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Abstract: Infection by retroviruses and the mobilization of transposable elements cause DNA damage
that can be catastrophic for a cell. If the cell survives, the mutations generated by retrotransposition
may confer a selective advantage, although, more commonly, the effect of new integrants is neutral
or detrimental. If retrotransposition occurs in gametes or in the early embryo, it introduces genetic
modifications that can be transmitted to the progeny and may become fixed in the germline of that
species. PIWI-interacting RNAs (piRNAs) are single-stranded, 21–35 nucleotide RNAs generated
by the PIWI clade of Argonaute proteins that maintain the integrity of the animal germline by
silencing transposons. The sequence specific manner by which piRNAs and germline-encoded PIWI
proteins repress transposons is reminiscent of CRISPR, which retains memory for invading pathogen
sequences. piRNAs are processed preferentially from the unspliced transcripts of piRNA clusters. Via
complementary base pairing, mature antisense piRNAs guide the PIWI clade of Argonaute proteins
to transposon RNAs for degradation. Moreover, these piRNA-loaded PIWI proteins are imported
into the nucleus to modulate the co-transcriptional repression of transposons by initiating histone
and DNA methylation. How retroviruses that invade germ cells are first recognized as foreign by the
piRNA machinery, as well as how endogenous piRNA clusters targeting the sequences of invasive
genetic elements are acquired, is not known. Currently, koalas (Phascolarctos cinereus) are going
through an epidemic due to the horizontal and vertical transmission of the KoRV-A gammaretrovirus.
This provides an unprecedented opportunity to study how an exogenous retrovirus becomes fixed in
the genome of its host, and how piRNAs targeting this retrovirus are generated in germ cells of the
infected animal. Initial experiments have shown that the unspliced transcript from KoRV-A proviruses
in koala testes, but not the spliced KoRV-A transcript, is directly processed into sense-strand piRNAs.
The cleavage of unspliced sense-strand transcripts is thought to serve as an initial innate defense
until antisense piRNAs are generated and an adaptive KoRV-A-specific genome immune response is
established. Further research is expected to determine how the piRNA machinery recognizes a new
foreign genetic invader, how it distinguishes between spliced and unspliced transcripts, and how
a mature genome immune response is established, with both sense and antisense piRNAs and the
methylation of histones and DNA at the provirus promoter.
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1. Retrovirus Replication Cycle

The Retroviridae family of viruses consists of two subfamilies, Orthoretrovirinae and
Spumaretrovirinae, and 11 genera [1]. The Orthoretrovirinae subfamily consists of the Al-
pharetrovirus, Betaretrovirus, Deltaretrovirus, Epsilonretrovirus, Gammaretrovirus, and Lentivirus
genera. The Bovispumavirus, Equispumavirus, Felispumavirus, Prosimiispumavirus, and Simiis-
pumavirus genera are in the Spumaretrovirinae subfamily. All retroviruses possess gag, pol,
and env genes, although there are more complex retroviruses that encode for additional
auxiliary genes such as tat, tax, rev, and rex [2]. gag encodes the structural proteins that
form the virion, pol encodes the replicative enzymes, and env encodes glycoproteins for
binding and fusion into the host cells that bear cognate receptors.

Retrovirus virions are spherical and enveloped, with a diameter of 80–120 nm [2,3]. Lining
the inner surface of the viral membrane is the gag-encoded matrix protein (MA) [3–6]. The
core of the retroviral virion is a complex fullerene lattice of a gag-encoded capsid protein (CA)
that encapsulates replication enzymes and two copies of the viral genome [7]. HIV-1 capsid
cores isolated from acutely infected cells possess all the viral components necessary to complete
reverse transcription and initiate integration of the resulting cDNA into a dsDNA target [8].
The retroviral genome is single-stranded, positive-sense RNA. It generally has a 7-methyl cap
structure at the 5′ end, although alternative cap structures have been reported [9,10], and it
is polyadenylated at the 3′ end. The two copies of genomic RNA in the virion dimerize via
hydrogen bonds and are coated with the gag-encoded nucleocapsid (NC) protein [11–13].

The virion membrane that encloses the CA core is decorated with env-encoded gly-
coproteins that recognize specific receptors on the target cell membranes to mediate ad-
sorption and fusion, delivering the retrovirus core into the host cell cytoplasm [14]. After
entry, the viral RNA is used as a template by the viral reverse transcriptase, resulting in
a double-stranded cDNA that is flanked by long terminal repeats (LTRs) [15] (Figure 1).
The resulting cDNA product is longer than the viral genomic RNA template because of
two programmed strand-transfer steps catalyzed by the viral reverse transcriptase. The
LTR is a regulatory sequence made up of the U3, R, and U5 segments [16,17]. After the
integration of the viral cDNA into the host genome, the cellular RNA polymerase II (RNAP
II) localizes to the U3 region of the 5′LTR and initiates the transcription of the provirus
at the beginning of R. The 3′ LTR, conversely, is a transcription terminator as it contains
signals for polyadenylation and RNA cleavage [17].

To generate multiple polyproteins from the single primary transcript, all retroviruses
deliver an unspliced transcript and at least one spliced transcript to the cytoplasm
(Figure 1). Unspliced transcripts are poorly transported into the cytoplasm; to evade
nuclear retention, retroviruses have cis-regulatory elements. For instance, Mason–Pfizer
monkey virus (MPMV) and Murine Leukemia virus (MLV) transcripts possess a cis-acting
element referred to as the constitutive transport element (CTE) for export into the cyto-
plasm in an NXF1/NXT-dependent manner [18–22]. Human immunodeficiency virus type
1 (HIV-1), which makes more than 100 alternatively spliced RNAs from a single primary
transcript, encodes a protein called Rev, which binds to the rev response element (RRE)
of incompletely spliced HIV-1 transcripts and recruits CRM1 for nuclear export [23–30].
Transcripts are translated into viral structural and enzymatic proteins which assemble into
immature viral particles, usually on the cytoplasmic face of the plasma membrane. The
viral particles are then released from the plasma membrane and undergo proteolytic pro-
cessing to create mature infectious viruses, which consequently infect target cells that are
susceptible by virtue of expressing cognate cell surface receptors [31–33]. Retroviruses have
obligate reverse transcriptase and integrase activities and have been exploited extensively
to understand fundamental processes in molecular biology, including the regulation of
gene expression [34].
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Figure 1. Retroviral genomic RNA and its transformations. Shown are schematic diagrams for the
virion-associated genomic RNA, the viral cDNA, and the unspliced and spliced transcripts that are
common to all retroviruses. All retroviruses possess at least the three genes, gag, pol, and env. Note
that during reverse transcription, two sequential strand-exchange reactions extend the 5’ and 3’ ends
of the cDNA beyond the limits of the genomic RNA template.

2. Exogenous and Endogenous Retroviruses

To complete their lifecycle, retroviruses must establish a DNA provirus, which becomes
a permanent genetic element within the infected cell and any daughter cells. If retroviruses
are capable of transducing germline cells or the precursors of germ cells, the viruses can
be transmitted vertically from parent to progeny [35,36]. Like exogenous retroviruses, such
endogenous retroviruses (ERVs) could propagate by making mature viral particles which
subsequently infect adjacent germline or somatic cells. ERVs alongside members of the
Pseudoviridae (Ty1-copia-like), Metaviridae (Typ3-gypsy-like), and Belpaoviridae (BEL-Pao-like)
families are classified as LTR-retrotransposons [1,37–39]. Similar to retroviruses, the genome
of pseudoviruses, metaviruses, and belpaoviruses have LTRs and encode for the Gag and
Gag–Pol polyproteins, with few members also expressing an env-like gene [40–45]. As such,
they form virus-like particles and reverse-transcribe their RNA genomes using tRNA primers.
However, unlike retroviruses, most members of the Pseudoviridae, Metaviridae, and Belpaoviridae
families do not have an extracellular phase.

Since the discovery of ERVs in the late 1960s, it has been shown that ERVs constitute
a large proportion of vertebrate genomes [46]. In the human genome, ERVs make up 8%
of the DNA sequence and transposons more generally make up 45% [47]. However, most
ERVs and other transposons do not encode functional proteins due to the accumulation
of mutations. Thus, they do not have the potential to generate infectious viral particles.
However, they may still transcribe RNAs, possess enhancer elements that influence host
gene expression, or promote chromosome recombination. The increased expression of ERVs
is associated with various cancers, autoimmune diseases, amyotrophic lateral sclerosis,
and multiple sclerosis, indicating that they can be activated as part of a more generalized
stress response [48–51]. These findings suggest that, despite posing a threat to the integrity
of the host genome, in some cases, retrotransposition is adaptive. ERVs can even be
repurposed to serve essential cellular functions. For instance, Syncytin-1 is the envelope
of endogenous retrovirus-W (ERV-W) that is expressed in trophoblasts and is essential
for placental development [52,53]. Retrotransposon-derived proteins can also facilitate
the transfer of RNA for intercellular communication. In Drosophila, the activity-regulated
cytoskeleton-associated protein (Arc), which is derived from retroviral Gag, modulates
the transfer of its mRNA across synaptic boutons by forming extracellular vesicles [54,55].
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Similarly, viral-like particles made from paternally expressed gene 10 (PEG10) mediate
placenta formation by transferring RNA [56–58]. Additionally, ERVs are located adjacent
to the regulatory regions of immune genes and the binding sites of the tumor suppressor
protein p53 [59,60]. Thus, they regulate the transcriptional network of p53 and innate
immunity. ERVs have also been exapted as splice donor or acceptor sites [61]. Hence,
domesticated ERVs contribute to genomic evolution and are necessary for cellular functions
and development.

3. Fixation of Endogenous Retroviruses in the Host Genome

Most ERVs are relics of ancient retroviruses that invaded the genome millions of
years ago. No replication-competent endogenous retroviruses have been detected in the
human genome, whereas some mouse strains have replication-competent retroviruses in
their genome [62–64]. For example, the AKR mouse genome has two copies of the AKR
gammaretrovirus that are capable of retrotransposition [65]. Currently, the Koala retrovirus
(KoRV) is invading wild and captive koalas (Phascolarctos cinereus) in Australia [66–68].
KoRV is associated with lymphoma and leukemia due to the presence of viral particles
in leukemic koala tissues and in mitogen-stimulated peripheral blood mononuclear cells
(PBMCs) [69–71]. KoRV induces immunosuppression and thus increases the susceptibility
of koalas to infection with chlamydia, which consequently leads to blindness and infertility,
as well as lymphoid neoplasia [72–74]. Despite the many health consequences of infection
with the KoRV retrovirus, there are currently no diagnostic assays, vaccines, or treatment
regimens available.

The origins of KoRV have yet to be ascertained and remain a debatable topic. KoRV
shares 78% nucleotide sequence identity to the gibbon ape leukemia virus (GaLV), demon-
strating the close taxonomic relationship between the two viruses [75–78]. Gibbons and
koalas, hosts of GaLV and KoRV, respectively, are evolutionarily distant and occupy dif-
ferent territories separated by the Wallace Line [78–80]. More importantly, GaLV has only
been reported in captive gibbons [78]. Due to the geographical and phylogenetic distance
of primates and koalas, direct transmission is unlikely [81]. Various GALV–KoRV-related
viruses have been isolated from bats and rats; for instance, Hervey pteropid gammaretro-
virus (HPG) and flying fox retrovirus in bats, [82–84], and the Melomys burtoni retrovirus
(MbRV) and complete Melomys woolly monkey retrovirus (cMWMV) in rodents [85–87].
The phylogenetic distance between GaLV and KoRV suggests that there are yet more
retroviruses that are unknown which link GaLV and KoRV [83].

KoRV is heterogeneous, with twelve different variants falling into the following three
major clades based on the hypervariable region of the env: (a) KoRV-A, (b) KoRV-B, and
(c) KoRV-C to -I and K-M [88–92]. KoRV-A uses the sodium-dependent phosphate trans-
porter 1 (PiT1) receptor while KoRV-B employs the thiamine transporter 1 (THTR1) [75,92].
The other KoRV variants have low prevalence rates, and their receptors are unknown. All
KoRV subtypes are spreading horizontally, but the KoRV-A subtype is also transmitted
vertically from one generation to the next, with some of the literature suggesting that
the germline invasion of KoRV-A began 22,200–49,900 years ago [68,77,93]. While KoRV-
A proviruses are found in large numbers in the germ cells of koalas from the north of
Australia—on average, each individual animal has ~70 unique integrants—there are koalas
in the south that do not have KoRV-A in their germline [68,94].

Recombinants of KoRV-A, referred to as recKoRV, are observed in the germline of
koalas. recKoRVs typically possess the 5′ and 3′ ends of KoRV-A and the phascolarctid
endogenous retroelement (PhER) env and LTR in the middle [95] (Figure 2). Interest-
ingly, even in koalas from the south that do not have endogenous KoRV-A, recKoRVs
are present [95]. How recKoRVs were established in animals that do not possess KoRV-A
is unclear. Nonetheless, the endogenization of KoRV-A in real time provides a unique
opportunity to observe and understand how retroviral integration into germ cells leads to
fixation of an endogenous retrovirus in the genome of a species, how this process affects
host evolution, and how viral resistance and immunity are established.
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Figure 2. Structure of recKoRV. The koala retrovirus, KoRV-A (shown in gray), encodes gag, pol, and
env with long terminal repeats at the ends. PhER (shown in blue), is an endogenous retrovirus with
no protein coding capacity. Recombinant KoRV (recKoRV) typically contains the KoRV-A 5’ LTR,
truncated gag, truncated env, and 3’ LTR with the 3’end of PhER in the middle.

4. Retrovirus Restriction Factors and Countermeasures

Host cells express restriction factors that interrupt the viral life cycle to block viral repli-
cation. Simultaneously, viruses encode proteins that antagonize these restriction factors
(Figure 3). The transmembrane protein, serine incorporator 5 (SERINC5), is incorporated
into HIV-1 virions and reduces infectivity by interrupting the fusion of the virus to the host
cell membrane [96,97]. However, HIV-1 Nef, MLV glycoGag, and equine infectious anemia
virus (EIAV) S2, counteract SERINC5 by preventing its incorporation into virions. Friend
virus susceptibility gene 1 (Fv1) and tripartite motif-containing protein 5 (TRIM5) block
retroviruses by interacting with the capsid immediately after entry [98–102]. Upon recog-
nition of the retroviral capsids, TRIM5 forms a complementary lattice which prematurely
disassembles the capsid, blocks capsid transport to the nucleus, and promotes the transcrip-
tion of inflammatory cytokines via the activation of the TAK1 signaling pathway [103–109].
Cyclophilin A, a peptidyl-prolyl cis-trans isomerase protein, interacts with HIV-1 capsid
and prevents TRIM5 from disrupting the viral capsid [110,111]. The sterile alpha-motif
(SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) reduces the
dNTP pool and restricts reverse transcription in non-dividing cells [112,113]. The Vpx
protein encoded by HIV-2 and the related SIVs acts as an adaptor that loads SAMHD1
onto the CRL4DCAF1 E3 ubiquitin ligase for the subsequent proteasomal degradation of
SAMHD1 [113,114]. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G
(APOBEC3G), another restriction factor, introduces mutations into the reverse-transcribed
DNA by deaminating cytosine into uracil [115–118]. Viral infectivity factor (Vif), an ac-
cessory protein of HIV-1, inhibits the virion incorporation of APOBEC3G [119–122]. At
the end of the retroviral life cycle, tetherin inhibits the newly assembled virion particles
from leaving the cell. Viral protein Vpu binds to tetherin and displaces it from the site
of viral assembly [123,124]. Infection by exogenous retroviruses can thus be inhibited by
preventing or interfering with the function of the viral proteins [125–127]. As host cells
express innate immune defenses that prevent infection, viruses then express factors to
overcome these defenses.

After the integration of the retrovirus into the genome, RNAP II and transcriptional
factors mediate the transcription of the provirus. The host has evolved mechanisms such
as Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KZFPs) and
the human silencing hub (HUSH) complex to restrict the retrovirus at this stage of the
lifecycle (Figure 3) [128–132]. KZFPs are the largest family of vertebrate-specific transcriptional
repressors. They recognize transposable element (TE)-embedded sequences as genomic targets
and recruit transcriptional regulators such as TRIM28 (KAP1). TRIM28 consequently serves
as a scaffold for the heterochromatin-inducing machinery, the heterochromatin protein 1
(HP1), the SET Domain Bifurcated 1 (SETDB1), and the NuRD complex [128,133–136]. To
avoid repression by the KZFPs, transposons mutate the binding sites of the zinc finger
proteins [129,137].
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Figure 3. Host restriction factors and retroviral antagonists. Restriction factors are shown in red
and viral antagonists are shown in blue. CypA: cyclophilin A; KZFPs: Kruppel-associated box
(KRAB)-containing zinc finger proteins; HUSH: human silencing hub (HUSH) complex; Vpr: Viral
protein R: Vif: Viral infectivity factor; Vpu: Viral protein U; APOBEC3G (apolipoprotein B mRNA
editing enzyme, catalytic subunit 3G); SAMHD1: SAM domain and HD domain-containing protein 1.

The HUSH complex is another host-encoded transcriptional silencing machine that is com-
posed of the chromodomain protein MPHOSPH8 (MPP8), the RNA binding protein PPHLN1
(Periphilin 1), and FAM208A (TASOR) [138]. The importance of the HUSH complex as a barrier
to retrovirus replication is emphasized by the fact that most primate immunodeficiency viruses
encode accessory proteins, either Vpx or Vpr, that alleviate silencing by inducing the degrada-
tion of HUSH complex proteins [139,140]. The HUSH complex can target diverse intronless
mobile elements and unintegrated retroviral DNA by recruiting MORC2, an ATP-dependent
chromatin remodeler, and SETDB1 [131,132,138,141,142]. Exactly which molecular features in
a retrovirus render it a target of HUSH complex-mediated silencing is a matter of ongoing
investigation, but they include long coding sequences, lack of splicing/introns, and adenine-rich
sequences [141].

5. Introduction to piRNAs

Piwi-interacting RNAs (piRNAs) are another mechanism by which host cells silence
transcription of retroviruses. piRNAs were first identified as repeat-associated small
interfering RNAs (rasiRNAs) in the testes of Drosophila melanogaster in 2001 [143]. Hyperex-
pression of the X-linked Stellate (Ste) genes, which encode for a protein homologous to the
β subunit of protein kinase CK2, results in the formation of crystalline aggregates in sper-
matocytes and male sterility [144]. The Suppressor of Stellate (Su(Ste)) on the Y-chromosome
is required for the production of piRNAs that repress Ste and maintain fertility. More-
over, the flamenco locus encodes piRNAs that suppress the gypsy family of endogenous
retroviruses [145,146]. These studies demonstrated the requirement of piRNAs for gameto-
genesis and the suppression of transposons. The importance of piRNAs for maintaining
fertility was also shown with the P element DNA transposon that invaded the Drosophila
melanogaster genome in the 1950s. While the progeny of P strain female flies and M strain
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male flies are fertile, the offspring of P strain male flies crossed with M strain female flies
are sterile, a phenomenon referred to as hybrid dysgenesis [147–151]. Maternally deposited
piRNAs of P strain female flies provide protection against P elements [152–154]. Failure
of the piRNA pathway to silence transposons causes the accumulation of double-strand
breaks and the activation of the DNA damage response, which interferes with germline
development [155,156]. piRNAs have since been observed in arthropods, nematodes, birds,
marsupials, eutherians, and sponges [94,157–163].

piRNAs are loaded onto the PIWI clade of effector Argonaute proteins to form a multi-
protein complex called the piRNA-induced silencing complex (piRISC). Argonautes have
the following four functional domains: the N–terminal (N), PAZ (PIWI–Argonaute–Zwille),
MID (middle domain), and the PIWI domains [164,165]. The MID and PAZ domains
bind to the 5′ and 3′ ends of the small RNAs, respectively, and the PIWI domain pos-
sesses the RNaseH-like catalytic tetrad, DEDX (X is usually H or D), for endonucleolytic
slicing [166–173]. PIWI proteins require GTSF1, a small zinc-finger protein, for their en-
donucleolytic activity [174]. GTFS1 binds to a piRNA-bound PIWI protein and facilitates
a conformational change of the Argonaute protein to its active form. piRNAs are de-
rived from long, single-stranded RNAs (ssRNAs). Mature piRNAs have a size range of
21–35 nucleotides, are characterized by 2′-O-methylation at the 3′ end, and a 5′-uridine or
adenosine at the 10th [175–178].

6. piRNA Response in Fruit Flies

Drosophila melanogaster plays a crucial role as an animal model to study piRNAs and
the piRNA pathway. In D.melanogaster, piRNAs are produced in somatic follicle cells and
nurse cells from piRNA clusters, which are several hundreds to thousands of kilobase-long
regions within the genome [179]. These piRNA clusters are enriched with fragmented and
full-length transposons and are thus the genetic memory for the mobile elements that pre-
viously invaded the host germline, analogous to CRISPR (clustered regularly interspaced
short palindromic repeats) arrays [179]. In the nurse cells, the HP1 homolog, Rhino, binds to
the trimethylated histone 3, lysine 9 (H3K9me3) marks on the dual-strand piRNA clusters
through its C-terminal chromodomain [180,181]. Such binding is stabilized by additional
factors, including the zinc-finger protein Kipferl [182]. Rhino then recruits Deadlock and
Cutoff to the dual-strand piRNA clusters, which lack clear signatures of RNAP II promot-
ers [183–188]. The complex of Rhino, Deadlock, and Cutoff (RDC) initiates transcription and
suppresses splicing, 5′ capping, polyadenylation, and premature transcription termination
of nascent piRNA-precursor transcripts [183,187,189–192]. The Transcription/Export (TREX)
complex facilitates the export and localization of these cluster transcripts to the nuage, a
perinuclear electron-dense structure found near nuclear pores in the cytoplasm [193,194].
These transcripts are processed into mature piRNAs that are loaded onto the Drosophila PIWI
proteins, Aubergine (Aub), Argonaute 3 (Ago3), and Piwi [179,195,196]. In the nuage, Ago3,
loaded with an “initiator” piRNA, complementarily binds to antisense piRNA cluster tran-
scripts thus generating a pre-pre-piRNA intermediate with a 5′ monophosphate [179,197].
This intermediate is loaded onto the Aubergine (Aub) PIWI protein and is either transferred
to the outer membrane of the mitochondria via MOV10L1 (Armitage) or it remains in the
nuage, where it is trimmed at the 3′ end by Nibbler (PNLCD1) as well as 2′O-methylated
at the 3′ end by Hen1 (HENMT1) to enhance stability [175,198–201]. This newly generated
“responder” piRNA binds to sense cluster transcripts, which are then processed to mature
piRNAs loaded onto Ago3. This feed-forward amplification loop, known as the ping-pong
cycle, increases piRNA abundance [179] (Figure 4). At the mitochondrial membrane, Zucchini
(MITOPLD) cleaves the Aub-bound pre-pre-piRNA consecutively, from the 5′ to the 3′ direc-
tion, to generate intermediates (pre-piRNAs) with a monophosphorylated 5′ end [202–206].
These pre-piRNAs are primarily loaded onto Piwi, another PIWI protein, and processed
into mature piRNAs [198,199,201,205,207–211]. This generation of trailing piRNAs from the
consecutive endonucleolytic cleavage is called phasing (Figure 4) [202,203]. piRNA-bound
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Piwi localizes into the nucleus and recruits chromatin modifiers to establish the epigenetic
silencing of transposons in a transcription-dependent manner [212–215].
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Figure 4. piRNA biogenesis in nurse cells of Drosophila ovaries. D. melanogaster ovaries contain
a series of developing egg chambers in linearly arranged repetitive strings called ovarioles. An
egg chamber is characterized by a germline cyst, which contains 15 germline nurse cells and an
oocyte that is surrounded by somatic follicle cells. In the nurse cells, germline dual-strand clusters
decorated with H3K9me3 marks bound by Rhino-Deadlock-Cutoff (RDC) complex are transcribed
by RNA Polymerase II. These transcripts are exported into the cytoplasm, where they are processed
into mature piRNAs by the ping-pong amplification loop or phasing. (a) Ping-pong amplification:
The feed forward cleavage of complementary transcripts by Aub and Ago3 results in piRNAs
with a 10-nucleotide overlap. (b) Phasing: Armi shuttles Aub bound to a piRNA precursor to the
mitochondria where Zucchini generates piRNA intermediates through cleavage adjacent to uridines
along the length of the precursor. These piRNA intermediates loaded on Piwi are then processed into
mature piRNAs.
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In somatic follicle cells, piRNAs are derived primarily from uni-strand piRNA clusters,
which have a clearly defined promoter, and like mRNAs, their transcripts are capped, spliced,
and polyadenylated [179,183,216–219]. Once in the cytoplasm, Yb, a protein that contains
a Tudor-domain and a DEAD-box RNA helicase domain, binds piRNA precursors and
sequesters them to Yb bodies [220–222]. In the Yb body, the piRNA precursor is processed
into a mature piRNA [222]. While all three of the PIWI proteins are expressed in the germline,
only Piwi is expressed in ovarian somatic cells [179,223]. Hence, the ping-pong pathway is
absent in somatic follicle cells and transposon repression occurs at the co-transcriptional level
via PIWI–piRNA-induced silencing complexes (piRISCs) [212,215,219,224].

7. piRNA Response in Mammals

In mammals, germ cells are induced from proximal epiblasts via the bone morpho-
genetic protein (BMP) and WNT signaling [225–227]. During mammalian development,
primordial germ cells (PGCs) proliferate as they migrate to the genital ridges, and are
globally demethylated which consequently reactivates transposons [228–231]. Upon ar-
rival at the genital ridge, PGCs adhere to the surrounding tissues and differentiate into
either quiescent prospermatogonia or meiotic oocytes [232–234]. In male germ cells, the
following distinct sets of piRNAs are produced: fetal pre-pachytene piRNAs, post-natal
pre-pachytene piRNAs, and pachytene piRNAs [235–241]. Quiescent prospermatogonia
produce the PIWI proteins, PIWIL2 and PIWIL4, which localize in the IMC (inter mito-
chondrial cement) and cytoplasmic piP bodies (P granules), respectively [236,237,242].
Due to global demethylation, the expression of both degraded and replication-competent
ERVs and transposons are upregulated [229,243–245]. These transposon transcripts are
consequently exported into the cytoplasm for processing into piRNAs.

piRNA-loaded PIWIL4 localizes into the nucleus where it binds to its cognate targets
and elicits changes in gene expression through the modification of the chromatin struc-
ture [246–250]. Thus, prenatal piRNAs mediate the reacquisition of methylation marks and
oversee the transcriptional repression of transposons. Soon after birth, PIWIL4 expression
ceases, but PIWIL2 expression persists through to the round spermatid stage [236,251].
Postnatal mouse (Mus musculus) cells with defective PIWIL2 or PIWIL4 arrest during the
early stages of meiosis I [236,237]. In golden hamsters (Mesocricetus auratus), however, the
loss of PIWIL2 or PIWIL4 engenders a more acute phenotype [238]. Seminiferous tubules
of golden hamsters deficient in PIWIL2 or PIWIL4 primarily contain sertoli cells, and the
remaining germ cells arrest at the zygotene, pachytene, or diplotene stages [238] (Figure 5).

After birth, gonocytes resume mitotic proliferation and, consequently, the first round
of spermatogenesis ensues [252,253]. Different sets of piRNAs mapping to repeats and the
3′UTRs of protein coding genes are expressed throughout the spermatogenic cycle [251].
However, the genomic sources of repeat-derived post-natal pre-pachytene piRNAs are dif-
ferent from those of prenatal piRNAs [247]. The production of the third class of piRNAs,
pachytene piRNAs, begins in mice and golden hamsters at the pachytene and leptotene stages
of meiosis, respectively. The appearance of pachytene piRNAs coincides with the expression
of PIWIL1; the disruption of this protein results in cell cycle arrest as round spermatids or
pachytene-like spermatocytes in mice and hamsters, respectively [238,254] (Figure 5). This is
because the expression of pachytene piRNA genes and piRNA biogenesis factors is regulated
by the transcription factors, A-MYB and TCFL5 [255,256]. Pachytene piRNA clusters originate
from intergenic loci and are divergently transcribed from a bidirectional promoter [255,257].
The function of most pachytene piRNAs, however, remains unknown. Possibly, pachytene
piRNAs are just selfish elements that propagate through the piRNA pathway, or they have a
more passive role in the formation and maintenance of the chromatoid body (CB), which is
a Ribonucleoprotein (RNP) granule. Hamsters encode an additional PIWI protein, PIWIL3,
which is not expressed in the prenatal or adult testis. Hence, PIWIL3−/− male golden hamsters
are fertile, and their testes display normal morphology [238].
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Figure 5. Spermatogenic defects of PIWI mutants in mice and hamsters. In mice, PIWIL2 and PIWIL4
mutants arrest at the zygotene stage of meiosis I and PIWIL1 mutants arrest at the round spermatid
stage. In hamsters, PIWIL3-KO does not cause any defect in the testes. PIWIL1-KO results in arrest
at the pachytene stage. PIWIL2 and PIWIL4 defective hamsters arrest during mitosis as gonocytes.
Solid lines show normal development; red crosses (x) indicate the stage of developmental block.

In females, PGCs differentiate into oogonia, which progress to the diplotene stage
of prophase I and remain dormant as primary oocytes until sexual maturity [258–260].
During the ovarian cycle, a small number of primary oocytes complete meiosis I, forming
secondary oocytes. Usually, only one secondary oocyte is released from the ovary and is
drawn into the fallopian tube. After ovulation, the oocyte arrests at metaphase II (MII)
until fertilization. piRNAs are dispensable for female fertility in mice and rats because
they express a short isoform of Dicer (Dicero) that is able to process dsRNA substrates
more efficiently, and Dicero-directed endogenous siRNAs effectively repress transposon
mobility in mouse and rat oocytes [261,262]. Hence, golden hamsters are utilized to study
the role of piRNAs in the female germline. Quiescent primary oocytes express PIWIL1,
PIWIL2, and PIWIL3. PIWIL2 expression gradually diminishes, but PIWIL1 and PIWIL3
expression persists and can be detected in MII-arrested secondary oocytes and two-cell
embryos [238,239,241,263]. However, piRNAs (~19) immunoprecipitate with PIWIL3 only
in MII-arrested oocytes [263]. Deficiency of the PIWI proteins does not cause histological
abnormalities. However, PIWIL1−/− hamsters are sterile and their embryos arrest at the
two-cell stage, while PIWIL3−/− hamsters have reduced fecundity because fewer embryos
proceed through to the later stages of embryogenesis [239] (Figure 6). This is because in
PIWIL3−/− oocytes, more pre-piRNAs are instead loaded onto PIWIL1 compensating for
the loss of PIWIL3. Conversely, upon the loss of PIWIL1, PIWIL3 expression decreases
which accounts for the more severe phenotype of maternal PIWIL1−/− golden hamster
embryos. Concurrent with these findings, PIWIL1 deficiency causes rogue TE expression
and significantly affects the transcriptome, while PIWIL3−/− does not change transposon
expression [238,241]. Analogous to pachytene piRNAs in the testes, most PIWIL1- and
PIWIL3-loaded piRNAs map to unannotated intergenic regions in the genome and very
few of them have complementary targets. Contrary to males, however, A-MYB expression
is low in the female gonad [263]. Therefore, female and male gonads do not share most
piRNA precursors, suggesting the sex-specificity of piRNA clusters. Thus, overall, piRNAs
modulate gametogenesis, fertility, and reproductive health by suppressing endogenous
retroviruses and other transposable elements.
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Consistent with the observations in animal models, pre-pachytene piRNAs dominate
juvenile human testis [264]. Pre-pachytene piRNAs primarily map to protein-coding genes,
and their expression remains constant through the different stages of spermatogenesis.
There is abundant pachytene piRNA production in adult humans, and low expression of
pachytene piRNAs is associated with azoospermia [264]. Mutations in the genes required
for piRNA production, including GTSF1, PIWIL1, PIWIL2, MOV10L1, HENMT1, PLD6,
and PNLCD1, impair human spermatogenesis, decrease male fertility, and are associated
with the activation of transposons [265]. Although many details differ, information gleaned
from animal models such as mice and hamsters have provided insight into the workings
of human piRNA and PIWI systems. Due to the absence of a robust mammalian cell
line that expresses the piRNA machinery, such studies require animal models making
the mechanistic experiments more laborious, difficult, and time-consuming. Nonetheless,
the germline spread of KoRV-A provides an exciting opportunity to study how the PIWI-
mediated silencing mechanism recognizes a foreign genetic element [68,266].

8. Features of piRNA Precursors

There are extensive studies on piRNA defense against established ERVs and trans-
posons. However, how the piRNA machinery initially recognizes a newly integrated,
endogenous retrovirus or transposon has not been investigated as extensively. Whether
transcripts that are targeted by the piRNA machinery have a unique signature that dis-
tinguishes them from other transcripts or if they are specified by preexisting piRNA
complementary targets is unclear. When new retroelements invade Drosophila, the siRNA
pathway may act as the primary repressor before the element becomes incorporated into
the piRNA cluster [267,268]. How this new retroelement is first recognized as foreign by
the siRNA machinery is also unclear. In koala testes, piRNAs mapping to KoRV-A have
a bias towards the sense strand while piRNAs mapping to older, more established ERVs
and transposons have no bias for either strand [94]. Furthermore, these piRNAs map
uniformly along the length of KoRV-A, demonstrating that piRNAs are generated from
the unspliced ERV transcripts. Thus, upon recognition of a newly invading, selfish genetic
element, the piRNA machinery directly cleaves the transposon into piRNAs, serving as
an initial, innate, genomic defense system [94]. We hypothesize that the piRNA adaptive
genomic defense system is established with the production of antisense piRNAs that can
specifically target the transcripts of the newly integrated selfish element (Figure 7). The
preferential production of piRNAs from unspliced transcripts is observed in mice, rats,
opossums, cows, and fruit flies, elucidating the deep conservation of piRNA processing
from unspliced transcripts [94].
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novel retrovirus, the retroviral transcript is directly processed into positive sense piRNAs. Later, the
adaptive piRNA response is established where antisense piRNAs are made. These antisense piRNAs
can directly target the sense transcript resulting in the co-transcriptional repression of the transposon.

How the piRNA machinery recognizes a diverse set of ERVs and other transposon
sequences, or how it differentiates other endogenous piRNA precursors from mRNAs, lncR-
NAs, or rRNAs, remains elusive. The observations that piRNAs are made from unspliced
transcripts of endogenous retroviruses [94], that Rhino suppresses splicing of piRNA cluster
transcripts in flies [190], and that some pachytene piRNA clusters have long first exons that
hinder splicing [269] suggest that the lack of splicing or inefficient splicing triggers piRNA
production. Thus, slow splicing or the lack thereof could act similarly to pathogen recognition
receptors (PRRs) by identifying newly integrated retroviruses or endogenous piRNA cluster
transcripts as non-self. Transcriptional silencing by the HUSH complex, which is thought to
act independently of piRNAs or PIWI proteins, is suppressed by splicing [141]. Unspliced,
intron-containing RNA produced by the HIV-1 provirus is also detected by the infected
cell as a danger signal; the unspliced RNA is transported to the cytoplasm by HIV-1 Rev
and the cellular protein CRM1, where it is detected by the PRR, melanoma differentiation-
associated protein-5 (MDA5) [270–272]. Interestingly, the production of short interfering
RNAs (siRNAs) from unspliced transcripts was demonstrated in the pathogenic fungus,
Cryptococcus neoformans [273]; in this study, unspliced transposon transcripts were shown
to have high spliceosome occupancy and to be inefficiently spliced due to abnormally long
introns. This stalled splicing promoted the recruitment of the Spliceosome Coupled and
Nuclear RNAi (SCANR) RNAi complex that was associated with the spliceosome. As in
Cryptococcus, inefficient or absent splicing in koala germ cells could trigger piRNA production
from retrovirus transcripts by mobilizing accessory proteins that facilitate piRNA production.
In fact, RNAi screens of the Drosophila germline demonstrated that splicing facilitates piRNA
production [274,275]. The accumulation of splicing factors and accessory proteins could
designate a transcript as ‘non-self’ and the production of piRNAs from this transcript.

9. Conclusions

ERVs and other transposons are major contributors to the evolution and structure
of metazoan genomes, and the control and dysregulation of their expression are critical
for genomic stability, inflammation, autoimmunity, and cancer [276]. The germline si-
lencing mechanism mediated by piRNAs and PIWI clade Argonaute proteins can discern
retroviruses and other foreign elements from cellular RNA. There is no simple, common
sequence motif that is conserved amongst all transposons, so it is unclear how the piRNA
machinery can differentiate transposon transcripts from those of host mRNAs. Recent
evidence suggests that piRNAs originate primarily from the unspliced transcripts of trans-
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posons and non-coding RNAs. In D. melanogaster, the Rhino–Deadlock–Cutoff (RDC)
complex binds to piRNA clusters and suppresses splicing, leading to the generation of piR-
NAs from unspliced transcripts [190]. The generation of piRNAs from unspliced transcripts
of transposons is also observed in cows, opossums, mice, and chickens, further underscor-
ing its conservation [94]. Unspliced transcripts of KoRV-A, a retrovirus which is actively
integrating into the koala genome, are selectively recognized from spliced transcripts and
processed into sense-strand piRNAs [94]. Thus, the viral genomic RNA is directly degraded.
This suppression of viral replication serves as an innate defense mechanism until antisense
piRNAs are produced and adaptive immunity is established (Figure 7). Hence, the absence
of splicing or inefficient splicing may be the basis for recognition by an innate genome
immune system. However, no study has been conducted to determine the role of splicing
in piRNA processing. Questions such as “What is the spliceosome occupancy of piRNA
precursors?”, “Does the splicing machinery recruit piRNA accessory proteins?”, and “How
does the piRNA machinery recognize a novel genomic invader?” remain unanswered.
It is also quite interesting how silencing by disparate genomic defense systems such as
the HUSH complex and piRNAs can be circumvented by splicing and/or the presence
of introns.
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