Table 4.
Metrics and performance comparison among ML algorithms for predicting the presence of Pre-MetS and MetS
| Model | status | Accuracy | Specificity | Sensitivity | Precision | F1 scores | Brier loss |
|---|---|---|---|---|---|---|---|
| Pre-MetS | |||||||
| LR | 0.705 | 0.901 | 0.395 | 0.730 | 0.513 | 0.202 | |
| KNN | 0.639 | 0.797 | 0.395 | 0.558 | 0.463 | 0.212 | |
| GNB | 0.729 | 0.770 | 0.667 | 0.653 | 0.659 | 0.192 | |
| SVC | 0.655 | 0.837 | 0.375 | 0.600 | 0.461 | 0.232 | |
| GBC | 0.656 | 0.840 | 0.396 | 0.594 | 0.475 | 0.207 | |
| VE | 0.730 | 0.905 | 0.438 | 0.758 | 0.571 | 0.191 | |
| MetS | |||||||
| LR | 0.730 | 0.813 | 0.629 | 0.736 | 0.678 | 0.170 | |
| KNN | 0.744 | 0.720 | 0.774 | 0.696 | 0.732 | 0.150 | |
| GNB | 0.778 | 0.827 | 0.709 | 0.771 | 0.739 | 0.195 | |
| SVC | 0.766 | 0.787 | 0.741 | 0.741 | 0.732 | 0.164 | |
| GBC | 0.773 | 0.787 | 0.661 | 0.803 | 0.726 | 0.148 | |
| VE | 0.781 | 0.853 | 0.693 | 0.797 | 0.741 | 0.142 |
LR Logistic Regression for Classification, GNB: Gaussian Naive Baye: KNN: k-nearest neighbour classification, SVM: GBC: Gradient Boosting Classification, Support Vector Machine, VE: Voting Ensemble