lou & Sun, 1993). The existence
of the high-force curvature has important implications for
muscle function in that it promotes mechanical stability of
the contractile system in situations where the muscle is
heavily loaded (see Discussion).

In the present study the nature of the biphasic shape of the
force-velocity relationship has been explored in isolated
muscle fibres of the frog. Simultaneous measurements of
force and stiffness have been performed to evaluate the
number of attached cross-bridges in relation to the active
force and speed of shortening as the fibre contracts under
different loads. Experiments have also been performed with

6579 141



K. A. P Edman, A. Mdnsson and C. Caputo

the specific aim of investigating whether the transition
between the two curvatures of the force-velocity relationship
is primarily related to the speed of shortening or to the force
produced by the fibre. This problem has been approached by
varying the state of activation of the contractile system by
dantrolene, an agent known to reduce the release of
activator calcium from the sarcoplasmic reticulum (e.g. Van
Winkle, 1976; Desmedt & Hainaut, 1977; Danko, Kim,
Sreter & Ikemoto, 1985).

Some of the results have previously been reported in a
preliminary form (Edman, 1993; Edman & Caputo, 1993).
The present paper provides a full account of the study
including the statistical evaluation of the experimental
results. Furthermore, a four-state cross-bridge model has
been employed to elucidate the nature of the biphasic
force-stiffness-velocity relationships in striated muscle.

METHODS
Preparation and mounting
Single fibres were isolated from the anterior tibialis muscle of cold-
adapted Rana temporaria as previously described (Edman, 1979).
The frogs were killed by decapitation followed by destruction of the
spinal cord. The fibres were mounted horizontally in a temperature-
controlled chamber of methyl methacrylate (Perspex) between a
force transducer and an electromagnetic puller. In some experiments
the fibre was mounted between two pullers, one producing rapid,
low-amplitude movements for stiffness measurements (Edman &
Lou, 1990), the other performing larger movements for isovelocity
recordings (Edman & Reggiani, 1984). The second puller was
provided with a force transducer to which one end of the fibre was
attached. The tendons were held by aluminium clips that were
attached to the hooks of the force transducer and puller arm as
previously described (Edman & Reggiani, 1984). The side parts of
the aluminium clips were folded tightly around the hooks to prevent
any change in position of the clip during the experiment. By
carefully adjusting the angle at which the clip was attached to the
steel hook, it was possible to almost completely eliminate any
lateral, vertical and twisting movements of the fibre during
contraction. A special arrangement had to be used for attaching the
fibre to the fast puller used for stiffness measurements (Edman &
Lou, 1990). In this case the tendon (without the aluminium clip)
was tied to the free end of the puller arm. Two layers of sealing
film (Parafilm) were wound tightly onto the outside of the tendon
around the puller arm in order to ensure firm attachment of the
tendon throughout the experiment.

Fibre length, cross-sectional area and sarcomere length were
measured as described by Edman & Reggiani (1984). The
experiments were carried out at a resting sarcomere length of
2 20 4um.
The saline used had the following composition (mM): NaCl, 115 5;
KCl, 2-0; CaCl2, 1P8; Na2HPO4+ NaH2PO4, 2-0; pH 7 0. The
solution was pre-cooled and was perfused through the muscle
chamber (volume, -2-5 ml) at a rate of about 2 ml min-'. The
temperature ranged from 1P5 to 3-3 °C among the different
experiments but was maintained constant to within + 0f2 °C
during any given experiment. Dantrolene sodium (Eaton Chemicals,
Norwich, NY, USA) was dissolved in Ringer solution to a final
concentration of 5-10 mg 1-' (15-30 SM).

Stimulation
A pair of platinum plate electrodes were placed symmetrically on
either side of the muscle fibre approximately 2 mm from it.
Rectangular current pulses of 0-2 ms duration were passed between
the electrodes, the stimulus strength being approximately 15%
above the threshold. A train of pulses of appropriate frequency
(15-20 Hz) was used to produce a fused tetanus of 1 s at the
sarcomere length considered.

Force transducer
The force transducer generally used was made from a semi-
conductor strain-gauge element and had a resonant frequency of
approximately 6 kHz (Edman & Reggiani, 1984). A modified version
of this transducer, which was used for stiffness measurements, had
a resonant frequency of 19 kHz when submerged in saline (for
details, see Edman & Lou, 1990).

Measurement of fibre stiffness
Stiffness was measured as the change in force that occurred in
response to a fast, low-amplitude length perturbation as previously
described (Edman & Lou, 1990). A 4 kHz sinusoidal length
oscillation was applied to one end of the fibre throughout the
tetanus period. The amplitude of the length oscillation (peak to
peak) corresponded to approximately 1-5 nm per half-sarcomere
(h.s.). With the technique used it was possible to obtain on-line
information of the magnitude of the length perturbation and of the
resulting change in force (for further details see Edman & Lou,
1990). In these measurements the force transducer was mounted on
the puller that produced large fibre movements (see above). Since
this arrangement increased the noise level of the stiffness signal
during load-clamp recording, isovelocity ramps were preferred in
experiments where force, velocity of shortening and stiffness were
recorded simultaneously.

Experiments were performed in which a fast release step was
applied to one end of the fibre with simultaneous recording of the
resulting length change of a marked segment (1'f7 mm long) located
in the middle of the fibre. The segment length measurement was
carried out by means of the surface marker technique previously
described (Edman & Reggiani, 1984; Edman & Lou, 1990). The
length step, which had a rise time of 200 #ss and an amplitude of
2-3 nm h.s7' in three different experiments, was applied at
various tension levels during the rising phase of a fused tetanus.
Five to six releases were repeated at each level and a mean value of
the segment length change was formed. The segment length change
did not differ significantly at force levels greater than 40% of
maximum tetanic force indicating that the error in the fibre
stiffness measurement due to tendon compliance was negligible
under these conditions.

Recording and measurement of responses
Force, stiffness, fibre length and segment length signals were
recorded and measured using a Nicolet 4094B digital oscilloscope
that was provided with a dual disk recorder (Nicolet, XF44).
Measurements of force, stiffness and velocity of shortening were
made approximately 10 ms after release at the lowest loads used.
The measurements were performed successively later after release
as the load was increased and the velocity of shortening was
reduced. With the approach used all measurements in a series of
force-stiffness-velocity recordings (carried out between 0f4PO and
PO, see Results) could be performed without appreciable variation in
sarcomere length (estimated variation < 0 03 ,um). No correction
for length-dependent differences in force (Edman & Reggiani, 1987)
and stiffness (e.g. Bagni, Cecchi, Colomo & Poggesi, 1990) within a
series of measurements were therefore made.
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The force-velocity data were fitted by the biphasic equation
previously described by Edman (1988):

(Po* -P)b I
l' (1)

Pc+a ) + exp(-1kc(P- k2Po)))
in which V denotes the velocity of shortening and P is the load on
the muscle fibre. The first term expresses the hyperbolic portion of
the force-velocity curve below 08PO and has the designations
originally given by Hill (1938). P0* is the isometric force predicted
from this hyperbola and a and b are constants with dimensions of
force and velocity, respectively. The second term within parentheses
(referred to as the 'correction term'; Edman, 1988) reduces V in the
high-force range to provide the distinct, upward-concave curvature
at loads > 0-8Po. The constant k, in the correction term has the
dimension of 1/force, whereas k2 is dimensionless.

Vmax, the speed of shortening at zero load, was estimated from
Hill's (1938) hyperbolic equation fitted to data below 0 8PO.
Statistics
Student's t test was used for determination of statistical significance.
All statistics are given as means + S.E.M.

RESULTS
Force-velocity relationship at different states of
activation
Previous experiments (Edman, 1988) have shown that the
force-velocity relationship of striated muscle has two
distinct curvatures located on either side of a breakpoint
near 80% of the measured P0. At this point the speed of
shortening is approximately 11 % of Vmax. The aim of the
following experiments was to investigate whether the
transition between the two curvatures is primarily related
to the load on the fibre, or to the speed of shortening. The
rationale of the experimental approach is as follows. If the
change in curvature in the high-force range is a consequence
of increasing the number of interacting cross-bridges above
a critical value, the relative load at which the breakpoint
appears should vary with the state of activation of the
contractile system. A decrease in activation would thus be
expected to shift the breakpoint between the two
curvatures towards a higher relative load, and finally, when
the state of activation has been reduced to 80% of P0, the
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high-force curvature would disappear altogether. In order to
test this possibility a series of experiments was performed
in which the force-velocity relationship was determined
before and after the state of activity of the muscle fibre was
depressed by dantrolene.

A set of load-clamp recordings including one or more
isometric tetani was first performed in ordinary Ringer
solution using the technique previously described (Edman,
1988). The fibre was thereafter immersed in Ringer solution
containing dantrolene (5-10 mg l-') and a new series of
load-clamp recordings was carried out during the plateau
phase of the tetanus. As is illustrated in Fig. 1, dantrolene
reduced the rate of rise of force and also reduced the plateau
tension during the isometric tetanus (PO). In five complete
experiments PO was reduced to 83-4 + 1-7% (P< 0 001) of
the control value. The calculated value of Vmax was reduced
by dantrolene to 93 0 + 2x2% (P < 0 05) of the control in
the same experiments. Results of load-clamp recordings
from a representative experiment are shown in Fig. 2. The
figure shows force-velocity data derived at 2-2 #um sarcomere
length in ordinary Ringer solution (0) and in the presence
of 10 mg 1-' dantrolene (0). As can be seen in Fig. 2A,
dantrolene reduced PO to approximately 80% of the control
and shifted the force-velocity relationship towards lower
force values. The biphasic force-velocity equation (eqn (1))
has been fitted to the experimental data in Fig. 2A and can
be seen to provide a very good fit over the entire range of
loads in both test and control runs. The constant 12 in this
equation (see Methods), which determines the breakpoint of
the force-velocity curve relative to P0, was quite similar
both in the presence and in the absence of dantrolene (see
legend to Fig. 2).

In Fig. 2B the force-velocity relationships shown in Fig. 2A
have been replotted after the data have been normalized with
respect to PO in each set. The superimposed data confirm
that the general shape of the force-velocity relationship was
not markedly changed by dantrolene. The similarity in
shape of the two force-velocity relationships is further
illustrated in the semilogarithmic plots shown in Fig. 2C.
Here, the two portions of the force-velocity relationship

LI J

250 ms

Figure 1. Effects of dantrolene on the time course of isometric tetanus of frog single muscle fibre
Records from the same fibre in control Ringer solution (upper trace) and in the presence of 10 mg I'
dantrolene (lower trace). Dantrolene decreases the rate of rise of force and reduces the total amplitude of the
tetanus. Fibre length at 2-20 ,um sarcomere length, 6-0 mm. Temperature, 3-2 'C.
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Table 1. Effects of dantrolene (5-10 mg I1) on P0 and breakpoint of force-velocity relationship

Control Ringer Dantrolene

P0 (% of value recorded in control Ringer) 100 83-4 + 1-7
Relative force at breakpoint (% of P0 recorded 75 9 + 0 9 75-6 + 0 7

in control Ringer and dantrolene, respectively)
Relative velocity at breakpoint (% of Vmax recorded 11x4 + 0x6 12-2 + 0 7

in control Ringer and dantrolene, respectively)

n = 5.

(located on either side of the breakpoint in the high-force
range) have been fitted by regression lines. As can be seen,
there is a good agreement between the corresponding
regressions in the two sets of data. The breakpoint between
the two phases of the force-velocity relationship was
determined from the intersection of the regression lines at
low-intermediate and high loads in the semilogarithmic
plots. The results from five experiments, similar to those
illustrated in Fig. 2, are summarized in Table 1. The
calculated breakpoint was located at 75 9 + 0 9% of PO
and 114 + 0 6% of Vmax (n = 5) in control Ringer solution
and at 75-6 + 0 7% of PO and 12-2 + 0 7% of Vmax in the
presence of dantrolene. Student's t test on paired
observations showed that the co-ordinates for the breakpoint
of the force-velocity relationship were not significantly
different in the presence and absence of dantrolene
(P> 041). Thus, these results clearly show that even after
the force-producing capability of the fibre has been
markedly reduced by dantrolene, the characteristic biphasic
shape of the force-velocity relationship is maintained.

A B

Force-stiffness-velocity relationships
As explained in the Methods, isovelocity ramps were
preferred to load-clamp recordings in these experiments.
When forces lower than 70-80% of PO were studied, the
shortening ramp was provided with an initial rapid phase,
the amplitude of which was adjusted appropriately so as to
achieve a relatively quick drop in tension to the desired
level. Following an initial transient phase after the onset of
shortening, force and stiffness settled at a constant level
that varied with the shortening speed (see Fig. 7 in Curtin
& Edman, 1994). Only stiffness measurements derived at
forces greater than ca 40% of PO are considered here, since,
down to this tension level (see Methods), there was no
detectable interference in the stiffness measurement from
tendon compliance.

Figure 3A shows superimposed, simultaneous force-velocity
(0) and stiffness-velocity (0) measurements from a single
muscle fibre during tetanus. The stiffness-velocity relation-
ship can be seen to have a biphasic shape with a pronounced
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Figure 2. Influence of dantrolene on biphasic force-velocity relationship

0, control Ringer solution; 0, Ringer solution containing 10 mg 1-' dantrolene. A, force expressed in
N mm-2. B, force normalized to maximum tetanic force (P0) in both test and control. C, semilogarithmic
plots with force normalized to P0 and velocity normalized to the calculated value of maximum speed of
shortening, Vmax in each set of data (see Methods). Data in A fitted by eqn (1) using the following
numerical values for constants: control: k, = 29Po-j, k2 = 0-79; dantrolene: k, = 27Po-', k = 0 81. The
straight lines in C are linear regressions of velocity upon force on either side of the breakpoint of the
force-velocity relationship. Continuous lines, control; dotted lines, dantrolene. Fibre length at 2-20 4Um

sarcomere length, 7-0 mm. Temperature, 15 'C.
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Figure 3. Force-velocity and stiffness-velocity relationships derived from simultaneous
measurements in single muscle fibre
A, conventional plots (linear scales) with force and stiffness normalized to their maximum tetanic values.
0, force-velocity measurements; 0, stiffness-velocity measurements. B, a semilogarithmic plot of the data
shown in A. Note the biphasic shape of both force-velocity and stiffness-velocity relationships. Fibre
length at 2-20 #m sarcomere length, 7-1 mm. Temperature, 2-5 'C.

upward-concave curvature in the low-velocity range similar
to that exhibited by the force-velocity relationship. The
biphasic nature of the stiffness-velocity relationship is
further demonstrated in Fig. 3B in which the data shown
in Fig. 3A have been replotted in a semilogarithmic diagram.
The transition between the two phases of the stiffness-
velocity relationship was, in general, less distinct than the
corresponding change of the force-velocity relationship. In
seven experiments performed in this series the transition
between the two phases of the stiffness-velocity relationship
occurred at 0 1-0 2 Vmax and 0-8-0-9Po.

A B

The relationship between force and stiffness during shorten-
ing is illustrated by a representative experiment in Fig. 4A.
For this analysis the force and stiffness values were collected
at given velocities of shortening at loads varying between
approximately 0 4 and 1 OPO. Figure 4B shows, for
comparison, the relationship between force and stiffness
during redevelopment of isometric force in the same muscle
fibre. For the latter measurement the fibre was released
during the tetanus plateau by a moderately fast ramp
(amplitude, 35-45 nm h.s.-1; duration, 3 0 ms) that led to a
complete drop in tension followed by redevelopment of force.
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Figure 4. Force-stiffness relationships during loaded shortening and during isometric force
development
Force and stiffness expressed as a fraction of maximum tetanic values. A, simultaneous measurements of
force and stiffness during loaded shortening as described in text. The continuous line is a rectangular
hyperbola fitted to data at forces < 0 8PO. Note biphasic shape of the force-stiffness relationship during
active shortening resulting in greater stiffness in the high-force range than predicted from measurements at
intermediate forces. B, simultaneous measurements of force and stiffness during redevelopment of force in a

tetanus. The continuous line is the linear regression of stiffness upon force. C, the ratio between force and
stiffness, calculated from data in A, plotted against force. Note that the relationship between the
force/stiffness ratio and force is less steep in the high-force range. Fibre length at 2 20 #m sarcomere length,
7 6 mm (A and C) and 7 1 mm (B). Temperature, 1 6 °C (A and C) and 2 5 °C (B).
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The force-stiffness relationship measured during active
shortening (Fig. 4A) can be seen to have two distinct
portions with a point of transition near 0f85Po. The data
points between 0 4 and 0818Po form a slightly downward-
concave curvature and are fitted with a rectangular hyper-
bolic function. The stiffness values in the high-force range
(> 0f85PO) can be seen to depart from this line. Thus, as the
load was increased above 0-85PO, the stiffness during
shortening became successively higher than predicted from
measurements at intermediate loads.

The biphasic shape of the force-stiffness relationship which
was observed during shortening did not appear when
measurements were performed during redevelopment of
force in an isometric tetanus (Fig. 4B). In the latter case the
force-stiffness relationship was steeper than that recorded
during shortening and, most significantly, was lacking the
high-force curvature displayed in Fig. 4A.

Results similar to those illustrated in Fig. 4A were obtained
in altogether seven complete experiments. The difference
between the predicted stiffness at PO (estimated from the
hyperbola) and the stiffness actually measured at this point
provides an index of the high-force deviation of the
force-stiffness relationship during shortening. This difference
amounted to 6f5 + 0 7% (P < 0 001) of the measured
stiffness at P0 in the seven fibres investigated.

The force/stiffness ratio presumably reflects the average force
output per cross-bridge. As may be inferred from the
force-stiffness relationships shown in Fig. 4A and B, the
force/stiffness ratio increases with force during both shorten-
ing and isometric activity. This is further demonstrated in
Fig. 4C for active shortening using the force-stiffness data
shown in Fig. 4A. The relationship between the force/
stiffness ratio and the load can be seen to have two distinct
phases, with different slopes, on either side of the break-
point near 0-8Po. Beyond this point, corresponding to the
high-force curvature of the force-velocity relationship, the
increase of the force/stiffness ratio with force can be seen to
be less steep than at intermediate forces.

Model simulation
A cross-bridge model including four different states, one
dissociated and three attached states, was used to simulate
the force-stiffness-velocity relationships presented above.
A more detailed description of the model is given in the
Appendix. The model is similar to the models previously

ko1(x)

k30()WL4 kl 2(XA0 -= A1

A3 - A2
(detached) k23(x)

advanced by Huxley & Simmons (1971) and Eisenberg et al.
(1980) and has the following features (Fig. 5). During a
complete working cycle a cross-bridge is assumed to go
through three consecutive states of attachment, AO, A, and
A2, each step leading to a progressively stronger binding to
the actin unit and to further production of force by the
bridge. Under isometric conditions, when the myofilament
system is stationary, only the first two attachment states
(Ao and A1) will be of importance due to the limited
working range of the bridge. During shortening, on the
other hand, the cross-bridge will pass over into the third
and most strongly bound state (A2). Finally, the bridge
dissociates to become available for a new working cycle (A3).

The cross-bridge model simulates the experimental results
remarkably well as is illustrated in Fig. 6. The simulated
data points displayed in Fig. 6A thus form a biphasic
force-velocity relationship like that recorded in an intact
muscle fibre exhibiting a smooth transition between the
two curvatures near 0-8Po and 0-1 Vmax. Accordingly the
simulated data can be fitted well with the biphasic
force-velocity equation (Edman, 1988) using numerical
values of the parameters k1 and 12 in this equation that are
similar to those employed in frog muscle fibres (k1c z 30 PO-1,
12 0-8; Edman, 1988 and present paper). The simulation
presented in Fig. 6A is based on the assumption that the
rate constant (130(x)) for attachment to AO is independent of
the speed of shortening of the fibre. A fairly high numerical
value of k30(x) (maximum value 96 s-', see Appendix) is
required in order to reproduce the relatively high velocities
that exist at intermediate loads in intact fibres. However, a
considerably lower maximum value of k30(x) (approximately
40 s-') is needed to correctly simulate the rising phase of an
isometric tetanus at the temperature (1-3 °C) considered.
In order to accommodate both these requirements in the
model, 40 (here referred to as k30(x,v)) has been assumed
in the following analysis of force, velocity and stiffness to
have a maximum numerical value of 96 s-' for velocities of
shortening ranging between Vmax and 0 14 Vmax
(225 nm h.s1-1 s-1) and to decline below this point (see
Appendix) to attain a value of 40 s-' at V= 0. Also with
these assumptions included in the model the predicted
force-velocity relationship becomes virtually indistinguish-
able from a force-velocity curve of an intact fibre. This is
illustrated in Fig. 6B which displays the simulated data in a
standard force-velocity diagram and in Fig. 6C in which
the same data are shown in a semilogarithmic plot.

Figure 5. Kinetic scheme of cross-bridge model
Each state (AO-A3) has a characteristic strain dependence of its free energy (see Fig. 8)
due to the presence of an elastic element in the cross-bridge. The rate constants for
transitions between states are dependent on the relative position (x) between the cross-
bridge and the actin site as shown in Fig. 9.
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Figure 6. Model simulations of steady-state mechanical properties of frog muscle fibres during
shortening
A, force-velocity (0) and stiffness-velocity (0) relationships simulated on the assumption that rate
constant k30(x) in the model is independent of the velocity of shortening and has a maximum numerical
value of 96 s-1 The x dependence of this and other rate constants is shown in Fig. 9. The continuous line is
eqn (1) fitted to simulated force-velocity data (k1 = 28Po-j, 12 = 0 83). Force and stiffness expressed as a

fraction of their maximum steady-state values. B, force-velocity (0) and stiffness-velocity (0)
relationships simulated as in A but assuming that the rate constant k30(x,v) varies with the speed of
shortening as described in text and in Fig. 9. The continuous line is eqn (1) fitted to simulated
force-velocity data (k1 = 31Po-', k2= 0 82). Arrows a-d indicate the corresponding data points for the
cross-bridge distributions shown in Fig. 7. C, data shown in B replotted in a semilogarithmic diagram.
D, force-stiffness relationship based on simulated force and stiffness values during loaded shortening. Data
(0) collected at different velocities in diagram B. The dotted line shows, for comparison, the force-stiffness
relationship during active shortening if it is assumed that the free portion of the thin filament forms a

linear series elastic element. In this calculation the thin-filament compliance was assumed to be equal to
that derived from the cross-bridges during the plateau of the isometric tetanus. E, the ratio between force
and stiffness, calculated from the data points (0) in D, plotted against force.
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The simulated stiffness-velocity relationship and the force-
stiffness relationship during shortening are also found to
agree well with measurements on intact muscle fibres as is
illustrated in Fig. 6A-D. The calculated stiffness-velocity
relationship thus forms a distinct curvature (upwards
concave) in the low-velocity range. Further in similarity with
the intact fibre the simulated force-stiffness relationship
during isotonic shortening (Fig. 6D) can be seen to exhibit a

biphasic shape with a breakpoint near 0-85Po (cf. Fig. 4A).
As the load is raised beyond this point there is a steepening
of the force-stiffness relationship resulting in higher
stiffness values between 0f85Po and PO than predicted from
data at intermediate loads. The model also reproduces the
biphasic relationship between the force/stiffness ratio and
force that was observed experimentally (Fig. 6E). Again the
similarity with the corresponding observation in the intact
fibre is striking (cf. Fig. 4C).

Figure 7 shows the proportion of cross-bridges in the
different states of the model: during steady-state isometric
contraction (A), during shortening at a very low speed
(20 nm h.s.-' s-t; B), during shortening at 200 nm h.s.-' s-
(C) and during shortening at 500 nm h.s.-'s-' corresponding
to approximately one-third of Vmax (D). The four conditions
are indicated by arrows in Fig. 6B. Under isometric
conditions (Fig. 7A) the bridges are almost exclusively
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attached to Ao and A, since very few bridges are able to
reach attachment state A2 in this case. The flat portion of
the force-velocity relationship in the high-force range

(> approximately 0-85PO) is accounted for in the model by a

relatively large decrease in the number of cross-bridges in
state Ao as the fibre shortens at a low speed (Fig. 7B).
Furthermore, the cross-bridges occupying Ao during low-
velocity shortening have a smaller mean extension than
have bridges attached to Ao under isometric conditions (cf. A
and B in Fig. 7) resulting in a lower force output per bridge.
Taken together these changes will cause a relatively large
drop in force while the speed of shortening is only slightly
increased. The steep portion of the force-velocity
relationship between approximately 0-85Po and 0-80Po is
attributable to an increased number of cross-bridges moving
into attachment state A2 as the speed of shortening is raised
(Fig. 7C). This will partly compensate for the loss of bridges
in state AO, and force will therefore decline comparatively
little as the speed of shortening increases within this
range leading to an increased slope of the force-velocity
relationship.

When the speed of shortening is raised above approximately
200 nm h.s.-' s-', which corresponds to about 0 1 Vmax, an

increasing fraction of the bridges in state A2 will assume

negative x values in this way producing a braking force

B

C)

co

.0

cm
'a

0

0

O

.2.

0

0~

1 *

0-1

0*1

0-*

0-*

20

0 ~~~ ~~~~~~~~AlA3

8- ./;sI

6_ .I j

\II
/1'

0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

-10 -5

x (nm)

C

u)
a)
0)

.o

Q
O

0

a

0

a.

0

0

0

0

.0- ~~~~~~A3
Al

6 ~~~~~~~~I
I

.' I I
0'~~~~~~~~~~

-10 -5 0 5 10 15

x (nm)

0 5 10
x (nm)

15 20

D

CD
U)

0)
0)

.'

Om

CO)
0

0

0

0

0~

20

O-

.6- \ Al

4- I I

2 - A2,'
/ . Ao

0 ' / ;.'\'
I...

-10 -5 0 5 10 15
x (nm)

20

Figure 7. Proportion of cross-bridges in the various states (AO-A3) of the model given as a

function of the distance (x) between cross-bridge and actin binding site
The cross-bridge distributions shown in A-D correspond to data points a-d in Fig. 6B and represent:
A, steady-state isometric tension; B, steady shortening at 20 nm h.s.-' s-'; C, steady shortening at
200 nm h.s.-7 s-'; D, steady shortening at 500 nm h.s.-' s-'.
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(Fig. 7D). Furthermore there will be a progressive reduction
of the total number of attached bridges as the velocity
increases above this point. These factors will both tend to
reduce the slope of the force-velocity relationship resulting
in a breakpoint of the force-velocity curve near 08Po.
The present model, like most previous cross-bridge models, does
not account for compliance of the thick and thin filaments. Recent
evidence suggests, however, that the two filaments do have a finite
stiffness that is comparable to that residing in the cross-bridges
(Huxley, Stewart, Sosa & Irving, 1994; Kojima, Ishijima &
Yanagida, 1994; Wakabayashi, Sugimoto, Tanaka, Ueno, Takezawa
& Amemiya, 1994; Higuchi, Yanagida & Goldman, 1995). At the
present time there is incomplete information concerning the nature
of the filament elasticity, i.e. whether it is Hookean or not and
whether it is equally distributed along the filaments or mainly
involves the 'free' portions of the filaments outside the overlap area.
In view of these uncertainties, involvement of filament compliance
has been omitted in the present analysis. However, tests have been
performed during the course of this study in which half of the
instantaneous fibre compliance has been assumed to reside in the
thin filaments as a series elastic element. The outcome of such tests
has shown that introduction of series compliance in the model does
not, in any fundamental way, affect the predicted mechanical
behaviour during steady-state contractions, such as the predicted
biphasic force-velocity relationship. The presence of series
compliance will have the effect of making the fibre stiffness less
sensitive to the speed of shortening, i.e. to changes in the number
of attached bridges. This will result in a less steep force-stiffness
relationship during shortening than in the absence of series
elasticity (dotted line in Fig. 6D).

DISCUSSION
Experimental findings
The force-velocity relationship of frog skeletal muscle
exhibits two distinct curvatures, both with an upward
concavity, that are located on either side of a breakpoint at
76-78% of the isometric force (PO). This characteristic form
of the force-velocity relationship is demonstrable in both
whole muscle fibres and discrete segments of intact fibres,
and it probably represents the contractile behaviour at
sarcomere level (Edman, 1988). The two portions of the
force-velocity relationship are closely interrelated. A change

of the main curvature is thus generally found to be associated
with a similar change of the curvature in the high-force
range. The entire force-velocity relationship can be fitted
well with the biphasic equation previously described (Edman,
1988). In this equation the two constants k1 and k2 (eqn (1);
see Methods) together define the interrelationship between
the two portions of the force-velocity curve, k, expressing
the degree of curvature in the low-velocity (high-force)
range and 12 determining the point of transition between
the two portions of the force-velocity curve. In any given
fibre similar numerical values of k1 and k2 are found to apply
under a variety of experimental conditions such as altered
temperature, tonicity and sarcomere length (Edman, 1988).
There is evidence, however, that the two portions of the
force-velocity relationship can be affected differentially.
An example of such a dual action is provided by BDM
(2,3-butanedione monoxime) which increases the curvature
of the force-velocity relationship at low and intermediate
loads but markedly reduces the curvature in the high-force
range (Sun, Lou & Edman, 1995).

The present results show that the biphasic shape of the
force-velocity relationship is well maintained even after
reducing the tetanic force to about 80% of the control value
by dantrolene. This substance is known to reduce the release
of calcium from the sarcoplasmic reticulum (for references,
see Introduction) and the decrease in force produced in this
way may therefore be presumed to be mainly due to a
reduced number of interacting cross-bridges. The fact that
the relative shape of the force-velocity relationship remains
unaffected after depressing the isometric force by dantrolene
clearly demonstrates that the transition to the high-force
curvature is not governed by the actual force within the
fibre. The speed of shortening apparently is the principal
factor that sets the point (approximately 0f1 Vm..) at which
the force-velocity relationship changes its shape. This
finding fully supports the idea that cross-bridges in striated
muscle act as independent force generators under various
loading conditions of the muscle. The cross-bridge model
employed in this study is based on this assumption (see
Appendix).

Figure 8. Gibbs free energy of cross-bridge
states AO-A3 plotted as a function of the cross-
bridge position relative to an actin binding site
The upper horizontal line and the abscissa represent,
respectively, the free energy of the cross-bridges in
state A3 before and after hydrolysis of one molecule
of ATP. The free energy available from hydrolysis of
one molecule of ATP was taken to be 23 kT
(Eisenberg et al. 1980).
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With the approach used it was possible to monitor both
force and stiffness as the fibre was released to shorten at
different speeds during tetanus. The results show that the
stiffness-velocity relationship is biphasic, like the force-
velocity curve, with a breakpoint at approximately 0- 15 Vmax.
The force/stiffness ratio, which is generally thought to
reflect the average force per cross-bridge, likewise undergoes
a change when the speed of shortening is reduced below
0f 15 Vma (-0 8PO). The force/stiffness ratio measured during
shortening increases steadily with force (Fig. 4C). However,
as the load exceeds approximately 0-8Po the increase of the
force/stiffness ratio is markedly reduced, suggesting that
the force output per bridge is lower in the high-force range
than expected from measurements at low and intermediate
loads (Fig. 4C).

Model simulation
The force-velocity relationship was simulated by using a
cross-bridge model the details of which are described in the
Appendix. The model is based on the same general
assumptions that were originally advanced by Huxley
(1957) and Huxley & Simmons (1971) and further developed
by Hill (1974), Eisenberg et al. (1980) and Piazzesi &
Lombardi (1995). In accordance with these models the force
during shortening is assumed in the present computations
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to be a function of the attachment rate constant of the
cross-bridges, the distance traversed by the bridges during
the working stroke and the rate constant of cross-bridge
detachment. The latter rate constant determines how far the
bridges may be brought into a region where they develop
negative strain and resist fibre shortening. The detachment
rate constant, therefore, is a major determinant (together
with the size of the working stroke) of the maximum speed
of shortening, Vmax. In the present model, as in the models
described by Huxley & Simmons (1971), Hill (1974),
Eisenberg et al. (1980) and Piazzesi & Lombardi (1995), force
generation is assumed to occur in several steps, each step
leading to a tighter binding between actin and myosin and
to a greater production of force.

Neither of the models referred to above account for the
biphasic shape of the force-velocity relationship described
in this paper and in earlier work (Edman, 1988, 1993; Sun
et al. 1995). The present model, on the other hand, reproduces
with remarkable precision the steady-state mechanical
behaviour of intact muscle fibres during shortening. Both
the experimental force-velocity relationship and the
stiffness-velocity relationship are thus fitted exceedingly
well. In addition (see Appendix), the model gives a faithful
reproduction of the time course of the isometric tetanus and
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Figure 9. Rate constants of the kinetic model
A and B, rate constants given as functions of cross-bridge position (x). The dotted lines in A show the rate
constants k30(x) and kO3(x) used for simulating all data points in Fig. 6A and data points at velocities
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constants used for simulating isometric contraction in Fig. 6B-E. C, velocity dependence of rate constant
k30(x,v) used in Fig. 6B-E. The ordinate refers to the maximum value of the Gaussian x dependence of
k30(x,v). Rate constant kO3(x,v) was derived from eqn (Al) at all velocities considered.
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the time course of the fast tension transients the T, and T2
curves described by Huxley & Simmons (1971). The model is
furthermore consistent with the effect of dantrolene on the
force-velocity relationship, if it is assumed that dantrolene,
by decreasing the intracellular Ca2+ concentration, mainly
reduces the number of available binding sites on the thin
filament (see earlier). This would lead to a shift of the
force-velocity relationship to lower force values without any
marked change in shape of the force-velocity curve in
accordance with the experimental findings. The greater
potential of the present model to simulate the force-velocity
relationship is attributable to the following features of the
model: (1) the existence of a Gaussian x dependence of the
attachment rate constant (see below); this implies that there
is a region early during the power stroke where cross-bridge
attachment is slow; (2) the existence of a force-producing
cross-bridge state at the end of the power stroke that is only
slightly occupied under isometric conditions and during
shortening at low velocity (< approximately 25 nm h.s.-' s-')
but becomes significantly populated during shortening at
intermediate and high velocities.

A

The existence of a region of slow cross-bridge attachment in
the beginning of the power stroke leads to a marked
reduction in the number of attached cross-bridges, and
therefore to a fairly large drop in force, as the speed of
shortening is increased within the range 0 05 ('isometric') to
25 nm h.s.-' s-'. This corresponds to the flat region of the
force-velocity relationship at force levels greater than
0-85Po. The decrease in the number of bridges in state Ao
during low-speed shortening mainly involves bridges of
high strain (see Results). The force is therefore reduced
proportionately more than is the number of attached cross-
bridges within this range of velocities and loads. This
accords with the experimental finding that there is a greater
reduction of force than of stiffness as the velocity of
shortening is increased from 0 to 25 nm h.s.7 s' (Fig. 3A,
also see Fig. 4A).

The region of slow cross-bridge attachment in the beginning
of the power stroke is a direct consequence of the fact that
the attachment rate constant in our model (k30(x) or k30(x,v))
is assumed to have a Gaussian x dependence (Fig. 9A). This
assumption seems reasonable (see Hill, 1974) and has indeed
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been adopted before (e.g. Eisenberg et al. 1980). It is
noteworthy, however, that in the model of Eisenberg and co-
workers the equivalent attachment step did not limit the
cycling rate of the bridges during shortening, and the
Gaussian x dependence of the attachment rate constant
therefore had no influence on the shape of the force-velocity
curve in the high-force range in their case. The assumption
that the attachment rate constant is low in a fraction of the
bridges is in line with the observation that the rising phase
of a tetanus cannot be fitted faithfully by a single
exponential function (Ford, Huxley & Simmons, 1986). A
double exponential, on the other hand, provides a very good
fit to the tension rise during tetanus. This applies both to
recordings from intact muscle fibres and to tetani simulated
by the present model (see Fig. 10, Appendix).

The existence of a cross-bridge state at the end of the
working cycle (A2 in our model) that has few attached
bridges during isometric activity but becomes greatly
populated during shortening has been proposed earlier.
Such a cross-bridge state was thus included in the models
of Lombardi & Piazzesi (1990) and Piazzesi, Francini,
Linari & Lombardi (1992) which were developed to account
for various mechanical properties of the muscle during
isometric tetani and during stretch ramps in tetanic
contractions. The relatively small number of attached cross-
bridges in A2 during isometric activity is largely due to the
low numerical value of k,2(x) within the 'isometric' working
range. This leads to a low average cycling rate (0-25 s-1) in
the model consistent with the low ATP splitting rate during
isometric contraction of frog muscle (-1 s-1; Curtin, Gilbert,
Kretzschmar & Wilkie, 1974; Homsher, 1987).

The present model includes a velocity dependence of the
attachment rate constant k30(x,v), the maximum value of
which is assumed to decrease from 96 s' at velocities of
active shortening greater than 225 nm h.s.-i s-' to 40 s-1
during isometric activity. It should be pointed out that this
feature of the model is not essential for simulating the
biphasic shape of the force-velocity relationship, as is
demonstrated in Fig. 6A. It is required in the model,
however, in order to faithfully reproduce the time course of
the isometric tetanus and the slow phases (phases 3 and 4 in
the analysis of Huxley & Simmons, 1971) of the isometric
transient after a fast length step. The variation of k30(x,v)
with the speed of shortening is in harmony with several
recent findings that point to a different cross-bridge
behaviour during shortening and during isometric activity
(e.g. Yanagida, Arata & Oosawa, 1985; Lombardi, Piazzesi
& Linari, 1992; Higuchi & Goldman, 1995). For example,
evidence has been presented to show that the rate of
repriming of the cross-bridge power stroke after a release is
much greater than the cross-bridge attachment rate during
isometric contraction (Lombardi et al. 1992). A similar rapid
repriming of the power stroke might also be expected to
occur during continuous shortening (cf Piazzesi & Lombardi,

the maximum association rate constant found suitable in
several previous models for simulating the power output is
considerably larger (by a factor of 2 or more) than that
required to fit the rising phase of an isometric tetanus
(e.g. Huxley, 1957; Cooke, White & Pate, 1994; Piazzesi &
Lombardi, 1995).

A point of uncertainty concerns the axial spacing of
successive binding sites along the thin filament accessible for
a given myosin bridge (see also Discussion in Huxley &
Tideswell, 1996). In the present study only one actin site,
spaced at 37 nm intervals, is assumed to be within reach of
the myosin bridge during shortening and isometric activity.
Piazzesi & Lombardi (1995), on the other hand, made the
assumption that bridges during shortening are able to
detach and thereafter rapidly attach again to an adjacent
actin binding site 5 nm apart. Their model accounts, in a
straightforward way, for the rapid repriming of the power
stroke and predicts that attachment of the cross-bridge to
actin may occur at a higher rate during shortening than
during isometric contraction. This is in line with the apparent
velocity dependence of the attachment rate constant assumed
here. However, the model of Piazzesi & Lombardi (1995),
while very successful in some respects, does not seem to
correctly predict the biphasic shape of the force-velocity
and stiffness-velocity relationships in striated muscle. A
synthesis of the central ideas of the present model (points 1
and 2 above) and the hypothesis of more closely spaced and
readily available binding sites in the model of Piazzesi &
Lombardi (1995) may be useful in future attempts to obtain
a more complete model of muscle mechanics.

Physiological aspects of the biphasic force-velocity
relationship
The biphasic shape of the force-velocity relationship has
important implications for the function of the muscle in the
body. With this particular design the force-velocity relation-
ship provides relatively high velocities at intermediate loads
thus enabling a high maximum power output of the muscle.
At the same time, by virtue of the high-force curvature, the
muscle has acquired a mechanism that confers mechanical
stability on the myofilament system.

The high-force curvature brings the force-velocity relation-
ship into an almost flat region as the load approaches PO.
The flat region extends to approximately 1-6Po during
stretching at which point any further increase in load leads
to a rapid elongation of the muscle (see Fig. 7 in Edman,
1988). Between 90 and 120% of PO the velocity of
shortening or elongation differs by merely 1-2% of Vmax
(Edman, 1988). That is, the -muscle stays nearly isometric
within this range and any tendency towards redistribution
of sarcomere length between weaker and stronger segments
along the muscle fibres is therefore minimized under these
conditions. The relatively large differences in contractile
strength (-4% of PO) that may exist along the length of a
muscle fibre (Edman, Reggiani & teKronnie, 1985) are1995). It is also worth pointing out in this connection that
therefore partly neutralized in this way.
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The flat portion of the force-velocity relationship is of
particular significance in situations when the muscle is
momentarily overloaded, i.e. when the load on the muscle
temporarily exceeds PO. This may occur, for example, when
the leg muscles have to absorb the momentum of the body
during jumping and running. Under such conditions, as
indicated by the force-velocity relationship, the active
muscle fibres will be able to hold the extra load (within the
limits given above) with very little change in length. It is
difficult to conceive of an extramuscular mechanism that
would be equally effective in protecting the muscle from
being overstretched. Recruitment of additional motor units
in order to match the overload would, for example, not be
fast enough to serve the purpose; the muscle would yield
and elongate well before any new motor units would come
into action. The flat region of the force-velocity relationship
may thus be said to represent a highly effective intracellular
servomechanism that minimizes the redistribution of
sarcomere length along the muscle at high loads and, most
significantly, that prevents the muscle from being unduly
stretched in situations when the load is suddenly raised
above the isometric force.

APPENDIX
Description of cross-bridge model
The cross-bridge model used in the present study is based
on the assumption (Huxley & Simmons, 1971) that force is
generated by an attached cross-bridge according to a multi-
step process in which each new step leads to tighter binding
between the actin and myosin moieties. In the present
scheme, similar to the models described by Piazzesi &
Lombardi (1995) and Huxley & Tideswell (1996), the bridge,
after attachment, is assumed to undergo two steps and by
each of these steps the linear cross-bridge elasticity is
extended by 5 nm. The model thus consists of three attached
cross-bridge states denoted AO, Al and A2 in the scheme
presented in Fig. 5. In addition to these states, in which
cross-bridges can exist at different degrees of elastic
extension or compression, there is one detached cross-bridge
state, A3. Of the three attached states, Ao represents the
weakest binding to actin and A2 the strongest binding as is
illustrated by the free energy diagram in Fig. 8.

The rate constants for the transition between the different
cross-bridge states depend on the distance between the
bridge and the actin binding site. The distance is expressed
in terms of the variable x. This variable is taken as zero
when the relative position between a cross-bridge and the
nearest actin site is such that the cross-bridge produces zero
force if attached in state A2. The x value is taken as positive
when the cross-bridge in this state produces force in the
shortening direction. The rate constants in Fig. 5 are
illustrated in Fig. 9 as functions of x. In the simulations
shown in Fig. 6B-E the rate constants k30 and ko3 are
assumed to depend on the speed of shortening as well and

are referred to as k30 (x,v) and ko3 (x,v). However, in the
general description of the model that follows below (also
covering simulations in which k30 and ko3 are assumed to be
velocity independent, see Fig. 6A) the designations k30(x)
and kO3(x) are used throughout. Except for some simplifying
approximations (see below) all forward (kij(x)) and reverse
(kji(x)) rate constants in a pair are, for a given x value,
related according to the equation:

kij(x)/kji(x) = exp(-(Gj(x) - Gj(x))/kT),
(ij) E {(O,1); (1,2); (3,O)}. (Al)

In this expression Gi(x) and G (x) are the Gibbs free energies
of cross-bridges in states Ai and Aj, respectively, at a given
x value. T is the absolute temperature (276 K used in the
present analysis) and k is the Boltzmann constant. For some
rate constants eqn (Al) was not obeyed exactly but some
approximations were made. The rate constant k32(x) was
thus set to zero for all x values. This was justified since the
drop in free energy in the model between the states A2 and
A3 is large enough to make the detachment step essentially
irreversible (k32/123 < 00004 according to eqn (Al)). The
following approximations were made in the calculations
described in the section 'Simulation of isometric tetanus and
of tension transients' below: with the exception of k12(x),
any rate constant that was smaller than 0 01 s-5 in a region
was set to zero if the ratio between this constant and the
rate constant in the reverse direction was less than 00001.
The numerical value of k12 (x) was not in any case smaller
than 0 01 s-'.
The distance between consecutive binding sites on the thin
filament is assumed in the model to be 37 nm which is equal
to the distance between two successive cross-overs between
the two right-handed helical strands of actin. The large
distance between consecutive actin sites means that a cross-
bridge detaching from actin is not immediately available for
reattachment to a new actin site. A given bridge in the
model is thus within reach of only one actin site. However,
when a large number of cross-bridges is considered, the
distribution in x, i.e. the distribution of the actin sites
relative to their nearest myosin head, may be regarded
uniform (Huxley, 1957; Hill, 1974). Considering the
ensemble of myosin heads in a half-sarcomere of a fibre it
may thus be assumed (Huxley, 1957; Hill, 1974) that an
equal number of actin binding sites exists for each x value,
i.e. between x and dx where dx is infinitesimally small.
Therefore, if the probability of a cross-bridge of being in
any of the states AO, Al, A2 and A3 in the interval (x,
x + dx) is denoted by ao(x), al(x), a2(x) and a3(x),
respectively, then the sum:

3

Zai(x)= 1,
i=0

for all intervals (x, x + dx).
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The behaviour of the model may be described by the
following set of equations in the state probabilities:

dao aao dt + aa= k30(x)a3 + k1o(x)al- (k03(X)+ kol(X))a0,

(A2)

da1 aa, dx + aaI = kol(x)ao+ /1(x)a2-(k,o(X)+ k12(x))a,
dt ax dt at2

(A3)

da2 aa, dx a% x)+ k=_2(x)a1+k32(x)a3-(k21(X)+k23(x))a2,dt ax dt at

(A4)

da3 aa3 dx aa3 (x)ao- R32(X)+k30(x))a3-+ ~= k23(X)a2 + k03()o-(3()+k()),dt ax dt a)t

3

Zai(x,t) = 1, for all (x, x + dx) and t. (A6)
i=0

In eqns (A2)-(A5) ai ai(x,t); i = 0,1,2,3 but the arguments
have been omitted above for practical reasons.

Average force, <F>, per myosin head may be obtained from
the relationship:

K
d/2

<F> =- [ao(x)(x-10) + ai(x)(x-5) + a2(x)x]dx, (A7)
8 -a/2

where K is the cross-bridge stiffness (0 4 kT nm2
1-5 pN nm-') and a is the distance between adjacent actin
sites (37 nm). The variable x is given in nanometres.

The average stiffness, <S> was obtained from the relation-
ship:

K [a/2
<S>= I[ao(x)+ al(x)+ a2(x)]dx. (A8)

-8/2

Implementation of the model
Simulation of steady-state force-velocity data. During
steady-state shortening the partial derivatives aai(x,t)/at
(i = 0,1,2,3) in eqns (A2)-(A5) are equal to zero and the
shortening velocity (v = dx/dt < 0) is constant. The set of
eqns (A2)-(A6) can therefore, under these conditions, be
solved as a system of ordinary differential equations in x

with x-dependent rate constants. Such solutions were

obtained for relevant x values and for velocities varying
between v = 0 05 nm s-5 and v = 1660 nm s-5. The solutions
were obtained by means of a fourth order Runge-Kutta
method with automatic step size adjustment. Varying the
error tolerance level in the algorithms by a factor of 100 did
not significantly affect the outcome of the calculation. The
algorithms were carried out in the commercially available
program Simnon (SSPA Systems, Gothenburg, Sweden).

Simulation of isometric tetanus and of tension
transients. Although the main purpose of the model in the
present study was to simulate the force-stiffness-velocity

relationships described earlier (see Results), it was also of
interest to test the validity of the model for simulating the
time course of the isometric tetanus and the tension
transients in response to fast length steps. To this end the
model was implemented in Pascal code using Turbo Pascal
software. Differential equations were solved numerically
using an implicit Runge-Kutta method (second order) based
on the trapezoidal rule (cf. Gear, 1971). This method is
suitable for the stiff differential equations of the present
work. Solutions of the set of eqns (A2)-(A6) were obtained
for 351 equally spaced x values (xj) in the range
-10 nm x < 25nm (j= 1,2,...351; xl=-lOnm,
X351= 25 nm). The boundary conditions for the state
probabilities were (for all values of the time, t):

ai(-10,t) = ai(25,t) = 0, i = 0, 1, 2,

a3(-10,t) = a3(25,t) = 1.

The solution of the differential equations for a given value x

provides an average value for the range:

x -Ax/2Ax< x +Ax/2,

where the distance Ax between adjacent xj values is 0'1 nm.
Reducing Ax by 50% did not produce any significant
change of the computed behaviour of the model.

In the following ao(xj), a, (xj), a2(xj) and a3 (xj) represent the
probability that bridges in the range:

x,-Ax/2 < x < x, + Ax/2,
are in the states A0, Al, A2 and A3, respectively. The average
force and stiffness were determined from eqns (A7)-(A8)
using the trapezoidal rule to calculate the integrals. The
simulations were started with the initial condition where
a3(xj) = 1 and ao(xj) = a,(xj) = a2(xj) = 0 for all values of j.
This would correspond to the relaxed state in a muscle fibre
with all cross-bridges being detached from actin. After
starting the simulation in this condition there was first a
rise in force corresponding to the events recorded during the
onset of an isometric tetanus. In simulating the rising phase
and the tetanus plateau the time step (At) for the numerical
solution of the differential equations was normally 0-8 ms.
The results of the simulations were not significantly affected
by a twofold change of this value. As illustrated in Fig. lOA,
the rising phase of an isometric tetanus predicted by the
model agrees well with recordings from intact fibres at the
temperature (1-3 °C) considered.

Tension transients in response to fast release steps were
simulated when the isometric force was > 98% of the
steady-state value (simulated time > 500 ms). Fast releases
with a finite velocity (length step complete in 100-600 ,gs
depending on the amplitude of the length change) were
approximated in the simulations by n times (5 < n < 30)
shifting of the cross-bridge population (for each xj value) by
a number of discrete j values equal to (AL/n)/Ax. Here AL is
the total amplitude of release, the numerical value of AL
and n being chosen to make the ratio (AL/n)/Ax an integer
in each case. By using several consecutive substeps to
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simulate the entire length change a finite velocity of the
complete release movement was obtained. In this way large
negative tensions during the release were prevented thus
simulating the true experimental situation more faithfully.

After each substep (amplitude AL/n) a time interval of
20 ,us was allowed for a new distribution of cross-bridges to
be established before the next substep was initiated. This
new cross-bridge population was calculated by numerical
solution of eqns (A2)-(A6) using the appropriate state
probabilities ai(xj) (i = 0,1,2,3; all j) as initial values. The
time interval, At, used for numerical integration of the
differential eqns (A2)-(A5), was 4 /is. The procedure was
repeated n times until the total release movement, AL,
had been completed. No further shifts of the cross-bridge
population along the x-axis were thereafter imposed in the
simulation, but the numerical solution of eqns (A2)-(A6)
was continued in order to determine the force recovery after
the release. During the first millisecond after the release At
was 4/s. This value was increased to 10 ,us in the interval
1-5 ms after the release, to 60 Iss between 5 and 40 ms, to
100 ,us between 40 and 250 ms after the release and to
200 ,us for the remainder of the simulation period. A
doubling of these values of At did not significantly change
the outcome of the simulation.

Figure 10 shows simulated tension transients in response to
two different release steps performed during the plateau of
the isometric tetanus. The tension response can be seen to
exhibit the same general features as observed in muscle
fibres with distinct T1 and T2 components and a final slow
recovery of force towards the pre-release level. Plottings of
T, and T2 curves (not illustrated) likewise agree well with
measurements on intact fibres (Ford, Huxley & Simmons,
1977; Piazzesi et al. 1992), the curves extrapolating to the
x-axis at 3 and 10 nm, respectively.
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