Skip to main content
. 2024 Aug 28;23(2):2233–2249. doi: 10.1007/s40200-024-01491-7

Table 4.

Metrics and performance comparison among ML algorithms for predicting the presence of Pre-MetS and MetS

Model status Accuracy Specificity Sensitivity Precision F1 scores Brier loss
Pre-MetS
LR 0.705 0.901 0.395 0.730 0.513 0.202
KNN 0.639 0.797 0.395 0.558 0.463 0.212
GNB 0.729 0.770 0.667 0.653 0.659 0.192
SVC 0.655 0.837 0.375 0.600 0.461 0.232
GBC 0.656 0.840 0.396 0.594 0.475 0.207
VE 0.730 0.905 0.438 0.758 0.571 0.191
MetS
LR 0.730 0.813 0.629 0.736 0.678 0.170
KNN 0.744 0.720 0.774 0.696 0.732 0.150
GNB 0.778 0.827 0.709 0.771 0.739 0.195
SVC 0.766 0.787 0.741 0.741 0.732 0.164
GBC 0.773 0.787 0.661 0.803 0.726 0.148
VE 0.781 0.853 0.693 0.797 0.741 0.142

LR Logistic Regression for Classification, GNB: Gaussian Naive Baye: KNN: k-nearest neighbour classification, SVM: GBC: Gradient Boosting Classification, Support Vector Machine, VE: Voting Ensemble