Skip to main content
. 2024 Aug 28;23(2):2233–2249. doi: 10.1007/s40200-024-01491-7

Table 2.

Parameters stunning setting for the ML classification

ML Classifiers Grid of parameters
Logistic Regression (LR) penalty=’12’,
C = 0.1,
solver=’liblinear’,
random_state = 1
K-Neighbours Classifier (KNN) n_neighbors = 11, weights = “distance”,
p = 2, metric=’manhattan’
Gaussian Naïve Bayes (GNB) var_smoothing = 0.0002
Support Vector Machine (SVM), C = 100, random_state = 1,
gamma = 0.01, probability = True
EnsembleVoteClassifier (clfs=[LR, KNN, GNB, SVM], weights=[1,1,1,1,1])

Cross validation = RepeatedStratifiedKFold(n_splits = 5, n_repeats = 3, random_state = 1)