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Functional identification of the input-output transforms
of motoneurones in the rat and cat
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1. We studied the responses of rat hypoglossal and cat lumbar motoneurones to a variety of
excitatory and inhibitory injected current transients during repetitive discharge. The
amplitudes and time courses of the transients were comparable to those of the synaptic
currents underlying unitary and small compound postsynaptic potentials (PSPs) recorded in
these cells. Poisson trains of ten of these excitatory and ten inhibitory current transients
were combined with an additional independent, high-frequency random waveform to
approximate band limited white noise. The white noise waveform was then superimposed on
long duration (39 s) suprathreshold current steps.

2. We measured the effects of each of the current transients on motoneurone discharge by
compiling peristimulus time histograms (PSTHs) between the times of occurrence of
individual current transients and motoneurone discharges. We estimated the changes in
membrane potential associated with each current transient by approximating the passive
response of the motoneurone with a simple resistance-capacitance circuit. The relations
between the features of these simulated PSPs and those of the PSTHs were similar to those
reported previously for real PSPs: the short-latency PSTH peak (or trough) was generally
longer than the initial phase of the PSP derivative, but shorter than the time course of the
PSP itself. Linear models of the PSP to PSTH transform based on the PSP time course, the
time derivative of the PSP, or a linear combination of the two parameters could not
reproduce the full range of PSTH profiles observed.

3. We also used the responses of the motoneurones to the white noise stimulus to derive zero-,
first- and second-order Wiener kernels, which provide a quantitative description of the
relation between injected current and discharge probability. The convolution integral
computed for an injected current waveform and the first-order Wiener kernel should provide
the best linear prediction of the associated PSTH. This linear model provided good matches
to the PSTHs associated with a wide range of current transients. However, for the largest
amplitude current transients, a significant improvement in the PSTH match was often
achieved by expanding the model to include the convolution of the second-order Wiener
kernel with the input.

4. The overall transformation of current inputs into firing rate could be approximated by a
second-order Wiener model, i.e. a cascade of a dynamic, linear filter followed by a static non-
linearity. At a given mean firing rate, the non-linear component of the response of the
motoneurone could be described by the square of the linear component multiplied by a
constant coefficient. The amplitude of the response of the linear component increased with
the average firing rate, whereas the value of the multiplicative coefficient in the non-linear
component decreased. As a result, the overall transform could be predicted from the mean
firing rate and the linear impulse response, yielding a relatively simple, general description
of the motoneurone input-output function.
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The activation of one or more presynaptic neurones is
associated with a transient change in the discharge
probability of a tonically discharging postsynaptic cell. The
change in firing probability can be measured by compiling a
cross-correlation or peristimulus time histogram (PSTH)
between the spikes of the postsynaptic (response) neurone
and those of the presynaptic (stimulus) neurones (Moore,
Perkel & Segundo, 1966). The time course of the initial
change in firing probability associated with the arrival of a
synaptic input has been called the primary correlation
kernel (Knox, 1974), and the quantitative relation between
this function and the underlying postsynaptic potential
(PSP) has been called the primary correlation (PC) operator
(Kirkwood & Sears, 1978). As noted by Kirkwood (1979),
knowledge of the PC operator would provide a number of
benefits, including the ability to estimate the strength of a
synaptic input from the features of the primary correlation
kernel. In turn, the effects of activity in a population of
presynaptic neurones on the discharge of a postsynaptic cell
can theoretically be predicted from measurements of
synaptic potentials (Fetz, Cheney, Mewes & Palmer, 1989).

A general quantitative expression for the PC operator has
remained elusive, despite over twenty years of research on
the topic. Kirkwood & Sears (1978) proposed that in the
case of small unitary EPSPs superimposed upon a high level
of background noise, the PC operator takes the form of a
linear combination of the PSP and its derivative. However,
this formulation does not appear to hold in general. For
excitatory inputs, the relative contribution of the PSP and
its derivative to the primary correlation kernel depends upon
the ratio of the EPSP amplitude to that of the background
synaptic noise (Fetz & Gustafsson, 1983; Gustafsson &
McCrea, 1984; Cope, Fetz & Matsumura, 1987). Moreover,
the primary correlation kernels produced by large inhibitory
inputs (IPSPs) do not resemble a linear combination of the
IPSP and its derivative (Fetz & Gustafsson, 1983). In
addition, there are secondary features in the cross-correlation
histogram arising from periodicities in the discharge of the
pre- and postsynaptic neurones that complicate the
interpretation of histogram features (Moore, Segundo,
Perkel & Levitan, 1970). Further, non-linear interactions
between pre- and postsynaptic neurones have been revealed
in higher-order cross-correlation functions (reviewed in
Conway, Halliday & Rosenberg, 1993).

An alternative method of describing synaptically evoked
changes in discharge probability is to relate them to the
synaptic current rather than to the change in membrane
potential produced by that current. This method has the
advantage that transient synaptic inputs can be simulated
by intracellular current injection under standard current-
clamp conditions (Reyes & Fetz, 1993; Powers & Binder,
1996; Poliakov, Powers, Sawczuk & Binder, 1996), allowing
precise experimental control of the time course and amplitude
of the simulated synaptic input. A transfer function relating
the effects of synaptic current on discharge probability can
then be derived by testing the effects of a wide array of

injected current waveforms. An efficient method of deriving
such a general transform is through the application of the
white noise method of system identification (reviewed in
Marmarelis & Marmarelis, 1978; Sakai, 1992). This method
is particularly appropriate for the analysis of non-linear
systems.

The goal of the present experiments was to implement the
white noise method to characterize the transformation of
injected current waveforms into changes in motoneurone
firing rate. Repetitive discharge was elicited in rat
hypoglossal motoneurones in vitro and cat lumbar moto-
neurones in vivo by injecting a current waveform composed
of a suprathreshold current step with superimposed white
noise. We designed the white noise stimulus so that it
contained trains of specific current transients that mimicked
those underlying individual PSPs. We used the responses of
the motoneurones to compute the zero-, first- and second-
order Wiener kernels. A series of orthogonal functionals
derived from these kernels provides an approximation of the
input-output function of the motoneurone. The first-order
Wiener kernel gives the best-fit linear approximation of the
response of the motoneurone to a current impulse. Moreover,
a second-order Wiener model (a series of functionals
including the zero-, first- and second-order Wiener kernels)
accounted for both the average firing rate and most of the
non-linearity inherent in the responses of the motoneurone
to both depolarizing and hyperpolarizing current transients.
Further, we found that the overall transformation of current
inputs into firing rate could be approximated by the Wiener
model, i.e. a cascade of a dynamic, linear filter followed by a
static non-linearity.

We compared the capacity of several different transforms to
predict the responses of the motoneurones to the defined
depolarizing and hyperpolarizing current transients
embedded in the white noise input signal. Of the several
linear models tested, we found that the predictions based on
the first-order Wiener kernel provided the best match to the
PSTHs elicited by a wide range of current transient
waveforms. However, this linear transform systematically
underestimated the excitatory effects of the largest
depolarizing current transients and overestimated the
inhibitory effects of the larger hyperpolarizing current
transients. The addition of the second-order, non-linear
term to the system allowed us to provide a close match to all
of the observed PSTHs. Portions of this material have been
presented in abstract form (Poliakov, Powers, Sawczuk &
Binder, 1995; Poliakov, Powers & Binder, 1996).

METHODS
Experimental preparation
The basic surgical and experimental procedures we used to obtain
intracellular recordings from cat lumbar motoneurones in vivo and
rat hypoglossal motoneurones in vitro have been described in detail
in recent publications from this laboratory (Sawczuk, Powers &
Binder, 1995; Powers & Binder, 1996; Poliakov et al. 1996). Only
the key features will be briefly described here.

402 J: Physiol.504.2



Motoneurone input-output transforms

Rat hypoglossal motoneurones were studied in 400,um thick
brainstem slices obtained from 3- to 5-week-old Sprague-Dawley
rats. Following the induction of anaesthesia with an intramuscular
injection of a mixture of ketamine (68 mg kg-') and xylazine
(4 mg kg-), a section of brainstem was removed and glued to a
Plexiglass tray filled with cooled, artificial cerebrospinal fluid in
which Nae had been replaced with sucrose (S-ACSF; composed of
(mM): 220 sucrose, 2 KCl, 1P25 NaH2PO4, 26 NaHCO3, 2 MgCl2, 2
CaCl2 and 10 glucose). A series of transverse slices were cut
throughout the length of the hypoglossal nucleus, transferred to a
holding chamber and incubated at room temperature (19-21 °C) in
S-ACSF for 30 min, followed by 30 min incubation in standard
ACSF (the same as S-ACSF except that sucrose was replaced with
126 mm NaCl). For the experimental recordings, the slices were
submerged in a recording chamber and perfused with ACSF
warmed to a temperature of 26-30 'C. We used glass micropipettes
filled with 3 M KCl (electrode resistances of 30-60 MQ) to obtain
intracellular recordings from hypoglossal motoneurones. Moto-
neurone identity was based on location and on the similarity of cell
properties to those reported by previous investigators (Haddad,
Donnelly & Getting, 1990; Viana, Bayliss & Berger, 1995; Sawczuk
et al. 1995).

Cat lumbar motoneurones were studied in intact pentobarbitone
anaesthetized cats. Anaesthesia was induced with a 40 mg kg'
intraperitoneal injection of pentobarbitone, and supplemental intra-
venous doses were given throughout the surgical and experimental
procedures in order to maintain a deep level of anaesthesia.
Following the performance of a conventional laminectomy from L4
to SI and exposure of the sciatic nerve in the left hip, the animal
was mounted in a rigid 'Goteborg' type spinal cord recording frame.
Before initiating the intracellular recordings, the cats were
paralysed with gallamine triethiodide and mechanically respired.
Subsequently, the depth of anaesthesia was adjusted to maintain a
stable blood pressure (monitored with a carotid artery cannula)
below 120 mmHg, and to minimize or eliminate the appearance of
spontaneous synaptic noise in the intracellular recordings. In
addition, the animals were allowed frequent periods of recovery
from paralysis to ensure the absence of withdrawal reflexes. We
obtained intracellular recordings from cat lumbar motoneurones
with 3 M KCl-filled micropipettes with tips broken to yield in situ
resistances of 2-8 MQ. Motoneurones were identified by antidromic
activation following stimulation of the sciatic nerve. At the
conclusion of the experiment, the animals were killed with a lethal
dose of pentobarbitone.

Recording and current injection techniques
Motoneurones were initially accepted for study if they exhibited
resting potentials more negative than -60 mV and action
potentials with positive overshoots. We performed the complete
experimental protocol only on those motoneurones capable of
producing sustained, repetitive discharge in response to long
suprathreshold current steps. We injected a series of current
waveforms into the motoneurones in order to determine their input
resistance, rheobase and steady-state frequency-current relation,
as well as their response to white noise. The waveforms were stored
as sequences of digitized values and converted to a current
command via a D/A converter at a rate of 10 kHz. The membrane
potential was simultaneously sampled at the same rate and stored.
The membrane potential and injected current waveforms were also
recorded on VCR tape using a PCM recording adapter (bandwidth,
0-22 kHz).

The current command waveform consisted of a series of discrete
increments, each of which produced an artifact in the voltage

record associated with any uncompensated electrode capacitance
and resistance. The residual electrode transient was estimated off-
line by averaging and normalizing the initial response to a number
of current steps. This average electrode transient was convolved
with the stimulus waveform and then subtracted from the recorded
membrane potential record (Poliakov et al. 1996). The occurrence
times of the spikes were determined from the 'corrected' membrane
potential trajectories and defined as the points of the highest
positive slope of the spike waveform, i.e. the maximum of the
derivative of the signal. From the averaged spike trajectories (see
Fig. 4), we determined that the foot of the spike occurred
0A4-0 5 ms prior to the point of maximal slope.

Stimulus waveforms
The stimulus waveforms included different zero-mean random
processes superimposed upon a long (39 s) suprathreshold current
step. A brief series of subthreshold, 50 ms current pulses preceded
and followed the suprathreshold stimulus and were used to calculate
the input resistance, the electrode transients, and the time constant
of the motoneurone (see below). The random processes lasted for
26-2 s (218 samples at the 10 kHz sampling rate) and were added to
the suprathreshold step 9 s after its onset. (This delay was chosen to
minimize the spike-frequency adaptation that is largely complete at
this time; cf. Sawczuk et al. 1995.) We used two different types of
random processes: the first (current transient (CT) waveform) was
constructed of trains of positive and negative current transients
designed to mimic synaptic currents, whereas the second (white
noise (WN) waveform) was constructed to approximate bandwidth-
limited white noise.

To compose the CT waveform, we generated independent Poisson
trains (mean interval, 25 ms) for each of ten excitatory and ten
symmetric, inhibitory current transients, and then we added these
trains together (Fig. 1B, upper trace). Using this waveform as a
stimulus allowed us to study the modulation of firing rate in
response to all twenty excitatory and inhibitory current transients
by compiling PSTHs between each Poisson stimulus train and the
motoneurone spike train. The individual current transients (c,(t):
current amplitude as a function of time, t, for k= 1, 2, ... 20
different waveforms) were described by the a-function (Rall, 1967):

Ck(t) = ak(tIrk) exp(l- t/1rk), (1)

where ak is the amplitude and Tk the rise time of the current
transient. Figure IA shows the twenty current transients used in
the experiments on cat lumbar motoneurones. The absolute values
of amplitude varied from 0 7 to 2-8 nA and values of rise time
varied from 01 to 1-6 ms. These ranges permitted us to examine
the effects of changes in the amplitude, rise time and polarity of
current transients on the features of the PSTHs. For the rat
experiments, the waveform was reduced elevenfold to account for
the differences in input resistance between cat lumbar and rat
hypoglossal motoneurones (see Results).

To implement the white noise method of system identification
(Marmarelis & Marmarelis, 1978), we were required to generate
another stimulus waveform that approximated bandwidth-limited
white noise. The CT waveform, although a random process, does
not meet the criteria of white noise, i.e. a Gaussian distribution of
amplitudes and a flat power spectrum (Marmarelis & Marmarelis,
1978). The distribution of amplitudes of the CT waveform is too
narrow (Fig. 1 C, thick line), and its power spectrum shows a marked
decline with increasing frequency (Fig. 1D, thick line). The CT
waveform was modified to make waveform WN by adding an
independent random process y(t):

WN = CT + y(t). (2)
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The power spectrum of y(t) (Fig. ID, dotted line) compensated for
the fall-off in power of the CT waveform at higher frequencies (see
Appendix for details of the calculations). For the resulting WN
waveform (Fig. IB, lower trace), the amplitude probability density
was Gaussian (Fig. 1C, thin line; mean = 0; S.D. = 2-5 nA) and the
power spectrum was flat for frequencies up to 500 Hz (Fig. ID, thin
line). This waveform can be used to implement the white noise
method (Marmarelis & Marmarelis, 1978), and since it contains the
CT waveform, it can also be used to estimate the response of the
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motoneurone to any individual current transient by compiling
PSTHs of motoneurone discharges to the corresponding Poisson
train.

Experimental protocol
The rheobase and steady-state frequency-current (f-I) relation of
each cell were determined prior to the application of the current
transient (CT) and white noise (WN) waveforms. We injected 50 ms
current steps of various amplitudes and determined the rheobase
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Figure 1. Composition of the current waveforms injected into the somata of cat lumbar
motoneurones
A, the waveforms of 10 depolarizing and 10 symmetric hyperpolarizing current transients (ct(t), where
k=1, 2, ...20) used to generate the CT waveform. The individual transients were described by an

a-function (cf. Methods, eqn (1)) with rise times ranging from 0-1 to 1-6 ms. B, sample records of the
injected current waveforms (the traces have been offset for clarity). The upper trace shows the CT waveform
composed of a sum of Poisson trains of the 20 current transients shown in A. The lower trace shows the
white noise waveform (WN). C, probability density histograms for the amplitudes of the CT (thick trace)
and WN (thin trace) waveforms. D, the power density spectra for the CT (thick trace) and WN (thin trace)
waveforms. The CT waveform (upper trace in B) has a rapid fall-off in its power density as frequency
increases. To obtain the WN waveform, an independent random process (dotted line) was added to the CT
waveform (see Appendix). The power density of the composite waveform (WN) is flat up to nearly 500 Hz.
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current as the minimum current amplitude needed to elicit a spike.
The steady-state f-I relationship was estimated by delivering a
series of 500 ms current steps of various amplitudes and plotting
the relation between current amplitude and the average frequency
calculated over the last four interspike intervals of the response.
(The slope of the relation determined in this fashion may be slightly
higher than that of the true steady-state relation; see Sawczuk et al.
1995.)

Two versions of each CT and WN stimulus waveform were applied.
In the first, the appropriate zero-mean random process (CT or WN)
was added to the suprathreshold current step and in the second,
that same process was subtracted from the current step. The
complete experimental protocol consisted of the following sequence
of eight trials: +WN, -WN, +CT, -CT, -CT, +CT, -WN, +WN.
The use of positive and negative versions of a given random
waveform reduced any bias that might be introduced by repeating
the same pseudo-random waveform several times. In addition,
repeating the basic sequence of four waveforms in forward and then
in reverse order helps compensate for any slow changes in cell
properties that occur during the course of the entire protocol. Early
on we found that the effect of a given current transient on firing
probability was nearly identical in the CT and WN trials (see
Results), so in many cells only the four WN trials were applied.
After the initial set of four or eight trials, we re-measured the f-I
relation, and in some motoneurones repeated the entire protocol
after changing the amplitude of the underlying suprathreshold
current step to alter the mean firing rate of the motoneurone.

Data analysis
We obtained a number of derived measures from the digitized
membrane responses to the stimuli, including: (1) the profiles of the
simulated PSPs, i.e. the subthreshold membrane potential responses
of the motoneurone to each of the twenty current transients (CTs);
(2) PSTHs between the times of occurrence of CTs and
motoneurone spikes; and (3) zero-, first- and second-order Wiener
kernels.

The recorded membrane potentials were first corrected for electrode
artifacts as described earlier. Although this procedure facilitated
accurate measurement of the times of spike occurrence, a
significant contribution from uncompensated electrode resistance
often remained in the records because of changes in electrode
resistance during the course of a 40 s trial. For this reason, it was
not possible to measure accurately the membrane potential
response to a given current transient. Instead, we estimated the
membrane response to each current transient using a parallel RC
circuit model of the neurone. Each simulated PSP (i.e. the profile of
the membrane potential induced by each CT) was reconstructed,
using the input resistance of the motoneurone (RN) and membrane
time constant (To) values. These values were derived from the
average responses of the motoneurone to the series of 50 ms current
pulses, which was included at the beginning and at the end of every
trial. We estimated rO from the best-fit exponential curve (curve-
fitting routine of Igor Pro, Wavemetrics Inc., Lake Oswego, OR,
USA) to the averaged membrane potential trajectory in response to
the onset of the largest hyperpolarizing pulse. RN was calculated as
the slope of the relationship between the current pulse amplitude
and the resulting change in the membrane potential measured at
the end of the 50 ms current pulse.
Each of the twenty Poisson trains of CTs were used to compile a
PSTH between the CT onset times and the times of the
motoneurone spikes. PSTHs were calculated over lags of 50 ms

prior to and following the CT, using a bin width of 0-1 ms. The
PSTHs were typically compiled from four or eight repetitions of the
26-2 s random input. Thus, there were typically either about 4200
or 8400 triggers used in each PSTH. The PSTHs had a range in
average baseline counts per bin of 4 to 12 (for 4200 triggers) or 8 to
24 (8400 triggers), depending on the firing rate of the motoneurone.
PSTH values, if normalized by the product of the bin width and
the number of triggering events, represent the average instantaneous
firing rate as a function of time from the onset of the CT stimulus.

Cumulative summations (CUSUMs; Ellaway, 1978) were calculated
by subtracting the mean bin count at negative lags from the PSTH,
and integrating the result. All of the CUSUMs had a defined
maximum and were used to obtain the following quantitative
characteristics of the PSTHs: peak area (over the baseline value),
the mean percentage change in firing during the peak, and the
peak duration. In the case of the PSTHs associated with hyper-
polarizing current transients, analogous measurements were made
on the PSTH trough. The peak area was obtained from the
maximum value of the CUSUM, and the time at which this value
was obtained was considered to be the end of the peak (Figs 2 and
3). The onset of the peak was taken as the fourth of seven
consecutive CUSUM values at positive lags that were greater than
zero. The peak duration is simply the difference between the peak
onset and the end of the peak. The mean percentage change (MPC)
in discharge rate is the same measure as the mean percentage
increase described by Cope et al. (1987): MPC = peak area/peak
duration, taken as a percentage of the background firing rate.

We used the response of the motoneurone to the WN waveform to
implement the white noise method of system identification. Using
this approach, the response of a system to any input is
characterized by a series of Wiener kernels h0, hl(r), k(T1,r2), etc. of
increasing order. In the case of a discrete output (i.e. the train of
motoneurone discharges at times tl, 4, ... tN), the kernels are easily
estimated by the cross-correlation technique (see Lee & Schetzen,
1965; Bryant & Segundo, 1976; Marmarelis & Marmarelis, 1978) as
follows:

= NIT,

hi(T) = hoP'(Zw(ti-T)- N ,

i=o

(3a)

(3b)

h2(r1,r2)= ho(2P2')(Z (w(ti-r)w(ti- T2) -a( - 72))/N) (3c)
i=0

etc.,

where w is the value of the input, ti is the time of i-th discharge, N
is the total number of discharges and T is the duration of neurone
firing. P is the power of the input white noise signal and a(7r) is its
autocorrelation function (derivations for both P and a(r) for our

signal WN are presented in the Appendix). The kernels in eqns (3 b)
and (3c) were estimated over intervals of +50 ms.

The zero-order kernel, ho, is a constant equivalent to the mean
firing rate. The first-order kernel, h,(T), is estimated from the first-
order cross-correlation between the input and the output. For a

system with a discrete output, h1(T) becomes the spike-triggered
average of the input signal, reversed in time and multiplied by the
coefficient ho/P The second-order kernel, h2(Tr172), is estimated
from the second-order cross-correlation, and reflects the interaction
between the two portions of the input signal in the past. A non-

zero, second-order kernel is indicative of non-linear behaviour of
the system.
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In general, the response of the system, Y(t), to an arbitrary input,
X(t), can be approximated as a sum of Wiener functionals, Gi:

Y(t) = Go(t) + 01(t) + G2(t) + etc., (4)

where

G0(t) = ho, (5a)

G1(t) = Jhl(T)X(t -) dT, (5b)

G2(t) = Jh2(T,IT2)X(t - TI)X(t - T2)dTddT2 -PJh2(-rT)dT, (5c)
o o

etc.

The zero-order functional, G0(t), is a constant equal to the mean
firing rate, ho. The first-order functional, G1(t), is the convolution of
the first-order kernel, h1(T), with the input, X(t). The sum of these
two terms is the best-fit approximation of the output of a linear
system to a white noise input signal (Marmarelis & Marmarelis,
1978).

Higher-order Wiener functionals describe the deviation of the
output Y(t) from that of a linear system. We truncated the sum in
eqn (4) at 02(t) because functionals of the third order and higher
require rather intensive computations, the results of which are
difficult to display and analyse. The second-order Wiener
approximation (i.e. the sum G0(t) + G1(t) + G2(t)) forms a non-linear
analytical model of the system. It is the best-fit, second-order
approximation of the system with respect to the white noise
stimulus, and can be used to predict its response to any input
within the noise. In order to predict the response of a motoneurone
to a particular current transient ck(t), one has to substitute the
input for X(t) in eqns (5b) and (5c). Since Ck(t) = 0 for
0 > t > 20 ms, the infinite integration limits in eqns (5b) and (5c)
can be replaced with finite limits.

RESULTS
Motoneurone properties
The following analyses of the relation between injected
current transients and the associated changes in motoneurone
firing probability are based on in vitro recordings from
seven rat hypoglossal motoneurones and in vivo recordings
from three cat lumbar motoneurones. The rat hypoglossal
motoneurones exhibited resting potentials ranging from
-80 to -60 mV, input resistances from 9 9 to 26-6 MIQ
(mean + S.D. = 17-2 + 6-1 MS2) and membrane time
constants from 4-6 to 8-8 ms (6-4 + 1P3 ms). Their rheobases
ranged from 0 15 to 0-59nA (0-32+0-14nA), and the
slopes of their steady-state frequency-current (f-I)
relations ranged from 12-3 to 28-6 impulses s-' nA-1
(20-8 + 6-2 impulses s- nA-'). These values are well within
the range reported previously from this laboratory
(Sawczuk et al. 1995; Poliakov et al. 1996), and agree with
those reported by other investigators (Haddad et al. 1990;
Viana et al. 1995; for discussion see Sawczuk et al. 1995).
The resting membrane potentials for the three cat moto-
neurones were below -60 mV with positive action potential
overshoots. The input resistances were 0 95, 1P67 and
1P57 MQ2 and the membrane time constants were 5 3, 7 0
and 6-3 ms. The rheobases were 8-5, 3-3 and 8-8 nA, and

the slopes of their steady-state f-I relations were 1-2, 1-9
and 1 6 impulses s' nA-T. All of these values are consistent
with those reported previously for cat lumbar motoneurones
(reviewed in Binder, Heckman & Powers, 1996).

Membrane responses to current transients
As the current transients varied in amplitude and duration,
the time courses of the induced simulated PSPs also varied.
The time courses of simulated PSPs produced by the same
current transient in different cells were somewhat different,
depending on the input resistance and time constant of the
particular cell. In both cat and rat motoneurones, the peak
amplitudes of these simulated PSPs were similar and ranged
from 79 to 660,V. (Note that the current was reduced
elevenfold for the rat motoneurones; see Methods.) Their rise
times ranged from 0 5 to 5f8 ms. For comparison, the
unitary excitatory PSPs produced by Ia afferent fibres in
cat lumbar motoneurones varied from 24 to 538 ,uV in
amplitude, and their rise times ranged from 0-2 to 2-1 ms
(Cope et al. 1987). Unitary IPSPs produced by Ia reciprocal
interneurons ranged from -25 to -215 1sV in amplitude
with the time to minimal value being of the order of 1 ms
(Stuart & Redman, 1990). Therefore, the range of time
courses of the simulated PSPs we induced with various
current transients included those of naturally occurring
excitatory and inhibitory PSPs, and their range of
amplitudes were similar to those of unitary and small
compound EPSPs and IPSPs.

Relation between PSTH and simulated PSP features
Previous comparisons of PSTH features with the amplitudes
and time courses of synaptic potentials have generally relied
on pooling data from different cells or from sequential
recordings in the same cell (Fetz & Gustafsson, 1983;
Gustafsson & McCrea, 1984; Cope et al. 1987). The present
results are unique in that comparisons can be made of
PSTH and simulated PSP features over a wide range of PSP
sizes and shapes applied in the same cell under identical
conditions. The relationships between PSTH and PSP
features for a given cell were therefore unaffected by
variations in intrinsic cell properties or background synaptic
noise.

PSTHs produced by a particular current transient were not
significantly affected by the addition of high-frequency noise to the
current waveform. As described in Methods, one current waveform,
CT, was composed of current transients alone, whereas a waveform
approximating white noise, WN, was obtained by adding an
independent higher-frequency random process to the CT waveform.
Although previous work in our laboratory (Poliakov et al. 1995) has
indicated that PSTH features can be modified by the addition of
noise, the CT waveform used in the present study was already quite
noisy (cf. Fig. 1B and D), so that the further addition of another
noise waveform, whose power was relatively small and limited to
higher frequencies, did not noticeably affect the PSTH
characteristics. For three rat motoneurones, we performed a
regression analysis for the values of several PSTH parameters (peak
amplitude, peak area and peak duration) obtained from responses
to the CT and WN waveforms. The parameter values found for
twenty current transients using the WN waveform were plotted
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against the corresponding values found for the CT waveform, and
regression lines were fitted to these plots. For each of the three
motoneurones, the best-fit regression lines were not statistically
different from the line of identity (the intercept values were not
different from 0 and the slope values were not different from 1;
P> 0 05). When the data from the three motoneurones were
pooled, the slope values of the fitted lines were 0 99 for peak
amplitude and 1P02 for peak area.

The histograms in Fig. 2A represent the PSTHs compiled
from the onset times of a depolarizing (top traces) and a
symmetric hyperpolarizing (bottom traces) current transient
in a cat motoneurone. The current transients (thick traces)
and their associated PSPs (dashed traces) are shown directly
below the PSTHs. The most prominent PSTH features are a
short-latency peak in response to the depolarizing current
transient and a short-latency trough in response to the
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hyperpolarizing current transient. Both the areas of the
PSTH peaks (and troughs) and the mean changes in firing
rates were well correlated with the estimated PSP
amplitude. Figure 2B and C illustrate the relationships
between these two different PSTH measures and estimated
PSP amplitudes for the responses to all twenty current
transients in the same cat motoneurone. For all of the
motoneurones, the slope of the relation between PSTH peak
area and PSP amplitude (Fig. 2B) was always greater for
depolarizing than for hyperpolarizing PSPs. In the rat
motoneurones, the corresponding slopes ranged from 0 09 to
0 49 extra impulses per millivolt (0-25 + 0 13) for
depolarizing PSPs and 0 04 to 0-21 fewer impulses per
millivolt (0414 + 0 06) for hyperpolarizing PSPs. In the cat
motoneurones, the corresponding slopes ranged from 0413 to
0414 extra impulses per millivolt (0413 + 0 01) for
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Figure 2. Responses of a cat lumbar motoneurone to depolarizing and hyperpolarizing injected
current transients
A, symmetric injected depolarizing (top) and hyperpolarizing (bottom) current transients (thick lines)
produced asymmetric PSTHs. The dashed lines show the estimated changes in membrane potential
(simulated PSPs) induced by the current transients. B, PSTH peak area plotted as a function of the
amplitude of the PSP evoked in the motoneurone. The lines are the best-fit linear regressions calculated
separately for depolarizing and hyperpolarizing PSPs. C, mean percentage change (MPC) in motoneurone
firing rate produced by the PSPs plotted as a function of their amplitude.
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depolarizing PSPs and 0 07 to 0-10 fewer impulses per
millivolt (0 09 + 0 02) for hyperpolarizing PSPs. The
difference in slope values for depolarizing and hyper-
polarizing current transients indicates that the overall
relationship is non-linear.

Similar non-linearities were observed for the relationship
between the mean percentage change (MPC) in firing rate
and PSP amplitude (Fig. 2C) and between the PSTH peak
amplitude and PSP amplitude (not shown). For the data
illustrated in Fig. 2C, the slope of the relationship between
MPC and PSP amplitude was 0 27% 1sWV-' for depolarizing
inputs and 0 04% uV-' for hyperpolarizing inputs. Similar
differences were observed for the other two cat moto-
neurones (the slopes for depolarizing inputs were 0-48 and
0'25% uVs', whereas the slopes for hyperpolarizing inputs
were 0-06 and 0-11 % uV-1). The relationship between
MPC and PSP amplitude was more variable in the rat
motoneurones, but on average the slope for depolarizing
inputs was about twice that for hyperpolarizing inputs
(0-25 + 0-13% WV-' and 0 13 + 0 05% 4uV-1, respectively).
For depolarizing inputs alone, the slopes of the linear fits
between MPC and PSP amplitude for the present data are
comparable to those of Cope et al. (1987), who reported a
slope of 0 30% ,uV1 between mean percentage increase in
firing rate and EPSP amplitude for their well-studied single
I a fibre connections.

The slope values for the relationships between PSP amplitude and
PSTH parameters depend upon our estimates of PSP amplitude.
Since rat hypoglossal motoneurones are relatively compact
electrotonically (Viana, Bayliss & Berger, 1994), our use of a single
time constant approximation of the passive membrane response is
probably justified. However, the passive impulse response of cat
motoneurones is better approximated as the sum of at least two
exponential terms (cf. Rall, 1969). In two of the three cat
motoneurones, we averaged the membrane response to more than
thirty repetitions of a brief (05 ms) hyperpolarizing current pulse,
and were able to fit the membrane response with the sum of two
exponential terms. Convolving this more realistic impulse response
with the injected current waveforms led to larger predicted PSP
amplitudes than those obtained with the single exponential impulse
response. Nonetheless, in each cell the PSP amplitudes obtained by
two different impulse responses were highly correlated (r > 0 99),
so that the basic form of the relationships between PSTH and PSP
parameters was not affected by the method used to predict the
PSPs. Moreover, the non-linear relationships between the magnitude
of the 'synaptic' input and PSTH parameters were also obtained
when the area of the current transient was used as the independent
variable.

Fetz & Gustafsson (1983) developed a simple threshold-
crossing motoneurone model which predicts that the PSTH
profile produced by an EPSP is a scaled version of the PSP
derivative. We found, however, that the peak PSTH values
were only weakly correlated with the peak derivative values
(for depolarizing currents, the correlation coefficients were
r = 0i08 + 0-23 in rat motoneurones and r= 0'30 + 0-12 in
cat motoneurones). In all cat and rat neurones, we found
that the duration of the PSTH peak was always longer than

the PSP rise time. This is in agreement with the previous
studies, in which both unitary PSPs (Cope et al. 1987) and
small compound PSPs (Knox & Poppele, 1977; Kirkwood &
Sears, 1978; Fetz & Gustafsson, 1983) yielded PSTH peaks
that were wider than the PSP derivative. On the other hand,
it is clear from Fig. 2A that the duration of the PSTH peak
(or trough) is clearly shorter than the underlying PSP,
suggesting that the PSTH peak cannot be well
approximated by a scaled version of the PSP itself (Moore et
al. 1970).

Kirkwood & Sears (1978) suggested that the fit may be
improved if the PSTH profile is approximated as a
weighted, linear sum of the PSP profile and its derivative:

f(t)-fo= ae(t) + bde(t)/dt, (6)
where a and b are constants and e(t) and de(t)/dt are the
time courses of the PSP and its derivative, respectively.
Although this formulation was originally intended to apply
to unitary EPSPs with amplitudes in the order of 100 1sV or
less (Kirkwood & Sears, 1978), other investigators have
applied this expression to the analysis of PSTHs produced
by large unitary EPSPs (Cope et al. 1987) as well as
compound EPSPs and IPSPs (Gustaffson & McCrea, 1984).
The range of simulated PSPs produced in our motoneurones
allowed us to test the extent to which this formula could
provide a general fit to PSTHs associated with large unitary
and small compound PSPs. We calculated the best match to
individual PSTHs using this approximation (curve-fitting
routine of Igor Pro). Figure 3A shows the PSTHs compiled
for four different depolarizing current transients injected
into single cat (left column) and rat (right column)
motoneurones. The current transients are illustrated by the
continuous thick lines beneath each PSTH and the resultant
PSPs are represented by dashed lines. The smooth,
continuous traces superimposed on the histograms represent
the best fit to each PSTH (see legend for details of the fitting
procedure). The matches are quite good for the slower
current transients (bottom four panels), but tend to
underestimate the duration of the PSTH peak (or trough)
for the faster current transients. This difference between
predicted and observed PSTH time course in response to
rapid current transients was more marked in rat moto-
neurones, which tended to have wider PSTH peaks than cat
motoneurones. Moreover, the values of the fitting
coefficients a and b were not constant for different inputs
studied in the same motoneurone.

Figure 3B illustrates the relationships between the values of
the coefficients and the PSP times to peak for all of the
depolarizing and hyperpolarizing transients. The left graph
corresponds to the cat motoneurone and the right graph to
the rat motoneurone. In all cases, the contribution of the
PSP derivative to the overall shape of the correlogram is
much greater than that of the PSP itself. (In our eqn (6),
de(t)/dt is scaled in mV s-', so that the correlogram value
can be expressed directly in impulses s-. The value of the
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fitting coefficient b would be a thousandfold larger if the
PSP derivative were expressed in mV ms-' (cf. Kirkwood &
Sears, 1978; Gustaffson & McCrea, 1984).) The scaling factor
for the contribution of PSP derivative to the PSTH profile
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(coefficient b) increased with the PSP time to peak and
tended to be higher for depolarizing than for hyper-
polarizing inputs. Similar findings were obtained in all of
the other motoneurones.
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Figure 3. Matching PSTH profiles with the underlying PSP and its derivative
A, the responses of a cat lumbar motoneurone (left column) and rat hypoglossal motoneurone (right column)
to four different excitatory current transients (continuous thick lines below PSTHs). The time to peak
values of the transients were 0-2, 0-4, 0 8 and 1P6 ms. The continuous lines fitted to the PSTHs show the
best-fit approximation using a combination of the evoked PSP waveform, e(t), and its derivative, de(t)/dt.
(Change in firing rate = f(t) = ae(t) + bde(t)/dt.) The PSP waveforms (dashed lines below PSTHs)
were calculated as described in Methods. The onset of the increase in firing probability in the PSTH occurs

after time zero. The value of this onset delay was determined by first averaging the PSTHs in response to
the 8 largest depolarizing transients and then determining the first of 7 bin values that exceeded the mean
baseline discharge rate by at least 30%. Each PSP was then time shifted by this amount before
determining the values of a and b in eqn (6) that gave the best fit to the PSTH. The dotted lines
superimposed on the PSTHs show the results when coefficients a and b were fixed at the values that gave
the best fit to one of the PSTHs (the second from the top). B, best-fit values for coefficients a (left axis,
squares) and b (right axis, circles) for all 20 current transients in the cat (left graph) and rat (right graph)
motoneurones. Depolarizing transients are denoted by filled symbols; hyperpolarizing transients by open
symbols.
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These results indicate that although individual PSTH profiles
can often be well approximated by a linear combination of
the underlying PSP and its derivative, this approximation
does not provide a good general description of the
characteristics of a synaptic input and its effects on

motoneurone firing probability. Were it to do so, the values
of the fitting coefficients would have to be constant for a

particular motoneurone. The dotted lines superimposed on

the PSTHs in response to the depolarizing current transients
represent the fits of eqn (6) when the values of a and b are

fixed at those which give the best fit to the second PSTH
from the top in each column. It is clear that this
approximation provides a poor fit to the PSTHs produced
by the briefest current transients (the top of each column).
In the following sections, we describe the use of the white
noise method to derive a more general linear model.
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White noise analysis: average current trajectory and
membrane potential trajectory
The first step in constructing a general linear model of the
input-output transform of motoneurones using a white
noise input signal is to calculate the average spike-evoking
current trajectory (ACT; Bryant & Segundo, 1976). Figure 4
presents the ACTs (upper traces) and the average membrane
potential trajectories (lower traces) in a rat (A) and a cat (B)
motoneurone. The pair of horizontal lines superimposed on

each ACT represent the 96% confidence limits for the
deviation of the current values from the mean current
expected by chance alone (calculated as the mean + 2 S.E.M.,
see Bryant & Segundo, 1976). The ACTs followed the same

general pattern in all motoneurones studied: they first
slowly declined below the mean current value. This
prolonged shallow trough was followed by a peak just

1*2

1*0

0-8
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I (nA)

I (nA)v ~~~~~~~~~- -v 8
; . I
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Figure 4. Action potentials and average spike-evoking current waveforms for rat and cat
motoneurones in response to the white noise input
A, the lower trace shows the average membrane potential trajectory before, during and after action
potentials in a rat hypoglossal motoneurone. The average spike-evoking current trajectory is shown in the
upper trace. The average was computed from 4 trials of stimulation with white noise. The horizontal lines
indicate 96% confidence limits for deviation of the average current trajectory from the mean current value.
B, same display as in A, but for a cat lumbar motoneurone. Note the 10-fold difference in the current scale.
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preceding the discharge, and then the ACTs returned to the
level corresponding to the mean current value. Although the
general pattern of the ACT is the same in rat hypoglossal
(Fig. 4A) and cat lumbar (Fig. 4B) motoneurones, both the
magnitude and time course of the trajectories differed in the
two types of cells. A quantitative analysis of the differences
in the responses of rat and cat motoneurones to the white
noise input is presented below.
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The profiles of the Wiener kernels
The first-order Wiener kernel is closely related to the
averaged current trajectory. It is obtained by reversing the
ACT in time and normalizing the resultant waveform by
the ratio of the mean firing rate to the power of the noise
stimulus (eqn (3 b)). The first-order kernel, h,(r), obtained in
a rat motoneurone is shown in Fig. 5A. The first-order
kernel represents the changes in firing rate elicited by a
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Figure 5. The input-output transform of a rat hypoglossal motoneurone identified by the white
noise method
A, the first-order Wiener kernel, hl(T), depicts the linear impulse response of the neurone to a brief pulse of
current (area, 1 nA ms). B, contour plot of the second-order Wiener kernel, k2(T,,T2), at levels -50, 50, 150
and 250 impulses s-' nA-2 ms-2. (Kernel values were smoothed before plotting using a two-dimensional,
three-point smoothing routine: each plotted point represents the average of a three-by-three grid of the
raw values.) Dotted lines are shown to define the dissections of the kernel, shown in C and D. C, the
dissection of the second-order kernel, h2(T,,T2), along its main diagonal (i.e. T, = r2). The superimposed
dotted line shows the approximation of the second-order kernel as described by eqn (10) in the text:

ahj(T)h,(T). D, the family of functions h2(Tr,e - r2) is shown by the continuous lines. These represent the
dissections of the second-order Wiener kernel perpendicular to the main diagonal for Tr = e - r2, with
e = 2, 4, 6, 8, 10, 12, 14, 16, 18 ms, increasing from bottom to top. The thick dotted lines show the
functions given with the second-order kernel approximation: azh,(T,)h,(T2). The zero level for each function is
shown by the thin dotted lines. E, the input-output function of the neurone can be represented as a

second-order Wiener model: a cascade of a dynamic, linear transform described by the first kernel h,(T),
followed by a static non-linearity.
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brief pulse of current whose area is 1 nA ms. Like the ACT
from which it was calculated, h1('r) consists of two phases: an
initial sharp increase in firing rate, followed by a shallower
but more prolonged decrease in firing rate. For our sample
of seven rat hypoglossal motoneurones recorded under the
same experimental conditions (i.e. motoneurone firing in
response to the WN waveform superimposed onto 0 9 nA
step of current, which produced tonic firing at rates of
16-5 + 43 impulsess-), we found similar kernel profiles
with the following characteristics: the peak amplitude of the
positive phase ranged from 106'7 to 200-9 impulses s-'
nA-1 ms-1 (mean: 144-4 + 34-7 impulses s-' nA-1 ms-1);
the time to peak ranged from 1P1 to 2-0 ms (mean: 1P50 +
0-32 ms); the peak area ranged from 218-6 to
349 9 impulses s' nA'1 (mean: 291P6 + 50 3 impulses s-
nA'); and the peak duration ranged from 3-1 to 6-6 ms
(mean: 5 0 + 1P2 ms). The convolution of the first-order
kernel with the input gives the best-fit, linear model of the
system under these conditions (Marmarelis & Marmarelis,
1978). If the input signal is small and the system exhibits
near-linear behaviour, this model accurately predicts the
output. In particular, if the input is a brief pulse of area A
at time 0, the system response (r(t)) is well approximated by
the following function:

r(t) = ho + Ah1(T). (7)
The second-order Wiener kernel, h2(T1,r2), is calculated by a
second-order cross-correlation between the motoneurone
spikes and the input signal at two different time lags (Tl and
T2 see eqn (3c)). The result is a function of two variables (Tl
and T2) and is symmetric with respect to the main diagonal
T1 = T2. In Fig. 5B we show a contour plot of the second-
order kernel for the same rat motoneurone shown in Fig. 5A.
The prominent features of this kernel are a peak with a
maximal value at the point T1 = 72= 2-0 ms and two
symmetric depressions at lags of about 8-18 ms along the
lines 71 = 2-0 ms and 72 = 2-0 ms. The second-order kernel
describes the deviation of the output from that predicted by
the first-order model (eqn (7)). The second-order prediction
of the system response r(t) to a brief pulse of area A at time
Ois:

r(t) = ho + Ahl(T) + 2AI2h2(T,T), (8)

where h2(T,T) represents the values of the second-order
kernel along the main diagonal (this dissection is shown in
Fig. 5C), and the term 2A2k2(T,T) represents the deviation
from linearity. Unlike the first-order model, this expression
gives asymmetric responses to positive and negative pulses,
because the coeffient 2A2 is positive in both cases.

For positive pulses, the response amplitude and area would
increase in a greater than linear fashion with respect to A.
For negative pulses, the response amplitude and area will
decline less than linearly, reach a minimum, and start
increasing. Thus, the short-latency, positive peak in the
second-order kernel represents rectification of the input
signal. As a result, the second-order Wiener model does not

predict the erroneous negative response values for large
hyperpolarizing inputs, as does the first-order model (see
Fig. 8A).

The depressions in the contour plot of the second-order
kernel represent non-linear interactions between inputs
occurring at different times. For example, the responses of a
motoneurone to a pair of identical pulses separated by
10 ms differs from the linear sum of the effects of each pulse
acting in isolation. The response r(t) can be expressed as
follows:

r(t) = ho + hi('r) + hi(r - 10) + 2A2h2(T,T- 10), (9)
where ho + h1(T) + h1(T - 10) is the response of a linear
system to a pair of identical pulses at times 0 and 10 ms and
the term 2A2h2(T, T-10) represents deviations from this
sum due to non-linear interaction between the pulses. The
interaction effects can be predicted from a kernel 'dissection'
along a line starting at a point 10 ms along either the r1 or72
axis, and running parallel to the main diagonal. Since this
line crosses the 'depression zone' of the contour plot, the
second-order Wiener model predicts that the response to the
second pulse will be smaller than that to the first, as has
been described in the experiments reported by Fetz &
Gustafsson (1983).

The peak along the main diagonal of the second-order
kernel occurs at about the same latency as the peak in the
first-order kernel, whereas the symmetric depressions off
the main diagonal occur at lags corresponding to the
duration of the trough in the first-order kernel. This
suggested to us that the second-order kernel might be
approximated by a scaled version of the product of the
values of the first-order kernel at delays T1T72:

h2(Tr1r2) t ahz(T)hl(r2) (10)

where a is the scaling coefficient. As seen from formula (10),
the units for this coefficient are seconds. We estimated the
value of the coefficient by substituting the maximal values
of the first- and second-order kernels into eqn (10). The
accuracy of this approximation is illustrated in Fig. 5C and
D. Figure 5C illustrates the 'dissection' of the second-order
kernel contour plot along its main diagonal and Fig. 5D
illustrates a family of 'dissections' perpendicular to the
main diagonal. The continuous lines represent the actual
values of the kernel (calculated from eqn (3c)) whereas the
dotted lines represent the approximation of the second-
order kernel based on eqn (10). As can be seen from Fig. 5D,
the approximated and calculated kernel values are generally
quite close, although the approximation does not account for
the small depression along the main diagonal at lags of
10-15 ms. This form of the second-order kernel is
characteristic of a system consisting of a cascade of a
dynamic, linear component followed by a static non-linear
component (Marmarelis & Marmarelis, 1978; Hunter &
Korenberg, 1986). This so-called 'Wiener cascade model'
(Sakai, 1992) is shown schematically in Fig. 5E.
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The response of such a system (Y(t)) to any input X(t -)
can be predicted as follows:

u(t) = Jhl(T)X(t - T)dT, (11a)
0

Y(t) = ho + u(t) + au2(t). (11 b)

According to this Wiener cascade model, the input X(t) is
first convolved with the kernel h1(t) to produce an
intermediate variable, u(t), an operation known as dynamic,
linear filtering (eqn (lla)). The output value, Y(t), is then
computed from the intermediate variable, u(t), using a
parabolic transform (eqn (II b)). This type of function is
known as a static non-linearity because the output value is
computed from the intermediate value at only a single
moment in time. The static non-linearity can be described
by this parabolic function, or some other function, as long as
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its value, and its first and second derivative match those of
the parabolic function over the range of interest.

For cat lumbar motoneurones, the characteristics of the
transform of injected current into motoneurone firing were
qualitatively similar to those of the rat hypoglossal
motoneurones. Figure 6 shows the results found in one cat
lumbar motoneurone. The kernels are presented in the same
form as those for rat hypoglossal motoneurone in Fig. 5 (but
note the difference in the time scale). In each of three cat
motoneurones, we recorded firing in response to several
different values of depolarizing current with the same WN
waveform superimposed. The first-order Wiener kernels
found for seven different trials performed in these three cat
motoneurones exhibited the following characteristics: the
peak amplitudes ranged from 19f2 to 57f3 impulses
s8- nA-' ms-' (mean: 31P7 + 13-1 impulses s-' nA-1 ms-&);
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Figure 6. The input-output transform of a cat lumbar motoneurone identified by the white noise
method
A, the first-order Wiener kernel, h1(T). B, contour plot of the second-order Wiener kernel ½(Tr1T2) at levels
-2, 2, 4, 6, 10, 14 and 18 impulses s' nA-2 Ms 2. Dotted lines are shown to define the dissections of the
kernel, shown in C and D. C, the second-order kernel is shown by the continuous line. This is compared
with an approximation of the second-order kernel, ah1(T)hl(r), shown by the dotted line (a = 0-025 s).
D, the family of functions h2(,r,e - r2) is shown by the continuous lines. These represent the dissections of
the second-order kernel perpendicular to the main diagonal for rT =e -r2, with & = 1, 2, 3, 4, 5, 6 ms
increasing from bottom to top. The thick dotted lines show the functions given with the approximation of
the second-order kernel, achl(rl)h1(72).
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the time to peak ranged from 016 to 0-8 ms (mean:
0163 + 0'08 ms); the peak area ranged from 13-5 to
40-2 impulses s- nA-1 (mean: 22X3 + 8-8 impulses s- nA-);
and the peak duration ranged from 1P2 to 1P9 ms (mean:
1P5 + 0'23 ms). Compared with rat motoneurones firing at
comparable rates, the kernels found in cat motoneurones
were about four times smaller in amplitude and about three
times shorter in duration.

Powers and A. D. Binder J Physiol. 504.2

Similar to rat motoneurones, the relationship between the
first- and second-order kernels in cat motoneurones could be
well approximated by eqn (10), suggesting that the overall
input-output transform can be represented as a cascade of
a dynamic linear filter followed by a static non-linearity
(eqns (1 a) and (11 b)). However, as was the case for rat
motoneurones, this Wiener cascade model does not describe
the measured second-order kernels precisely. In both types
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Figure 7. The effect of motoneurone discharge rate on the input-output function
A, the first-order Wiener kernels, h(r) , calculated at three different firing rates in the same rat hypoglossal
motoneurone (12 impulses st, thin line; 19 impulses s-, dotted line; 26 impulses s-, thick line).
B, relationship between a, the coefficient determining the contribution of the second-order non-linearity to
the input-output transform (eqn (11 b) in the text), and ho, the mean firing rate. Filled symbols represent
cat spinal motoneurones, open symbols represent rat hypoglossal motoneurones. Different symbols
represent different motoneurones. A hyperbolic function, a = 0f45/firing rate fitted to these points is
shown with the continuous line. C, the first-order Wiener kernels of A presented in normalized form. The
time scale was normalized by the duration of the interspike interval and the amplitude scale was

normalized by ho, the mean firing rate. The inset shows the relation between hI and the peak amplitude of
hk for the kernels illustrated in A and C as well as the kernels calculated at two other background rates.
D, same as C, but for a cat lumbar motoneurone.
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Motoneurone input-output transforms

of motoneurones, the dissection of the second-order kernel
along the main diagonal (Fig. 5C and 6C) is characterized by
an initial peak followed by a shallow trough, which reaches
negative values. In contrast, the values predicted by
eqn (10) along the main diagonal are a hI2(Tr), an expression
that cannot generate negative values.

Effects of motoneurone firing rate on input-output
transform
We studied the effects of mean firing rate on the description
of the input-output transform in three rat and three cat
motoneurones. As described in Methods, the firing rate was
varied by changing the amplitude of the depolarizing
current step. Figure 7A shows the profiles of the first-order
kernel h,(T) obtained in the same rat motoneurone at three
different firing rates. At higher firing rates, the peak values
of the first-order kernels increased, while the duration of
the peak decreased. The relationship between the kernel
profile and the background firing rate can be seen more
clearly when the amplitude and time course of the kernels
are normalized by firing rate as shown in Fig. 7C. The
amplitudes of the kernel values were divided by the mean
background firing rate and the time scale is presented as a
fraction of the interspike interval. Figure 7D presents
analogous normalized first-order kernels obtained from a cat
motoneurone firing at three different background rates. The
insets in Fig. 7C and D illustrate the relationship between
the mean firing rate (ho) and peak first-order kernel
amplitudes for all of the firing rates studied in these two
cells. With the exception of the lowest firing rate in the
illustrated rat motoneurone, the peak first-order kernel
amplitude grows linearly with increasing firing rate. The
kernel profiles found for rat motoneurones (Fig. 7C) in vitro
were significantly wider then those of cat motoneurones
(Fig. 7D) recorded in vivo. However, for both types of cell,
normalization revealed that the durations of both the peak
and trough of the first-order kernels are inversely
proportional to firing rate.

The relative contributions of the first- and second-order
Wiener kernels to the overall transform can be estimated by
comparing the values of the second and third terms in
eqn (I1 b) (u(t) and au2(t), respectively). The second-order
contribution depends both on the value of u(t) and on the
value of the scaling coefficient, a. In Fig. 7B, the values of
coefficient az are shown as a function of the mean firing rate
for all rat (open symbols) and cat (filled symbols)
motoneurones. The continuous line in the figure represents
the best-fit, hyperbolic function, a = 0*45/firing rate.
Remarkably, a values measured in both cat and rat
motoneurones, and in the same motoneurone at different
firing rates, followed this hyperbolic function quite closely.
Thus, the profile of the second-order kernel can be
accurately predicted from the first-order kernel and the
mean firing rate. Since the contribution of the linear
component (u(t)) increases proportionally with firing rate,
the term u2(t) increases with the square of firing rate. The
inverse relationship between a and the mean firing rate

indicates that the amplitudes of both the linear and non-
linear terms increase proportionally with firing rate so that
to a first approximation their relative contributions are
independent of firing rate. However, in Fig. 7C the
normalized peak is highest at the lowest background firing
rate, indicating that the relative contribution of the non-
linear component would be somewhat higher at the lowest
firing rate.

We have previously reported that the addition of white noise to a
constant current step increases the mean firing rate of both cat and
rat motoneurones (Poliakov et al. 1996). Since the white noise signal
has a zero mean amplitude, the increase in motoneurone firing that
it induces is a reflection of higher order non-linearities which are
subsumed by the zero-order kernel, ho (cf. Moore & Auriemma,
1985). We estimated the effects of the noise stimulus on firing rate
by comparing the mean firing rate during the period of noise
application to that measured during the current step alone
(calculated from 2 s segments of discharge before and after adding
the noise stimulus; cf. Poliakov et al. 1996). When the discharge
rate in response to the current step alone was well above the
minimum firing rate, the addition of the noise stimulus produced a
relatively modest increase in rate, generally less than 10%. In
contrast, when the amplitude of the current step was near the
threshold for repetitive discharge so that the discharge in the
absence of noise was irregular, the addition of noise caused a more
marked increase in the mean discharge rate. This was the case at
the lowest discharge rate for the cell illustrated in Fig. 7C, and is
consistent with the greater non-linear component of the transform.
This finding may have important implications for the input-output
properties of human motoneurones firing at low rates (see
Discussion).

PSTHs predicted by the Wiener models
The Wiener models described above can be used to predict
the motoneurone response to any arbitrary input contained
within a white noise waveform (eqns (5a), (5b) and (5c)).
Figure 8A illustrates the PSTHs obtained for a cat
motoneurone in response to a depolarizing and a symmetric
hyperpolarizing current transient (CT). As in Figs 2 and 3,
the current transient waveforms are presented as the
continuous traces below the PSTHs and the resultant PSPs
as dashed lines. The dotted lines superimposed upon the
PSTHs represent the best first-order approximations (i.e. the
sum of zero- and first-order Wiener functionals; eqn (5)) of
the response to the input CTs. The best second-order
approximations (i.e. the sum of the zero-, first- and second-
order Wiener functionals) are represented by the
superimposed continuous lines. The responses to symmetric
CTs predicted with the first-order model were symmetric
and provided a poor match to the real PSTHs. In this and
other cases, we found that the first-order model
underestimated the amplitude of the response to an
excitatory CT. For an inhibitory CT, the first-order model
also underestimated the minimal values of PSTH troughs,
often predicting negative values, which the real PSTHs
could not reach. The predictions that included the second-
order Wiener functional were asymmetric and provided a
better match to the PSTHs for both excitatory and
inhibitory CTs. Figure 8B shows the PSTHs obtained in a
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rat along with the first-order (dashed lines) and second-
order (continuous lines) predictions for four different
excitatory CTs of various amplitudes and durations (Fig. 8B,
left column), and symmetric inhibitory CTs (right column).
The second-order predictions provided a good match to all
of the illustrated PSTHs, whereas the first-order fits tended
to underestimate the PSTH peaks produced by depolarizing
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inputs and overestimate the amplitudes of the PSTH troughs
produced by hyperpolarizing inputs.

The accuracy of the first-order Wiener model depended
both on the background firing rate of the motoneurone and
on the size of the current transient. We quantified the
goodness of fit of the first- and second-order models by
calculating the mean squared error (MSE) between the~~~~~~~~1°5nA
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Figure 8. The PSTH profiles predicted by first- and second-order Wiener models

A, the PSTHs show the responses of a cat lumbar motoneurone to a depolarizing (left) and symmetric
hyperpolarizing (right) current transient. The superimposed dotted lines show the predicted PSTH based
on the first-order Wiener model (i.e. the sum of the zero- and first-order Wiener functionals). The predicted
PSTHs are symmetrical and feature a 'negative firing rate' in response to the inhibitory transient. The
predictions of a second-order model (i.e. the sum of the zero-, first- and second-order Wiener functionals)
are shown by continuous lines and provide a better match to the actual PSTHs. B, analogous results for a

rat hypoglossal motoneurone. The underlying excitatory (left column) and inhibitory (right column) current
transients had times to peak of 0O2, 04, 0O8 and 1-6 ms, from top to bottom. The calculated PSPs are

superimposed on the current transients as dashed lines.
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Motoneurone input-output transforms

PSTH values predicted by the models and actual PSTHs
(determined by the mean squared difference between the
predicted and actual values, expressed as a percentage of
the actual value, see formulas 14-16 in Sakai, 1992). To
minimize the contribution of random bin fluctuations both
the actual and predicted PSTHs were smoothed with a
binomial filter with a time window of 1 ms, and the MSE
was calculated for lags of 0-15 ms. In each case, the MSE
values for the first- and second-order model predictions were
compared for the PSTHs compiled for each current
transient. In four of seven rat motoneurones, the MSE
values for the second-order model were significantly lower
than those for the first-order model (paired t value < 0 05).
The most prominent differences in the accuracy of the two
predictions occurred for the largest current transients. For
example, the MSE values averaged across the largest ten
current transients for all seven rat motoneurones were 4 4%
for the first-order model and 34% for the second-order
model, whereas the relative accuracies of the two models
were identical for the PSTHs compiled from the ten smallest
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current transients (3 4%). Similar comparisons were made
for the three cat motoneurones, at two different background
firing rates for each. The MSE for the second-order
prediction was significantly lower than that of the first-
order model in only one of six cases and in one case it was
significantly higher due to the fact that the second-order
model overestimated the PSTH peak for the larger
depolarizing current transients.

The relatively small differences between the MSE values
obtained for the two different models may reflect the fact
that the predicted PSTHs are quite similar over much of
their time course, with the most prominent differences
occurring over a fairly narrow region of the PSTH peak (or
trough, see Fig. 8). An alternative test of the relative
accuracy of the first- and second-order Wiener models is to
compare a number of features of the real PSTHs with those
predicted by the models. Figure 9 compares measurements
made from the actual PSTHs (x-axes) with those derived
from the PSTHs predicted by three different models (y-axes)
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Figure 9. Comparison between the PSTHs compiled for individual current transients and those
predicted by several different models
Measurement of peak amplitude (A), peak area (B), latency to peak value (C), and mean percentage change
(MPC) in firing rate (D) were taken from the average PSTHs for 7 rat hypoglossal motoneurones. Each point
on the graphs corresponds to a particular current transient: the abscissa is the actual average value for the
corresponding PSTHs, and the ordinate is the predicted value based on the first-order Wiener model (O),
the second-order Wiener model (o), or the cascade approximation model (A). A, peak amplitude of the
PSTHs. The intersection of the two dotted lines represents the mean background firing rate for these 7 rat
motoneurones. The symbols in the upper right quadrant represent peak firing rate in response to
depolarizing current transients whereas those in the lower left quadrant represent minimal firing rate in
response to hyperpolarizing current transients. B, peak area of the PSTHs. C, duration of the peak/trough
in the PSTHs. Only the data for the 12 largest current transients were included. D, mean percentage
change in firing rate.
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averaged across our sample of seven rat motoneurones. (As
in the analysis above, both predicted and actual PSTHs
were smoothed with a 1 ms filter.) In addition to the first-
and second-order Wiener models, we also calculated the
predicted PSTH based on the 'cascade approximation' of the
second-order Wiener model (eqns (1 I a) and ( 1 b)). The
predictions of the three models are indicated by different
symbols (first-order, O; second-order, 0; cascade approx-
imation, A). The thick line in each part of the figure
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represents the line of identity. All three of the models
provided reasonable matches to the duration of the PSTH
peak (or trough; Fig. 9C). However, the first-order model
underestimated the peak amplitude (Fig. 9A) of the PSTHs
for large depolarizing CTs and overestimated the peak
decrease in firing rate associated with hyperpolarizing CTs,
predicting negative firing rates for the largest ones.
Similarly, the first-order model underestimated the values
of mean percentage change in firing rate (MPC; Fig. 9D) for
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Figure 10. Impulse responses of rat hypoglossal and cat lumbar motoneurones to brief current
pulses
A, first-order Wiener kernels for a cat (thick traces, right-hand axis) and a rat (thin traces, left-hand axis)
motoneurone. B, the transform of membrane potential into firing rate. This transform was calculated by
first estimating the passive membrane response of each motoneurone to a brief pulse of current and then
deconvolving the passive impulse response with the first-order Wiener kernels in A. The deconvolution was
performed by first dividing the fast Fourier transforms (FFTs) of the impulse responses by those of the
passive membrane responses, and then taking the inverse FFT of the result. The plots in B were digitally
smoothed with a three-point binomial filter included in the Igor Pro software package. C, comparison of cat
motoneurone voltage impulse response (thick continuous line, left axis) with that of a static linear model
(thin continuous line, right axis). The dotted line shows the cat motoneurone voltage impulse response
obtained with a different estimate of the passive membrane response. See text for further details.
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Motoneurone input-output transforms

PSTHs produced with large depolarizing and hyper-
polarizing CTs. For PSTH peak area (Fig. 9B), the errors
were smaller, but showed the same trend. The second-order
and the cascade models provided better matches to each
parameter of PSTHs.

To evaluate the goodness-of-fit of the three models, we
calculated the differences between the measured value of a
particular PSTH feature and that predicted by the models
for each current transient. We then computed the root mean
square of these differences. (For the peak width parameter,
we only included values for the twelve largest CTs, because
the peak width could not be measured with confidence for
some of the smallest CTs.) For the first-order, second-order
and cascade models, the root mean squares of the
differences between actual and predicted values were,
respectively: 3f48, 2-31 and 2 55 impulses s' for PSTH
peak amplitude; 5-80, 3-34 and 4-83 x 10-3 impulses for
PSTH peak area; 0-67, 0-26 and 0-67 ms for PSTH peak
width; 10-48, 6-20 and 8-67% for MPC. Thus, for all four
PSTH parameters, the root mean square errors were the
smallest for the second-order Wiener model, indicating that
it gave the best approximation of the actual PSTHs. The
cascade model produced better approximations of the PSTH
parameters than did the first-order Wiener model, with the
exception of the width of the PSTH peak.

We also produced plots like those of Fig. 9 for individual
cells, including the three cat lumbar motoneurones. These
individual plots were all qualitatively similar to the average
data, in that the predictions of the first-order model showed
the largest deviations from the actual PSTH features for the
largest CTs. The extent of this deviation was greatest in
trials with low background firing rates.

Comparison of first-order Wiener model to other
linear models of the motoneurone
The results present in Fig. 9 indicate that even the first-
order Wiener model provides a good prediction of the PSTH
features produced by a fairly wide range of current
transients. Considering that a single set of model parameters
is used to predict a range of responses, this represents a
considerable improvement on previously proposed linear
models (cf. Fig. 3). One common characteristic of previously
proposed linear models is that the predicted value of
motoneurone firing probability at a given time following a
PSP depends only on the value of the PSP (and/or its
derivative) at a single point in time, i.e. they are all static
models. In contrast, our first-order model based on the
Wiener kernels is dynamic, i.e. the probability of spike
generation at a given lag depends on the PSP values at a
number of points in time. To compare the predictions of our
first-order model (which are functions of injected current)
with those derived from previous formulations (which are
expressed in terms of membrane voltage), we must first
account for the transformation of injected current into

membrane voltage. Figure 1OA illustrates representative
first-order Wiener kernels for cat (thick lines, right-hand
scale) and rat motoneurones (thin lines, left-hand scale). As
discussed earlier, the first-order kernel is the best-fit, linear
prediction of the change in firing probability produced by a
brief pulse of current with an area of 1 nA ms. The changes
in membrane potential produced by this same input (i.e. the
passive membrane response) can be predicted from a single
time constant approximation of the passive response of the
rat motoneurone, and a two-time constant approximation of
the response of the cat motoneurone (see Methods).
Figure 10B illustrates the linear prediction of the change in
motoneurone firing probability in response to a voltage
pulse (with an area of 1 mV ms), obtained by deconvolving
the first-order kernel with the passive membrane response
to the current pulse (see figure legend for details). Although
the duration of this voltage 'impulse response' is much
briefer than the corresponding response to a current pulse
(Fig. 1OA), it still has an appreciable duration, indicating
that the firing probability at a given time lag depends upon
the values of membrane potential at a number of points in
time, rather than on a single value of membrane potential
(or its derivative). This point is made more clearly in Fig.
10C, which compares the cat voltage impulse response (thick
continuous line, left axis) to a two-point impulse response
derived from the static linear model described in eqn (6)
(thin continuous line, right axis).

The differences in the cat and rat voltage impulse responses
illustrated in Fig. 10B indicate that the different time
courses of the first-order Wiener kernels between rat and
cat motoneurones cannot be simply ascribed to the
differences in their passive membrane properties. Although
the magnitude of the voltage impulse response depends on
our estimates of passive membrane properties, the time
course is relatively insensitive to these estimates. This point
is illustrated by comparing the voltage impulse responses for
a cat motoneurone obtained when the passive membrane
response was estimated from a single time constant
(Fig. 10C, dotted line) rather than a two time constant
approximation (thick continuous line). Similarly, the
dependence of the kernel's time course on background firing
rate (cf. Fig. 7C and D) cannot be a factor here since the
Wiener kernels in Fig. 1OA were calculated at similar
background firing rates. The differences in the voltage
impulse responses of Fig. 10B are in fact representative of
the entire sample of cat and rat motoneurones. In both
types of cell the voltage impulse response consisted of an
initial peak followed by a smaller undershoot. However, the
responses in cat motoneurones had times to peak of < 1 ms,
whereas those of the rat motoneurones were 1 5-2 ms.
These results indicate that there are differences in the spike
encoding processes of rat hypoglossal and cat lumbar
motoneurones.
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DISCUSSION
We undertook this study with the intent of developing a
general description of the relation between the characteristics
of a transient synaptic input and its effects on the firing
probability of a tonically discharging motoneurone. We
used trains of injected current transients to mimic the
synaptic currents produced by small numbers of repetitively
discharging excitatory and inhibitory presynaptic fibres.
We simulated the physiological synaptic activation of
motoneurones by thousands of presynaptic inputs by
embedding these trains of current transients in a
suprathreshold injected current step with superimposed
random noise. This synthesized current waveform served
two purposes: it allowed us to compile PSTHs between the
occurrences of a particular current transient and the
motoneurone spike, and it provided an appropriate input
signal for the calculation of zero-, first- and second-order
Wiener kernels. We then tested the accuracy of several
system descriptions derived from these Wiener kernels in
predicting the actual PSTHs. A first-order system based on
the zero- and first-order Wiener kernels provided a
reasonable fit to PSTHs evoked by the smaller inputs
(corresponding to single fibre PSPs), but the addition of a
second-order functional was required to fit the PSTHs
associated with the larger inputs.

Our results represent an extension of previous analyses of
the relation between synaptic inputs and their effects on
motoneurone firing probability. Based on comparisons of
EPSP and PSTH shape, other investigators have proposed
that the PSTH profile can be approximated by either a
scaled version of PSP waveform (Moore et al. 1970), a scaled
version of the PSP derivative (Knox, 1974; Fetz &
Gustafsson, 1983) or a linear combination of the PSP and its
derivative (Kirkwood & Sears, 1978; Gustafsson & McCrea,
1984). The empirical support for these models was based on
analyses of the effects of one, or at most a few, different
synaptic inputs in a given cell. Consequently, systematic
comparisons of PSP and PSTH shapes required pooling data
derived from many different cells. The present approach
permitted us to study the effects of many differently sized
and shaped PSPs recorded in the same cell under identical
experimental conditions. This concurrence eliminates any
possible variation in results due to differences in the intrinsic
properties of the motoneurone, its background discharge
rate, or the level of superimposed synaptic noise.

In agreement with previous findings (Fetz & Gustafsson,
1983; Gustafsson & McCrea, 1984; Cope et al. 1987), we
found that for depolarizing inputs the PSTH peaks were
generally wider than the positive phase of the PSTH
derivative, but narrower than the time course of the PSP
itself. As also reported by others (Gustafsson & McCrea,
1984; Cope et al. 1987), we found that the PSTHs can often
be reasonably well approximated by a combination of the
PSP and its derivative. However, the values of the scaling
coefficients for the two terms vary widely for different
inputs to the same cell. Since this variation in scaling

coefficients occurred for different inputs studied concurrently,
it cannot be attributed to variations in motoneurone
discharge rate or in the characteristics of the superimposed
noise. Instead, our findings indicate that none of the
previously proposed linear models provide a good general
description of the relation between the time course of a
synaptic input and its effects on discharge probability.

The impulse response of the motoneurone
The first-order Wiener model differs from previously
proposed linear models of the motoneurone in that it
represents spike encoding as a dynamic process, i.e. one that
depends on prior values of membrane voltage. The voltage
impulse responses of Fig. lOB provide an estimate of the
relationship between membrane potential and the probability
of spike generation. In a simple threshold-crossing neurone
model, in which spikes are triggered whenever the membrane
potential (Vm) crosses a specified threshold value (9), the
relationship between membrane potential and the probability
of a spike occurring (P8) is a step function, i.e. P8 = 0 for
Vm < e and P8= 1 for Vm >. e. In real neurones, P8 is
likely to be a sigmoidal function of Vm, reflecting the
voltage dependence of sodium channel activation. Moreover,
the time taken to initiate a spike will depend upon Vm. This
utilization time will be longer for 'just threshold' depolariz-
ations than for larger depolarizations (Hodgkin & Huxley,
1952). As a consequence of these two factors, the voltage
impulse response of a real neurone has an appreciable
duration, whereas that of a threshold-crossing model
approximates a delta function. Thus, the different time
courses of the voltage impulse responses in cat and rat
motoneurones probably reflect differences in either the
properties or spatial distribution of their voltage-gated
sodium channels.

Comparisons of the time courses of the PSTHs, first-order Wiener
kernels and voltage impulse responses for rat and cat motoneurones
are all confounded by multiple variables. In addition to the obvious
differences in animal and motoneurone species, the rat experiments
were carried out using an in vitro preparation at room temperature,
whereas the cat data were obtained in 8itu at normal body
temperature. In some preliminary experiments, we altered the
temperature of the bathing solution in our in vitro preparation by
5 °C, and found only small changes in the time course of the kernels
in rat hypoglossal motoneurones (Poliakov et al. 1996). We also
recorded the responses of several spinal motoneurones in the intact,
adult rat and found that the time courses of the first-order kernels
were virtually identical to those of the adult cat cells reported here
(R. K. Powers, J. Celichowski & M. D. Binder, unpublished
observations). Thus, the longer duration of the first-order kernels
and voltage impulse responses in rat hypoglossal motoneurones
probably reflects differences in either the intrinsic properties of this
type of motoneurone or differences in the expression of cellular
properties in the in vitro preparation.

Non-linearity in the input-output transform
The non-linear (sigmoidal) voltage dependence of sodium
channel activation (Hodgkin & Huxley, 1952) may also
underlie the presence of a significant non-linear component
in the overall transformation of injected current to firing
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probability. As noted by others (e.g. French & Korenberg,
1989), the fact that sodium channels are activated only by
depolarizing inputs should lead to half-wave rectification of
the output. However, in our experiments the steady
depolarization produced by the suprathreshold current step
probably ensured that both the hyperpolarizing and
depolarizing components of the white noise signal could
affect the activation of sodium channels. Nonetheless, since
most of the motoneurones fired at rates close to their
minimum steady discharge rate, it is likely that membrane
potentials traversed during the interspike interval covered
the lower range of the sodium activation curve, over which
its slope increases with increasing depolarization. As a

consequence, depolarizing inputs should have a more

pronounced effect on spike probability than hyperpolarizing
inputs, as was observed (Fig. 2). Regardless of the
underlying mechanism, the short-latency peak along the
main diagonal of the second-order Wiener kernel (Figs 5
and 6, parts B and C) ensures that the firing probability in
response to depolarizing inputs will increase in a greater
than linear fashion with increasing input magnitude,
whereas the firing probability will decrease in response to
hyperpolarizing inputs in a less than linear fashion with
increasing input magnitude.

The other significant feature of the second-order Wiener
kernels in both rat and cat motoneurones is a set of
symmetrical troughs off the main diagonal. As mentioned in
Results, this feature represents a non-linear interaction
between the effects of two inputs occurring at different time
lags. Specifically, the trough indicates that the effect of a

given depolarizing input will be depressed if it is preceded
at the appropriate time lag by another depolarizing input.
To the extent that our approximation of the second-order
kernel is valid, the efficacy of a depolarizing pulse will also
be enhanced if preceded by a hyperpolarizing input (cf.
eqn (10)). One possible mechanism underlying this behaviour
is variation in the level of sodium channel inactivation. The
voltage threshold for spike initiation in motoneurones varies
during the course of the interspike interval, and the time
course of this variation has a small lag with respect to
membrane potential (Calvin, 1974; Powers & Binder, 1996).
The time course of this variation in threshold is consistent
with changes in sodium channel availability due to the
voltage dependence and kinetics of initial segment sodium
channel inactivation (see Powers (1993) for a detailed
discussion). According to this hypothesis, a subthreshold
depolarizing input would increase sodium channel
inactivation for a short time following the depolarization,
reducing the spike-triggering efficacy of any subsequent
depolarizing input.

Comparisons with other white noise analyses of
neurone input-output functions
The characteristics of the Wiener kernels calculated from
our data differ somewhat from those reported previously
for cat spinal motoneurones (Boskov, Jocic, Jovanovic,
Ljubisavljevic & Anastasijevic, 1994) and catfish retinal

ganglion cells (Korenberg, Sakai & Naka, 1989). In both of
these studies, the authors concluded that the dynamics
of spike encoding contributed little to the transformation of
synaptic potentials to changes in firing probability. However,
these studies were concerned with spike encoding where the
dynamics of the input-output transformation are largely
due to the properties of neural elements that are presynaptic
to the spike-generating neurone (either a change in muscle
length or applied light intensity).

In the experiments performed by Boskov et al. (1994), the
white noise injected currents were generally larger than those
used here, and no depolarizing bias current was added. Both
bias current and noise amplitude have been shown to affect
the shape of the average spike-evoking current waveform
(Bryant & Segundo, 1976) and thus, these factors may be
responsible for the differences between the shapes of our
first-order kernels and those reported by Boskov et al.
(1994). In addition, both the form and the magnitude of the
second-order kernel may also differ since, as noted above, in
the absence of a depolarizing bias the hyperpolarizing
component of the white noise stimulus will have little or no
effect on the probability of spike generation.

Our method of testing the accuracy of our Wiener model
approximations also differs from that of several previous
studies. The white noise method of system identification has
been most commonly applied to systems in which both the
input and output are continuous variables (Marmarelis &
Marmarelis, 1978; Sakai, 1992, for review). In the case of a
discontinuous output (i.e. a series of spikes), one can test the
accuracy of the Wiener approximation by converting the
predicted output to a series of spikes by assuming that a
spike will occur whenever the output exceeds a fixed
threshold (e.g. Korenberg, French & Voo, 1988). The
alternative method used here, which was originally devised
by Moore & Auriemma (1985), was to obtain a continuous
output by compiling PSTHs in response to the repetitive
application of a transient waveform embedded in the
background noise. The novel feature introduced in our
experiments was to embed a variety of current transient
waveforms within our noise stimulus, allowing us to test the
accuracy of the first- and second-order Wiener model as a
function of the time course and magnitude of the current
transients.

The reasonably good fits that we found between the first-
order Wiener prediction and the PSTHs evoked by small
current transients indicates that a linear model of spike
encoding provides a good approximation to the responses
evoked in motoneurones by one or a few presynaptic fibres.
The inaccuracies of the previously proposed linear models
probably reflects the fact that they are all static (zero-
memory) transforms. For the larger current transients, we
found that there was a significant improvement in accuracy
of the predicted responses when a non-linear, second-order
functional was added to the model.
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Summary, applications and limitations
The results of our study strongly suggest that compiling
PSTHs between one or even a few identified synaptic inputs
and the discharge of a postsynaptic neurone does not provide
enough information to identify the general input-output
function of the neurone. We have shown, however, that the
white noise method of systems identification can be used
quite effectively to yield both the best linear approximation
of the input-output function of a neurone, as well as a more
complete, higher-order description of its spike-encoding
behaviour. We found that truncating the Wiener series at
the second-order functional was sufficient to capture both
the linear and principal non-linear components of the
input-output transform. Further, the contribution of the
second-order Wiener functional could be approximated
simply by substituting a parabolic transform of the
convolution integral of the input signal with the first-order
kernel (eqn (11)) for the second-order Wiener functional.
This Wiener cascade model accurately predicted the
responses of motoneurones to a wide range of synaptic
inputs and provided a substantial improvement over the
best-fit linear model. Thus, by simply calculating the mean
firing rate of the motoneurone during the application of a
white noise input (i.e. the zero-order kernel) and compiling a
cross-correlation of the output spike train with the white
noise input signal, one can derive a general expression for
the input-output function the cell.

Our enthusiasm for the white noise analysis is tempered
somewhat by three limitations. First, the features of the
Wiener kernels are likely to be dependent on the power of
the white noise stimulus. The power levels we chose were
designed to produce interspike interval distributions similar
to those observed in human motoneurones during voluntary
activation (i.e. coefficients of variation of the order of
10-20%; e.g. Person & Kudina, 1972 ). This suggests that
our Wiener kernel descriptions are likely to be appropriate
under most conditions of synaptic activation of moto-
neurones, but may not be accurate when the variability of
the synaptic noise is particularly high or low. Second, the
relative contribution of the non-linear term to the
input-output transform is constant over a wide range of
background discharge rates, but appears to be greater when
the level of the background current step is insufficient to
produce regular, repetitive discharge. This situation may be
analogous to the lower range of discharge rates reported in
voluntarily activated human motoneurones, where many of
the interspike intervals may be significantly longer than the
post-spike after-hyperpolarization of the motoneurone
(Matthews, 1996). Finally, the second-order model often
overestimates the increase in firing probability produced by
the largest depolarizing current transients, suggesting that
as the amplitude of the input increases, third- and higher-
order non-linearities may be important. Nonetheless, the
representation of the transduction of synaptic inputs into
changes in neural discharge rate as a Wiener system
represents a substantial advance over previous empirical

formulations. Moreover, the functional identification of
neuronal input-output functions using a Gaussian white
noise input signal is quite economical both in terms of the
requisite data and subsequent computation time.

APPENDIX
The white noise method of system identification requires an
input waveform that approximates bandwidth-limited white
noise (Marmarelis & Marmarelis, 1978). The CT waveform
that we formed by adding together Poisson trains of twenty
different current transients is clearly a random process, but
does not meet the criteria of white noise, i.e. a Gaussian
distribution of amplitudes and a flat power spectrum (cf.
Fig. 1 C and D, thick lines). Thus, we synthesized a white
noise (WN) waveform from the CT waveform by adding to it
an independent random process, y(t):

WN = CT + y(t) (Al)

The power spectral density of y(t) compensated for the fall-
off in power of the CT waveform at higher frequencies
(Fig. 1D).

The initial step in this process was to generate a waveform,
x(t), with the properties of white noise using the following
recurrent formula:

xi+l = (1/2)xi + o(3/4)½Rand(1) (A2)

where Rand(1) is a Gaussian random number with variance
1. The waveform x(t) is a good approximation of bandwidth-
limited white noise with a standard deviation of a. Note
that this random process is different from a commonly used
Constant Switching Pace Random Signal (Marmarelis &
Marmarelis, 1978), for which every value is an independent
Gaussian random number. The autocorrelation function (ai)
of the waveform x(t) is:

ai = o2-'.
The power (P) of x(t) is:

Px(t) =ALaj =AaI1+2 +4+8+ *^ =3Ar
-0024

(A3)

(A4)

where A = 04I ms, the sampling interval.

To produce the WN waveform that included the CT
waveform and had the same characteristics as the waveform
x(t), we had to create the waveform y(t). The frequency
spectrum X(f) of the waveform x(t) was found using the
fast Fourier transform. The waveform x(t), as well as
waveforms CT and WN, had 2"' samples (26 2144 s at
10 kHz sampling rate). The frequency variable f would
therefore cover the range 0-5000 Hz with 2'7+ 1 samples.
We then calculated the power density spectrum of the CT
waveform, PCT(), and that of the x(t) waveform, PXt)Q$).
But, for these calculations, we used a lower resolution:
variable 0 covers the same frequency range as f
(0-5000 Hz), but with only 27+ 1 = 129 samples. By
choosing the standard deviation value o = 2-5 nA,
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PCT(0) < P4,t)(Q) for all values of J. We then calculated the
frequency spectrum of Y(f) from that of X(f) using the
formula:

Y(f) = X(f)(l-PCT(0)/P.(t)(0)), q nearest to / (A5)
This procedure ensured that Py(ft), the power density of the
spectrum Y(f), is:

POQP) = PX,(t))(l -PCOM/Put)(0))
= Pa)(@) - PCT() (A6)

The independent random process y(t) could then be
generated by applying the inverse fast Fourier transform to
Y(f). Its spectrum was calculated by scaling the spectrum
of X(f) with the coefficient 1 - PCT(f)/Pxt)(0)t Since the
power spectrum PCT(P) has only 129 samples, it contains
very little of the CT waveform. The WN waveform was then
formed by adding y(t) to the CT waveform, as shown by eqn
(Al). PWN(A), the power density spectrum of WN
waveform is:

PWN(0) = Pct() + P?t)('P)
= PCO) + (Pu,)(t)-)pet(P ))

=px(t)(0). (A7)
Thus, the WN waveform has the power density of the
waveform x(t), which was generated to meet the criteria for
bandwidth-limited white noise. The autocorrelation function
and amplitude probability density of the two waveforms
were also nearly equivalent.
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