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Spatial transcriptomics reveals substantial
heterogeneity in triple-negative breast
cancer with potential clinical implications

Xiaoxiao Wang 1,2,6, David Venet1,6, Frédéric Lifrange3, Denis Larsimont4,
Mattia Rediti 1, Linnea Stenbeck5, Floriane Dupont1, Ghizlane Rouas1,
Andrea Joaquin Garcia1, Ligia Craciun4, Laurence Buisseret1,2,
Michail Ignatiadis 1,2, Marcela Carausu1, Nayanika Bhalla 5,
Yuvarani Masarapu 5, Eva Gracia Villacampa 5, Lovisa Franzén 5,
Sami Saarenpää 5, Linda Kvastad 5, Kim Thrane5, Joakim Lundeberg 5,6,
Françoise Rothé1,6 & Christos Sotiriou 1,2,6

While triple-negative breast cancer (TNBC) is known to be heterogeneous at
the genomic and transcriptomic levels, spatial information on tumor organi-
zation and cell composition is still lacking. Here, we investigate TNBC tumor
architecture including itsmicroenvironment using spatial transcriptomics on a
series of 92 patients. We perform an in-depth characterization of tumor and
stroma organization and composition using an integrative approach com-
bining histomorphological and spatial transcriptomics. Furthermore, a
detailed molecular characterization of tertiary lymphoid structures leads to
identify a gene signature strongly associated to disease outcome and response
to immunotherapy in several tumor types beyond TNBC. A stepwise clustering
analysis identifies nine TNBC spatial archetypes, further validated in external
datasets. Several spatial archetypes are associated with disease outcome and
characterized by potentially actionable features. In this work, we provide a
comprehensive insight into the complexity of TNBC ecosystem with potential
clinical relevance, opening avenues for treatment tailoring including
immunotherapy.

Triple-negative breast cancer (TNBC) accounts for 15–20% of all breast
cancers (BC) and is associated with poor prognosis1–3. TNBC is known
to be a heterogeneous disease, which poses important therapeutic
challenges. As such, there remains an unmet need for more effective
treatment options for patients affected by TNBC4,5. Multiomics ana-
lyses performed on bulk tumors previously identified several TNBC
molecular subtypes, namely basal-like (BL), immunomodulatory (IM),

luminal androgen receptor (LAR),mesenchymal (M) andmesenchymal
stem-like (MSL)6–10. These molecular subtypes display distinct tran-
scriptomic, genomic and tumor microenvironment profiles and are
associatedwith different clinical outcomes andpotential differences in
treatment response10–12 (Fig. 1). Among them, the IM subtype is char-
acterized by a higher expression of immune gene signatures and
potentially targetable immune checkpoints and is associated with a
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better prognosis. The BL subtype has an intermediate prognosis and is
characterized by high genomic instability, with DNA repair gene defi-
ciency, and a high rate of TP53 mutations. In contrast, M and MSL
tumors are mainly associated with angiogenesis and stroma sig-
natures. Finally, the LAR subtype, which is characterized by androgen
receptor (AR) expression and enriched for PIK3CA, AKT1, and CDH1
mutations, is usually associated with a worse prognosis6,9,10. Further-
more, the tumor microenvironment has emerged as a crucial factor in
the prognosis and treatment response of TNBC. Quantitative levels of
tumor-infiltrating lymphocytes (TILs), their spatial organization, and
the formation of lymphoid aggregates have all shown promise as
prognostic and predictive markers for chemotherapy and immu-
notherapy responses in TNBC13–18. Nevertheless, RNA sequencing (RNA
seq) performed on bulk tumors has major drawbacks, as it does not
capture geographic intratumoral heterogeneity, epistatic interactions
between different tumor clones, or the tumor microenvironment19–21.
This approach is, therefore, inadequate to comprehensivelydissect the
complexity of the tumour ecosystem.

Recently, Spatial Transcriptomics (ST) has emerged as a tool for
spatially resolved transcriptome-wide expression analyses, allowing
tissue exploration in an unsupervisedmanner22,23. Several publications
highlight the power of ST, either alone or integrated into single-cell
RNA sequencing, for the investigation of tumor heterogeneity

including its tumor microenvironment24–28. The accumulation of ST
data in the BC field is still in its early stages and therefore fuels the
interest to expand this technology to a broader cohort.

Here, we aim to investigate the spatial architecture that char-
acterizes TNBC heterogeneity and assess its impact on response to
therapy and clinical outcome. To this end, we perform ST on a cohort
of 92 TNBC patients. We first examine intratumoral heterogeneity at
the pure histomorphological level by performing a detailed morpho-
logical annotation of the tumors, enabling us to capture the histo-
morphological intratumoral heterogeneity across the different TNBC
molecular subtypes. In a second step, we dissect tumor and stroma
compartments by interrogating the associations between specific
morphological, transcriptomics and cellular features. Using spatial
deconvolution, we show that tumor and stroma compartments have
different contributions to TNBC molecular classification. We further
focus our analysis on tertiary lymphoid structures (TLS), a key immune
aggregate, and develop a specific 30-gene TLS signature derived from
ST data. Of interest, the prognostic and predictive values to immune
checkpoint blockade (ICB) are shown and validated in TNBC and non-
TNBC BC cohorts as well as in other tumor types. Finally, spatial
expression data allow us to fine-tune our understanding of the TNBC
ecosystem with the identification of nine spatial archetypes (SA) with
potential clinical relevance.

Fig. 1 | Overview of tumor heterogeneity in triple-negative breast cancer.
Previous studies using bulk RNA seq analysis of TNBC patients have identified five
molecular subtypes: luminal androgen receptor, mesenchymal, mesenchymal
stem-like, basal-like, and immunomodulatory. These subtypes are associated with
distinct tumor microenvironments, characterized by variations in the rate of
tumor-infiltrating lymphocytes, spatial immune organization (TIME classification),
the presence or absence of tertiary lymphoid structures, and different types of
cancer-associated fibroblasts. Figure 1 was partly generated using Servier Medical
Art, provided by Servier (https://smart.servier.com/), licensed under Attribution
4.0 International License (https://creativecommons.org/licenses/by/4.0/). BL
basal-like, CAF cancer-associated fibroblast, detox-iCAF detoxification pathway

inflammatory cancer-associated fibroblast S1, ecm-myCAF extracellular matrix
myofibroblastic cancer-associated fibroblast S1, DC dendritic cell, FI full inflamed,
iCAF inflammatory cancer-associated fibroblast S1, ID immune desert, IFNγ-iCAF
interferon gamma signaling pathway cancer-associated fibroblast S1, IL-iCAF IL
pathway inflammatory cancer-associated fibroblast S1, IM immunomodulatory,
LAR luminal androgen receptor, M mesenchymal, MR margin restricted, MSL
mesenchymal stem-like, myCAF myofibroblastic cancer-associated fibroblast, SR
stroma restricted, TGFβ-myCAF TGFbeta signaling pathway myofibroblastic
cancer-associated fibroblast S1, TILs tumor-infiltrating lymphocytes, TIME Tumor
Immune Micro-Environment, TLS tertiary lymphoid structure, wound-myCAF
wound healing myofibroblastic cancer-associated fibroblast S1.
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Results
Leveraging TNBC expression patterns using ST
In order to comprehensively investigate the morphological landscape
and transcriptomic program of intratumoral heterogeneity that char-
acterizes TNBC, we conducted ST analyses on a series of 96 primary
TNBC samples from 94 patients (Fig. 2). Characteristics of the cohort
are summarized in Supplementary Table 1 and Supplementary data 1.
In particular, we used the glass slide ST array with 1934 spatially bar-
coded spots of 100μm diameter29,30. The transcriptional profile of
each spot is composed of a mixture of various cell types, with up to
200 cells per spot. In this retrospective study, we used fresh-frozen
surgical specimens collected from the tissue bank of the Jules Bordet
Institute (Brussels, Belgium). Three of the four consecutive cryosec-
tions were used for ST analysis, with the fourth section being used for
double immunochemistry (IHC) staining to assist histomorphological
annotation of TILs) CD3+ T cells and CD20+ B cells. Additional con-
secutive sections were used to perform bulk RNA sequencing for
correlative analyses with the ST findings.

Of note, high-quality sequencingdatawere obtained for 281 out of
the 288 ST subarrays performed, corresponding to 92 out of 94
patients. In total, 270,310 ST spots were analyzed, with a median of
960 spots per subarray and a median of 2554 genes at the spot level
(Supplementary data 2).

Molecular TNBC subtypes display distinct morphological
patterns
In order to explore spatial intratumoral heterogeneity at the mor-
phological level, two specialized breast pathologists conducted a
thorough manual annotation of the hematoxylin and eosin (H/E)
stained slides associated with the ST slides. A total of 15 histomor-
phological categories were depicted and further grouped into three
broad classes: tumor (invasive and in situ), stroma (fat tissue, lacti-
ferous ducts, vessels, stroma cells and acellular stroma) and immune
features (lymphocytes and TLS) (Supplementary Table 2). Further-
more, we investigated TILs organization and localization by assigning
each sample tooneof the four classes according to theTumor Immune
Micro-Environment (TIME) classification17: fully inflamed (FI), stroma
restricted (SR), margin restricted (MR) and immune desert (ID) (Sup-
plementary data 1). As illustrated in Fig. 3a, b, TNBC appears as a highly
heterogeneous entity made up of a mosaic of variable morphological
features.

We first interrogated the histomorphological composition of the
tumor samples according to the TNBC molecular subtypes and
observed that IM, BL and M subtypes were enriched in tumor content
while LAR and MSL subtypes were enriched in stroma components
(Fig. 3c and Supplementary Fig. 1a). As expected, lymphocytes were
mostly present in the immune-related IM subtype whereas LAR and
MSL subtypes exhibited a higher prevalence of normal structures
including fat tissue and vessels (full results in Supplementary data 3).

We next aimed to examine the spatial organization of tumor and
stroma cells within each of the TNBC molecular subtypes. For this
purpose, neighboring individual tumor cells were grouped and clas-
sified as tumor patches, while adjacent stroma cells/structures were
grouped and classified as stroma patches. The patches were further
characterized by three different metrics: their number, mean size, and
‘evenness’, a patch size diversity index (Fig. 3d). As represented in
Fig. 3e, BL and IM subtypes were characterized by a smaller number of
larger tumor patches associated with a higher diversity, whereas LAR,
M and MSL subtypes displayed a higher number of small, dispersed
tumor patches (Supplementary data 4). Stroma patches exhibited a
reverse pattern across the TNBC molecular subtypes (Supplementary
Fig. 1b, Supplementary data 5).

These data show that the TNBC molecular subtypes display dis-
tinct patterns of tumor organization and cell composition that could
potentially be captured from routine H/E slides using deep learning
algorithms.

Spatial deconvolution of the different TNBCmolecular subtypes
shows different contributions of tumor and stroma
compartments
We next sought to use the spatial expression data to investigate the
contribution of the tumor and non-tumor (defined as ‘stroma’) com-
partments to the TNBCmolecular classification as determined by bulk
transcriptomic analysis.

To do so, we first developed regressors to estimate the compo-
sition of each ST spot at the gene expression level considering the 15
previously described histomorphological categories grouped into a
total of nine categories: tumor, stroma, necrosis, fat tissue, vessels,
lactiferous ducts, in situ, TLS and lymphocytes (Supplementary
Table 3). These regressors accurately predicted most histomorpholo-
gical categories (Supplementary Fig. 2a, Supplementary data 6). We
then designed a deconvolution method to estimate the presence of

Fig. 2 | Study design. Overview of the ST workflow: from patient to data analysis.
ST analysis was conducted in triplicates on fresh-frozen surgical samples from 94
TNBC patients. Double CD3/CD20 IHC and bulk RNA sequencing were performed
for each patient. Detailed morphological annotation was carried out on one of the
available ST sections. Bioinformatic analyses integrated morphological features

and ST sequencing data. Figure 2 was partly generated using Servier Medical Art,
provided by Servier (https://smart.servier.com/), licensed under Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/). H/E hema-
toxylin and eosin, IHC immunohistochemistry, ST spatial transcriptomics, TNBC
triple-negative breast cancer.
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eachof the ninemorphological categories at the spot level from the ST
gene expression data, bridging morphological information to ST data
(details in METHODS). This allowed us to compute tumor and stroma
pseudobulks (PB), which are a numerical approximation of the gene
expression profiles deriving specifically from tumor and non-tumor
cells, respectively (Fig. 4a and Supplementary Fig. 2b). Of note, stroma
compartment was defined as the sum of all categories, except tumor,
in situ and necrosis categories.

We next computed the TNBC molecular subtypes on the tumor
and stroma PB separately in order to dissect which molecular and
cellular features of the tumor or stroma compartment drive the TNBC
classification. Of note, similar analyses were performed on the global
pseudobulk of thewholeST array,mimicking themost standardlyused
bulk RNA sequencing (Fig. 4a, b; Supplementary data 7). As shown in
Fig. 4b, the TNBC classification based on the tumor compartment only
identified three subtypes, namely LAR, M and BL suggesting that IM
and MSL subtypes as defined by bulk RNA analysis rely on stroma
features. IM subtype is defined by BL tumors with high levels of infil-
trating lymphocytes in contact with tumor cells or in the stroma,
corresponding to the FI and SRTIME classes respectively.MSL subtype

is mostly defined byM tumors associated with MSL stroma whereas M
subtype was composed of M tumors associated with either M or MSL
stroma. Finally, the BL subtype was mainly characterized by basal
tumorswith SRTILs,whereas LAR subtype is composedby LAR tumors
with the absence or low levels of MR TILs. Of note, the few samples
classified as IM in the tumor compartment (N = 6) and BL in the stroma
compartment (N = 5) were probably artefactual and due to the limita-
tion of the deconvolution method to discriminate the contamination
of immune and tumor cells in each compartment respectively (Fig. 4b).
These results demonstrate that both tumor and stroma compartments
are essential for the TNBC classification and highlight the extent of the
TNBC subtypeheterogeneity that cannot be capturedbybulkRNA seq.

We then investigated the biological processes that characterize
each tumor and stroma compartment underlying the TNBC classifi-
cation (Supplementary Tables 4–7). When focusing on the tumor
compartment, M tumors were associated with high epithelial-
mesenchymal transition (EMT) signaling and expression of PDGFRA
and NTRK2 genes. LAR tumors were enriched with metabolism and
PI3K/AKT/mTOR signaling, while BL tumors showed higher prolifera-
tion and DNA repair hallmarks (Fig. 4c, Supplementary Fig. 3a,

Fig. 3 | Morphological analyses. a Morphological annotation into fifteen histo-
morphological categories for one H/E-stained slide from the ST sections of each
TNBC sample (right, color code). b Total number of pixels for each annotated
histomorphological category (top) and the number of samples containing the
different categories (bottom) (N = 94). c Distribution of morphological annota-
tions across the five TNBC molecular subtypes, computed using ST global pseu-
dobulk data (N = 94). d Illustration of distinct tumor patch patterns characterized
by size, number, and diversity index (evenness). e Distribution of tumor patch
metrics by TNBC molecular classification (N = 94). Statistical differences across
subtypes were assessed using Kruskal–Wallis tests and Wilcoxon rank sum test

(when comparing each subtype to each of the others). For Wilcoxon tests, FDRs
were obtained by adjusting two-sided P values using Benjamini & Hochberg
method (*FDR<0.05 and ≥0.01, **FDR <0.01 and ≥0.001, ***FDR <0.001 and
≥0.0001, ****FDR<0.0001). In boxplots, the boxes are defined by the upper and
lower quartile; the median is shown as a bold colored horizontal line; whiskers
extend to the most extreme data point which is no more than 1.5 times the inter-
quartile range from the box. Source data and exact P values are provided as a
SourceData file. BL basal-like, FDR false-discovery rate, H/E hematoxylin and eosin,
IM immunomodulatory, LAR luminal androgen receptor, M mesenchymal, MSL
mesenchymal stem-like, TNBC triple-negative breast cancer.
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Supplementary Tables 8 and 9). Similar analyses performed on the
stroma compartment revealed that MSL stroma showed higher
angiogenesis and cancer-associated fibroblast (CAF) signals while M
stroma was associated with higher neutrophil infiltration and lower
immune signals, consistent with M stroma exhibiting ID TIME pheno-
type. LAR stroma showed higher adipogenesis, whereas IM stromawas
characterized by higher levels of several immune signatures, including
TLS, tissue-resident memory cell (Trm) and interferon gamma signal-
ing pathway inflammatory CAF (IFNγ-iCAF) signatures (Fig. 4c, Sup-
plementary Fig. 3b, Supplementary Tables 10 and 11).

We next assessed whether the combinations of tumor and stroma
components from different molecular subtypes within a given sample

had an impact on clinical outcome (Supplementary Table 12). As pre-
viously highlighted, the M subtype can derive from the association
with M stroma, or MSL stroma (Fig. 4b, d). Interestingly, patients
assigned asM subtype had a better distant relapse-free survival (DRFS)
when the stromawasMSL and enriched in immune activation signaling
including two inflammatory CAFs namely IFNγ-iCAF and interleukin
pathway inflammatory CAF (IL-iCAF), than when the stroma was M
(Fig. 4e, f). Our findings were further corroborated using the TIME
classification where the MSL and M stroma were predominantly asso-
ciated with the MR and ID immunophenotypes respectively (Fig. 4b).
These results indicate substantial intra-patient heterogeneity within
each TNBC molecular subtype, with different contributions of tumor
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and stroma features associated with distinct molecular characteristics
and clinical outcome.

Taking advantage of having ST data, we further explored the
biological processes underlying the previously described tumor pat-
ches organization including number and size by performing a gene set
variation analysis (GSVA) on theMSigDBhallmarks31 andother relevant
gene signatures on the tumor and stroma PBs. This analysis revealed
that tumor with larger tumor patches were enriched in proliferation
(‘MYC targets v2’, ‘CIN70’, ‘GGI’) and immune signaling (‘Immune2’,
‘TLS_Lundeberg’, ‘Immune1’) whereas tumor organized in smaller
patches had higher metabolism (‘xenobiotic metabolism’, ‘fatty acid
metabolism’, ‘oxidative phosphorylation’) and hormone-related sig-
naling (‘estrogen response late/early’, ‘androgen response’) (Supple-
mentary Fig. 4a, b).

Characterization of TLS and its association with response to
immunotherapy
TLS are ectopic lymphoid organs that have been shown to be asso-
ciated with favorable prognosis and response to therapy including
immunotherapy32–36. The underlying mechanism is thought to be a
better tumor antigen presentation to T cells, enhancing a specific anti-
tumor response37.

Currently, there is no consensus for TLSdetection fromH/Eor IHC-
stained tissue sections38. Moreover, the gene expression of TLS is dif-
ficult to obtain, as they are small aggregates composed of different cells
which could be in common with TILs or non-TLS immune aggregates.
For this reason, both bulk and single-cell sequencing fail to interrogate
their gene expression profiles. ST analysis gave us the unique oppor-
tunity to specifically characterize these structures. This allowed us to
derive gene expression profiles specific to TLS compartments by
deconvoluting the ST gene expression data (Supplementary Fig. 2a,
Supplementary data 6 and 8). As shown in Fig. 5a, the projection of TLS
estimatedby thepreviouslydeveloped regressor co-localizeswithhisto-
and morphologically defined TLS demonstrating the reliability of the
regressor to predict TLS from gene expression data.

We then interrogated how TLS composition differed from non-
organized lymphocyte compartment. As expected, TLS were enriched
in all B cell subsets, CD4+ (central) memory and naïve T cells, as well as
mast cells (Fig. 5b and Supplementary Fig. 5a). A functional enrichment
analysis showed an activation of ‘mitotic G2/M transition checkpoint’,
‘vascular endothelial cell proliferation’, ‘V/D/J recombination’ and
‘regulation of cell chemotaxis to fibroblast growth factor’ in TLS
compared to single lymphocytes, suggesting that TLS formation may
be associated with immune cell proliferation, angiogenesis, adaptative
humoral response and tissue remodeling (Fig. 5c, Supplementary
Fig. 5b, c, Supplementary data 9–12).

We then aimed to develop a specific TLS signature (details in
METHODS) by comparing gene expression data from TLS versus

lymphocyte compartment as well as TLS versus other non-immune-
related compartments (Fig. 5d, Supplementarydata 13 and 14). This led
to the development of the 30-gene TLS ST signature which includes
eleven B cell-specific genes (CD79A, CD79B, TNFRSF13C, BLK, CD22,
CD37, MS4A1, NIBAN3, CD19, IKZF3, LINC00926), six TLS priming genes
(CXCR5, LTB, SELL, CCL19, POU2AF1, CXCL13), four immunoglobulin
genes (FCRLA, VPREB3, FCMR, AL928768.3), three T cell-specific genes
(RASGRP2, TCF7, RIPOR2), four immune response-related genes (RAC2,
IL16, CCR7, CD52) as well as TCL1A and ATP2A3 genes (Supplementary
Table 13). As expected, there was an overlap between the genes of our
signature and previously reported TLS signatures16,24,39, strengthening
the reliability of our ST approach (Supplementary Fig. 6a). We further
compared the performance of our TLS ST 30-gene signature with the
other TLS signatures in discriminating TLS from the nine histo-
pathological categories, in particular TILs (represented by the lym-
phocytes compartment), and showed that our TLS signature demon-
strated the highest specificity to the TLS compartment
(Supplementary Fig. 6b, Supplementary data 15).

Furthermore, the projection of our TLS ST signature on the ST
slide accurately overlapped with the regions annotated as TLS by the
pathologist (Fig. 5a, e). The high accuracy of TLS prediction by our
signature was quantitatively assessed by the area under the curve
(AUC) (Supplementary Fig. 6c). Even when compared with other TLS
signature, it demonstrated its high specificity for TLS detection (Sup-
plementary Fig. 6d, Supplementary data 16 and 17). As expected, the
highest levels of the TLS signature were observed in the IM subtype
and FI tumors, whereas the lowest levels were observed in the M
subtype and ID tumors (Fig. 5f, g, Supplementary data 18 and 19).

We next evaluated the predictive value of our TLS ST signature for
clinical outcome and response to immunotherapy using our ST cohort,
publicly available BC datasets (Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC)40, SCAN-B41 and I-SPY242), as
well as a dataset of metastatic non-breast tumors treated with
immunotherapy43. As shown in Fig. 6a, patients with high expression
levels of the TLS ST signaturewere associatedwith a goodprognosis in
our ST cohort and in external METABRIC and SCAN-B TNBC cohorts.
Of interest, higher levels of the TLS ST signature were associated with
higher pathological complete response (pCR) rates mainly in early-
stage TNBC patients treated with immunotherapy in the I-SPY2 study
(Fig. 6b and Supplementary Fig. 7a, b). Similar results were found in
non-BC cohorts treated with immunotherapy including metastatic
melanoma, pancreatic and bladder cancers, where the TLS ST sig-
nature outperformed other gene signatures in predicting clinical out-
comes (Fig. 6c, d and Supplementary Fig. 7c, d). This suggests a key
role of TLS in obtaining a sustainable, adaptive antitumor immune
response in the vicinity of the tumor area.

Finally, we assessed whether our TLS ST signature predicted
response to immunotherapy independently from previously reported

Fig. 4 | Spatial deconvolution of TNBC molecular subtypes. a Three levels of
gene expression data: RNA sequencing from bulk tumors, ST global pseudobulk
(captured from all ST spots), and ST tumor (green) and stroma (pink) pseudobulks
(or compartments). b Contribution of tumor and stroma compartments to the
TNBCmolecular subtypes (N = 94). The alluvial plot shows the distributionof TNBC
subtypes from ST global, tumor, and stroma pseudobulks, along with the spatial
immunophenotypes (TIME classification). cMolecular and cellular characterization
of tumor (top) and stroma (bottom) compartments across TNBC subtypes (N = 94).
The most relevant and significant molecular and cellular features, including single
gene expression, gene signatures, and xCell enrichment, are illustrated. FDRs are
based on the Wilcoxon rank-sum test. FDR <0.05 shown with dark-bordered dots;
blue = negative association, red = positive association. Full effect sizes (by logistic
regression) and FDRs are in Supplementary Fig. 3a, b. d Examples of theM subtype
associated with either M (left) or MSL (right) stroma. Morphological regression
shows the spatial distribution of tumor (green) and stroma (pink) signals. TNBC
molecular classification is projected at the ST spot level. e Heatmap of molecular

and cellular features characterizing the M subtype with M (left) (N = 11) or MSL
(right) (N = 16) stroma (FDR<0.05). f Kaplan–Meier plot of DRFS in patients withM
subtype and either MSL or M stroma (N = 26). P value obtained using the permu-
tation version of the log-rank test. Source data are provided as a Source Data file.
Figure 4a was partly generated using Servier Medical Art, provided by Servier
(https://smart.servier.com/), licensed under Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/). BL basal-like, FDR false-discovery
rate, CAF cancer-associated fibroblast, DRFS distant relapse-free survival, EMT
epithelial-mesenchymal transition, FI full inflamed, GGI genomic grade index, ID
immune desert, IFNγ-iCAF interferon gamma signaling pathway cancer-associated
fibroblast S1, IM immunomodulatory, IL-iCAF IL pathway inflammatory cancer-
associated fibroblast S1, LAR luminal androgen receptor, M mesenchymal, MR
margin restricted, MSL mesenchymal stem-like, PB pseudobulk, SR stroma
restricted, ST spatial transcriptomics, TAM tumor associated macrophages, TIME
Tumor Immune Micro-Environment, TLS tertiary lymphoid structure, Tregs reg-
ulatory T cells, Trm tissue-resident memory T cell.

Article https://doi.org/10.1038/s41467-024-54145-w

Nature Communications |        (2024) 15:10232 6

https://smart.servier.com/
https://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications


immune signatures. As illustrated in Fig. 6e, our TLS signature retained
its predictive ability of response to immunotherapy after adjusting for
various immune signatures, including other TLS signatures. In con-
trast, the predictive efficacy of several immune signatures diminished
after controlling for our TLS ST signature (Fig. 6f, Supplementary
Figs. 8 and 9). Overall, these results highlight the importance of an
organized immune response in predicting response to immunother-
apy that can be efficiently and specifically captured by our ST
signature.

Identification of fourteen spatial molecular patterns shared
across TNBC patients
To further assess intra-tumor spatial heterogeneity, we performed an
unsupervised K-means clustering of the spots of each sample based on
ST expression data allowing the identification of spatial molecular
patterns (Fig. 7a, details in METHODS). This analysis revealed 418
clusters (range 2–8 clusters per sample) among the 94 TNBC samples,
each cluster corresponding to a set of spots sharing a similar gene
expression pattern (Fig. 7b, Supplementary Fig. 10).

In order to investigate the intra-tumor heterogeneity according to
the TNBC classification, we first assigned each individual cluster to a
specific molecular subtype. As shown in Fig. 7c, the majority of the
TNBC samples harbored clusters from two to three differentmolecular
subtypes with only 16 among the 94 tumor samples being only com-
posed of clusters from the same subtype as the global PB. Half of them
belonged to the IM subtype with a FI immunophenotype (N = 9/16).
The majority of the BL subtype encompassed one or two IM clusters
corresponding to a SR immunophenotype (N = 11/13) whereas 75% of
the M subtype included both M and MSL clusters associated with
either SR or ID immunophenotype, respectively (N = 8/21 for each
class). Similarly, many LAR tumors contained MSL clusters with ID
immunophenotype (N = 5/9) (Supplementary data 20). These data
revealed the extent of intra-patient heterogeneity beyond TNBC clas-
sification and its association with TILs localization.

We next interrogated whether individual clusters were shared
across patients by performing an inter-patient megaclustering of the
418 individual intra-patient clusters with the K-means algorithm
(details in METHODS). This analysis revealed 14 megaclusters (MC)
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Fig. 5 | Spatial characterization of tertiary lymphoid structures and develop-
ment of a 30-gene TLS ST signature. a Illustrative sample (ST_TNBC_ID 30)
demonstrating TLS detection via CD3/CD20 IHC staining, along with morpholo-
gical annotation of the H/E-stained ST slide (highlighted in khaki) and corre-
sponding morphological regression (also in khaki). The same analyses were
conducted across the entire cohort (except for IHC: N = 86), with regression per-
formed on duplicates or triplicates of each ST sample. b Cell-type enrichment by
xCell in TLS compared to the lymphocyte compartment in the ST TNBC cohort
(N = 94). Median values are indicated by vertical lines. Only FDRs <0.05 are
reported using two-sided Wilcoxon rank sum test. c Selected enriched biological
pathways identifiedbyGO:BP inTLScompared to the lymphocyte compartment in
the ST TNBC cohort. Only FDRs <0.05 are reported using one-sidedWilcoxon rank
sum test. d Scatter plot displaying 30 differentially expressed genes from the
comparison of TLS with either lymphocyte (x-axis) or other non-lymphocyte
compartments (y axis), composing the TLS ST signature in the ST TNBC cohort

(N = 94). e Projection of the TLS ST signature expression (neon green) on the same
TNBC sample (ST_TNBC_ID 30). f, g Distribution of TLS ST signature expression
across TNBCmolecular subtypes (N = 94) (f) and TIME classification (N = 93) (g) in
the STTNBCcohort. Dashed lines represent themean signatureby subgroup. Two-
sided P values are from Kruskal–Wallis tests and Wilcoxon rank-sum tests (for
comparisons of each class to all classes). FDRswere calculated using the Benjamini
& Hochberg method to adjust P values (*FDR<0.05 and ≥0.01; **FDR <0.01 and
≥0.001; ***FDR<0.001 and ≥0.0001; ****FDR <0.0001). Source data and exact P
values are provided as a Source Data file. aDC activated dendritic cells, BL basal-
like, DC dendritic cells, FDR false-discovery rate, FI full inflamed, H/E hematoxylin
and eosin, ID immune desert, IHC immunohistochemistry, IM immunomodulatory,
LAR luminal androgen receptor, M mesenchymal, MR margin restricted, MSC
mesenchymal stem cell, MSL mesenchymal stem-like, SR stroma restricted, Tcm
central memory T cells, Tem effector memory T cells, Th1 type 1 helper, TIME
Tumor Immune Microenvironment, TLS tertiary lymphoid structure.
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that recapitulate the spatial gene expression heterogeneity that char-
acterizes TNBC (Fig. 7a, d, Supplementary Fig. 11a, Supplementary
data 21–23). The projection of the MCs is illustrated in Fig. 7b and
Supplementary Fig. 10.

Characterization of each MC including morphological annota-
tions, TNBC classification and gene expression features is summarized
in Fig. 7d and Supplementary Table 14. MC 1, 2, 3, 5 and 6 were char-
acterized by high tumor content, high proliferation and low immune
signal, in contrast to MC 7, 9, 10, 14 associated with high levels of
several immune signatures (Supplementary Fig. 11b, c). MC 9 showed
the highest level of TLS signature (‘TLS ST’) indicating an organized
immune response in contrast toMC 11, 12 and 13, displaying features in
line with immune inhibition including stroma activation. A high
expression of the CD73 gene in MC 11 and 14 suggests an activation of
the adenosine pathway44 (Supplementary Fig. 12). Furthermore, MC 14
exhibited an infiltration of innate immune cells with high levels of
dendritic cells (DC), monocytes and macrophages. Together, MC 13
and 14 were broadly enriched in adipocytes (Supplementary Fig. 13).

Interestingly, MC 1 to 6 were characterized by high expression of
DNA repair signatures, with MC 1 displaying the highest expression of
homologous recombination repair and mismatch repair genes as well
as high expression of several demethylase enzymes (Fig. 7d, Supple-
mentary Fig. 11b and 12). MC 1 was most likely infiltrated by polarized
Th2 cells45, while MC 2 was more enriched with pro-tumorigenic
neutrophils46 (Supplementary Fig. 13). Furthermore, MC 2 expressed

higher level of the CD47 gene, which plays a role in themaintenance of
neutrophils associated with a delay in neutrophil apoptosis47 (Sup-
plementary Fig. 12). MC 5–6, mainly found in IM and BL subtypes,
presented high mTORC1 and PI3K/AKT/mTOR signaling, whereas MC
11 andMC14, identified inMandMSL subtypes, exhibitedhigh levelsof
angiogenesis and EMT. MC 8, which was specific to the LAR subtype,
displayed the highest expression of the AR gene as well as high
expression of several signatures capturing metabolism and adipo-
genesis (Fig. 7d, Supplementary Fig. 11b, c).

We finally assessed whether individual MC could predict clinical
outcome. To do so, we re-estimated the MC contributions by decon-
volution at the spot level, and then performed univariate and multi-
variate (adjusted for clinic-pathological characteristics) survival
analyses (Supplementary Fig. 14). As illustrated in Fig. 7e, MC 5 was
associated with better outcome, in contrast to MC 2 and MC 12 show-
ing a trend toward poor survival. To validate our findings in other
datasets, wedeveloped adeconvolutionmethod (details inMETHODS)
to assess the presence of each MC from bulk gene expression data
(Supplementary Figs. 15–17). Interestingly, the association between all
MCs and clinical outcomes showed a consistent trend in a large cohort
combining the METABRIC and SCAN-B datasets (Fig. 7f, Supplemen-
tary Fig. 18). Additionally, in this extensive dataset, survival analyses
identified an additional MC, specifically MC 9, which showed a trend
toward being associated with better outcome and is characterized by
an organized immune response (Fig. 7f).

Fig. 6 | Prognostic and predictive value of the 30-gene TLS ST signature.
a Kaplan-Meier plot showing DRFS according to TLS ST signature quartiles in
combined TNBC cohorts: ST TNBC (N = 92), METABRIC (N = 334), and SCAN-B
(N = 518). The two-sided P value was obtained using the likelihood ratio test from a
Cox regression stratified by study. b TLS ST signature levels by pCR status in TNBC
(red) and luminal HR+/HER2− (orange) patients treated with paclitaxel plus pem-
brolizumab in I-SPY2 trial (N = 69). Two-sided P value was derived from the Wil-
coxon test. Boxes represent the interquartile range (IQR), with the median shown
as a bold horizontal line; whiskers extend to themost extreme data point within 1.5
times the IQR. c, d Predictions of PFS (N = 572) (c) and radiological response
(RECIST) (N = 842) (d) using TLS ST signature and other reported signatures in
metastatic non-breast cancers treated with immune checkpoint inhibitors. TLS ST
signature: HR, FDR (p) for PFS (by Cox regression using log likelihood test, strati-
fied by study) (c); OR, FDR (p) for RECIST (by logistic regression using Wald test,
random effect by study) (d). FDR by Benjamini & Hochberg method to adjust two-

sided P values. e Association of the TLS ST signature with PFS before and after
adjusting for various immune signatures in metastatic non-breast cancers treated
with immune checkpoint inhibitors (N = 572). f Association of different immune
signatures with PFS after adjusting for the TLS ST signature in the same cohort
(N = 572). Two-sided P values were derived from likelihood ratio tests on nested
models. Significant P values (<0.05) are highlighted in blue. Circles represent HR,
with error bars indicating the 95% confidence interval (CI). Source data are pro-
vided as a Source Data file. BC breast cancer, detox-iCAF detoxification pathway
inflammatory cancer-associated fibroblast S1, DRFS distant relapse-free survival,
GGI genomic grade index, HR hazard ratio, HR+ hormone receptor positive, IFNγ-
iCAF interferon gammasignaling pathway cancer-associated fibroblast S1,ORodds
ratio, PFS progression-free survival, Q1-4 quartiles 1–4, ST spatial transcriptomics,
TAM tumor associated macrophages, TLS tertiary lymphoid structure, Trm tissue-
residentmemoryT cell, VCpredTN veliparib carboplatin prediction triple negative.
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Altogether, thesefindings demonstrated that tumors share similar
morphological, molecular and cellular features captured by 14 distinct
MCs associated with potential clinical implications. Of note, despite
being derived from ST data, the MCs could be effectively captured
using bulk RNA seq analysis alone.

Nine SAs recapitulate TNBC ecosystem with potential clinical
implications
Here, we investigated TNBC ecosystem by assessing whether specific
MCs coexist within samples and in which proportions. Hierarchical

clustering on the MC proportions (details in METHODS) revealed 9
TNBC SAs, each one being determined by a combination of the 14MCs
(Fig. 8a, b, Supplementary Fig. 19a, Supplementary data 24). Each
TNBC sample was assigned to one of the 9 SAs. While some SAs were
more heterogeneous according to the TNBC molecular classification,
others were more specific to a particular subtype. As illustrated in
Fig. 8c, IM tumors were enriched in SA 4, whereas LAR tumors were
exclusively represented by SA 5 (Supplementary Fig. 19b).

We then investigated the molecular and cellular processes that
characterize each SA. SA 1 to SA 4 mostly exhibited FI and SR
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immunophenotypes, while SA 5 to SA 9 displayed MR and ID immu-
nophenotypes (Fig. 8a). SA 1, SA 3, and SA 4 exhibited enrichment in
immune signals (Supplementary Figs. 19c–21, Supplementary data 25).
Notably, SA 4 demonstrated an organized immune response, char-
acterized by high levels of tertiary lymphoid structure (‘TLS ST’ sig-
nature) and infiltration by IFNγ-iCAF, coupled with low stroma
activation and low EMT (Fig. 8d, e, Supplementary Fig. 20b, d, Sup-
plementary data 26). These observations collectively suggest a highly
immunogenic SA. Furthermore, cell-type enrichment analysis revealed
that SA 4 was enriched in B cells, plasma cells, CD8+ central memory
and naive T cells, macrophages and DCs (Supplementary Fig. 20a, c;
Supplementary Tables 15 and 16).

As an exploratory analysis, we also interrogated if SAs exhibited
therapeutic vulnerabilities through the expression of specific genes or
pathways deregulation. Of interest, SA 1 and SA 4 showed higher
expression of the “VCpredTN” signature, previously associated to
response to PARP inhibitors42,48–50 (Fig. 8e, Supplementary Fig. 20b, d).
SA 2 was associated with higher expression of TACSTD2 and ERBB3
genes coding for Trop-2 and HER3 proteins, respectively, with Trop-2
targetable with anti-Trop-2 antibody-drug conjugate (ADC) and HER3
known as a member of human epidermal growth factor (EGFR/HER)
family of receptor tyrosine kinases which could be targeted by anti-
HER3 therapies51,52 (Fig. 8e, f). SA 3 and SA 4 exhibited enrichment in
PD-L1 expression, which was globally associated with immune
infiltration53 (Fig. 8f). SA 7 was characterized by a high immunosup-
pressive ‘adenosine’ pathway (CD73 gene), thus being potentially
sensitive to anti-CD7354,55, whereas SA 8 showed high NECTIN4
expression, coding for Nectin-4 which is a target for a specific ADC56,57

(Fig. 8e, f, Supplementary Fig. 21). In addition, the LAR-specific SA
5 showed relatively higher expression of ERBB2 gene and activation of
several metabolism-related pathways suggesting sensitivity to anti-
HER2 and antimetabolite drugs58 (Fig. 8e, f).

In order to validate ourfindings, wedesigned amethod to recover
SAs from bulk gene expression data (details in METHODS) and
assigned one SA per sample in several TNBC cohorts, including our ST
series, METABRIC and SCAN-B. For that, bulk RNA seq analysis was
performed on our ST cohort. Most SAs could be recapitulated from
bulk gene expression data, SA 6 proving to be the most challenging
(Supplementary Figs. 22–28, Supplementary data 27).

Survival analyses revealed that patients with SA 4 tumors exhibited
the highest survival rates, while patients with SA 8 tumors experienced
the poorest outcomes (Fig. 8g, h, Supplementary Figs. 29–33). Inter-
estingly, within the SA 4 group, patients with IM tumors showed a
tendency towards a more favorable prognosis compared to those with
IM tumors from other SAs (Fig. 8h). This observation underscores the
significant heterogeneity intrinsic to the IM subtype.

These results demonstrate that ST analyses revealed the com-
plexity of TNBC ecosystem beyond TNBC classification, with the
identification of clinically relevant SAs, some of them being associated

with survival and which could be considered as potential therapeutic
targets (Fig. 9, Supplementary Table 15).

Discussion
In the past decade, accumulating evidence derived from bulk tumor
analyses showed that TNBC is a heterogeneous disease with the pre-
sence of at least five molecular subtypes associated with distinct
clinical outcomes and response to neoadjuvant therapy6–8,10–12,59. One
of the major limitations of bulk multiomics analyses is that they
ignored tumor geographic heterogeneity, including cell-cell interac-
tions between different tumor clones and their microenvironment.
Despite the recent development of novel therapeutic options such as
immunotherapy and PARP inhibitors, there is still a substantial pro-
portion of TNBC patients who experience disease recurrence, high-
lighting the need to better characterize tumor heterogeneity to
improve patients’ care60. Only a few reports evaluated the hetero-
geneity of BC using spatially resolved transcriptomics, either in com-
bination with single-cell analysis or separately. Furthermore, they only
assessed a limited sample size24–28.

Here, we applied ST technology on the TNBC cohort to gain
deeper insights into tumor heterogeneity. We first performed a meti-
culous manual histomorphological annotation using standard H/E-
stained slides, demonstrating several differences in morphological
composition and tumor organization that portray each TNBC mole-
cular subtype. We notably showed that LAR and MSL tumors were
organized in small tumorpatches associatedwithhighmetabolismand
EMT signaling, as compared to BL and IM, which display highly pro-
liferative large tumor patches. These findings show the potential of
applying deep learning algorithms in digital pathology for the identi-
fication of TNBCmolecular subtypes using standard-of-careH/E slides,
thereby avoiding the use of costly and less accessible RNA seq tech-
nology in the clinic61,62.

In order to study the underlying cellular and biological processes
shaping the architecture that characterizes each TNBC subtype, we
developed a deconvolution method allowing to depict gene expres-
sion signals from nine different histomorphological categories cap-
turing tumor and stroma compartments, with high accuracy for most
of the categories. This spatial deconvolution allowed us to show that
tumor and stroma compartments have different contributions to
TNBCmolecular classification, with potential clinical implications. For
instance, the IM subtype was predominantly composed of BL tumor
cells with extensive lymphocytic infiltration, whereas the MSL subtype
was mostly defined by M tumors associated with specific stroma fea-
tures. Interestingly, M subtype population associated with M in the
stroma had a poorer outcome as compared to M subtype associated
with MSL in the stroma characterized by high immune signatures
including TLS and B cell enrichment. This highlights the power of ST
technology to dissect intratumoral heterogeneity at an unprecedented
level, complementing TNBC subtypes.

Fig. 7 | Characterization of spatial molecular patterns. a Overview of the 3-step
approach for characterizing spatial molecular patterns shared across TNBC sam-
ples, leading to the identification of 14 megaclusters and 9 spatial archetypes.
b Projection of intra-patient (top) and inter-patient (bottom) clusters in a repre-
sentative BL subtype TNBC sample (ST_TNBC_ID 30). c Heterogeneity of intra-
patient clusters based on TNBC molecular classification (N = 94). The TNBC mole-
cular subtype was calculated using global pseudobulk (Subtype PB), with spatial
immunophenotypes (TIME) also shown. d Morphological, molecular, and cellular
characterization of the 14 megaclusters shared across TNBC patients (N = 94). The
molecular subtypes of the 418 individual clusters are shown (% TNBC subtype). A
heatmap of selected molecular features (single gene expression, gene signatures,
and xCell cell type enrichment) specific to each megacluster is provided, with
detailed analyses available in Supplementary Figs. 11b, c, 12, and 13. e, f Association
of the 14 megaclusters with iBCFS in the ST TNBC cohort (N = 94) (e) and the
combinedMETABRIC and SCAN-B cohorts (N = 1007) (f), usingdeconvolutionof ST

spots andRNAbulk expression, respectively. Analyseswere adjusted for age, tumor
size, and nodal status. Two-sided P values were derived from likelihood ratio tests
on nested models, with significant FDRs (<0.05) shown in blue. Circles represent
HR, and error bars indicate the 95% CI. Source data are provided as a Source Data
file. BL basal-like, C1-C7 individual clusters 1–7, CAF cancer-associated fibroblast, CI
confidence interval, DC dendritic cells, Dec deconvolution, EMT epithelial-
mesenchymal transition, FDR false-discovery rate, FI full inflamed, GGI genomic
grade index, HRhazard ratio, iBCFS invasive breast cancer-free survival, ID immune
desert, IM immunomodulatory, KM K-means, LAR luminal androgen receptor, M
mesenchymal, MC megacluster, MR margin restricted, MSL mesenchymal stem-
like, PB pseudobulk, SA spatial archetype, SR stroma restricted, TAM tumor asso-
ciated macrophages, Th2 type 2 helper, TIME Tumor Immune Micro-Environment,
TLS tertiary lymphoid structure, TNBC triple-negative breast cancer, Trm tissue-
residentmemory T cell, VCpredTN veliparib carboplatin prediction triple negative.
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We next investigated how spatial expression data can inform us
on the cellular andmolecular features thatdrive tumorigenesis beyond
TNBC classification. An unsupervised clustering of the spots from all
samples revealed the presence of 14 spatial molecular patterns that
were shared among patients, further referred as megaclusters, and

which recapitulate TNBC gene expression architecture. Each of these
megaclusters showed specific molecular and cellular characteristics
with some of them being associated with prognosis. This analysis
revealed the extent of intra-patient heterogeneity since each sample
harbors one to six different megaclusters. Of note, we identified a

Fig. 8 | Molecular and cellular characteristics of the nine spatial archetypes
and their association with survival. a Identification of the 9 SAs by hierarchical
clustering of the 14 megaclusters. TNBC molecular subtypes and TIME spatial
immunophenotypes are shown at the top. b Proportions of the 14 megaclusters
within each SA in the STTNBCcohort (global pseudobulk;N = 94). cDistribution of
TNBC molecular subtypes across SAs in the combined TNBC cohorts (ST TNBC
bulk, METABRIC, SCAN-B;N = 1101).dDistribution of the 30-gene TLS ST signature
across SAs in the ST TNBC cohort. Two-sided P values are derived from Kruskal-
Wallis and Wilcoxon rank-sum tests (one vs all). FDRs were calculated using the
Benjamini & Hochberg method (*FDR<0.05). Boxplots show quartiles, medians
(bold line), and whiskers (1.5 times IQR). Dashed line indicates the mean TLS sig-
nature. e Molecular and cellular characterization of SAs in the ST TNBC cohort
(N = 94), based on gene signatures, cell type enrichment, and single gene analysis.
Dots are dark-colored when FDRs <0.05. Blue = negative, red = positive associa-
tions. Full details in Supplementary Fig. 20a, b, 21. f Expression of five targetable
genes across SAs in combined TNBC cohorts (N = 1101). One-sided P values are

derived from Wilcoxon rank sum test (one vs. all) and corrected for multiple
testing. Positive associations (FDRs <10-5) aremarkedwith dots; standard deviation
labeled as “s.d.” g Association between SAs and iBCFS in the combined TNBC
cohorts (N = 1101), adjusted for age, tumor size, and nodal status. Two-sided P
values were derived from likelihood ratio tests on nested models, with significant
FDRs (<0.05) shown in blue. Circles represent HR, and error bars indicate the 95%
CI. h Kaplan-Meier plots showing iBCFS of SA4, IM in SA4, IM not SA4, and SA8 in
the combined TNBC cohorts. P values from Cox regression stratified by study.
Source data are available. BL basal-like, CI confidence interval, FDR false-discovery
rate, FI full inflamed, GGI genomic grade index, HR hazard ratio, iBCFS invasive
breast cancer-free survival, ID immune desert, IM immunomodulatory, LAR lumi-
nal androgen receptor, M mesenchymal, MC megacluster, MR margin restricted,
MSL mesenchymal stem-like, SA spatial archetype, SR stroma restricted, TAM
tumor associated macrophages, TIME Tumor Immune Microenvironment, TLS
tertiary lymphoid structure, Trm tissue-resident memory T cell, VCpredTN veli-
parib carboplatin prediction triple negative.
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megacluster characterized by high metabolism and adipogenesis sig-
naling that was specific to LAR tumors, highlighting the distinctive
biology of these tumors. Finally, we derived nine SAs depicting the
coexistence of several megaclusters within samples recapitulating
TNBC ecosystem. Importantly, all SAs could be robustly captured
using bulk gene expression data from external datasets, demonstrat-
ing the transferability of the results derived from such a complex
technology into a tool that can easily be used in the clinic. Interest-
ingly, we identified two distinct immune-enriched SAs, SA 3 and SA 4,
exhibiting different clinical outcomes that cannot be captured by the
IM TNBCmolecular subtype or routine biomarkers, such as TILs. SA 4,
in particular, demonstrated an organized immune response associated
with better survival. These findings suggest that variability in these
archetypes may explain why some patients do not respond to immu-
notherapy despite having highly immune-infiltrated tumors or
experience relapse despite achieving a complete pathological
response. This variabilitymay also provide a rationale for de-escalating
pembrolizumab-chemotherapy combinations in the neoadjuvant set-
ting of TNBC treatment53.

The identification of these SA is of particular relevance for the
clinic since some of them were characterized by targetable deregu-
lated pathways including homologous repair deficiency (HRD),
immunosuppressive adenosine pathway or high expression of ERBB3
and NECTIN4 that can potentially benefit from PARP inhibitors, ole-
clumab, an anti-CD73 inhibitor or specific ADCs such as patritumab
deruxtecan and enfortumab vedotin targeting ERBB3 and Nectin-4
respectively52,55–57. The lattermaybe of particular importance given the
worse clinical outcome observed in NECTIN4-high SA 8
patients (Fig. 9).

Moreover, considering the distinctive biology of LAR tumors both
in bulk and at the ST level, SA 5 primarily consists of LAR tumors,
suggesting that those tumors should be considered as a distinct BC
entity, alongside luminal, HER2+, and triple-negative BC. Given the
limited benefit to anti-androgen treatment in AR-positive TNBC
tumors, one may hypothesize that these patients may benefit from a
combination of anti-androgens with antimetabolite drugs or PIK3CA
inhibitors11,63–66.

Recently, immunotherapy became the standard of care for early-
stage TNBCpatients. It is important to note that not all patients benefit
from this treatment, highlighting the need for the identification of

predictive biomarkers to select those who are most likely to benefit,
avoiding unnecessary costs and potential lifelong toxicities. Although
TILs and TLS have demonstrated an association with better outcome
and favorable response to immunotherapy, biomarkers predicting
response to immunotherapy in early-stage BC are still lacking in the
clinic67,68. At present, there is no agreement regarding the optimal
method for detecting TLS fromH/E- or IHC-stained tissue sections37,69.
Taking advantage of having spatial gene expression data, we devel-
oped a specific TLS signature and demonstrated its prognostic and
predictive value to immunotherapies in TNBC, and importantly also in
other tumor types. Of interest, our TLS ST signature outperformed the
predictive value of other immune-related signatures, and therefore
appears as a promising biomarker able to identify patients who would
benefit from immunotherapy.

Our study faced several challenges and limitations. The resolution
of STs has dramatically increased, fromour ST technology (2 K spots of
100μm diameter) to the most recent Visium (4992 spots of 55 µm
diameter) and Visium HD technology (2 × 2 µm barcoded squares),
which approaches single-cell scale70. Our spots were analyzed as indi-
vidual mini-RNA bulks containing up to 200 cells, which obscured the
cellular and molecular heterogeneity within each spot. This limitation
led to issues such as the presence of the BL subtype in the stroma
compartment and the IM subtype in the tumor compartment, due to
the discrimination limits of the regression tool (Fig. 4b). Additionally,
deeper analysis of small structures like TLS is constrained, as only a few
spots (1–3) cover one TLS. The analysis of TLS composition and the
spatial distribution of different cell types within them would benefit
from recent technologies. Another limitation is the validation of the
clinical relevance of our results in external cohorts. We are eagerly
awaiting access to data fromclinical trials to assess the clinical utility of
theSAs and theTLSST signature. Finally, the high costs associatedwith
ST technology limit its routine clinical application. However, we were
able to derive the SA from lower-resolution data, such as bulk RNA seq,
which ismore alignedwith current clinical practices, given the existing
use of prognostic signatures in luminal BC71,72. Moreover, future
research could explore other low-resolution biomarkers, such as those
identified through IHC, as potential surrogates for these SAs in clinical
practice.

In conclusion, our study offers deeper insights into the extent of
intra- and inter-patient heterogeneity in TNBC. Our results exemplify

Fig. 9 | Evolutionofmolecular subtypes inTNBC frombulkRNA seq analysis to
ST-derived spatial archetypes. Distribution of the five pre-existing TNBC mole-
cular subtypes into different spatial archetypes in the STTNBC (N = 94),METABRIC
(N = 335) andSCAN-B (N = 672) cohorts. Themolecular subtypesweredefined from
the ST global pseudobulk and from METABRIC and SCAN-B bulk transcriptomes.
The main characteristics of each spatial archetype are summarized, highlighting

the potential for precision medicine in TNBC with specific therapeutic strategies
for each spatial archetype. Source data are provided as a Source Data file. ADC
antibody-drug conjugate, BL basal-like, EMT epithelial-mesenchymal transition,
ICB immune checkpoint blockade, IM immunomodulatory, LAR luminal androgen
receptor, M mesenchymal, MSL mesenchymal stem-like, PARPi poly-ADP ribose
polymerase inhibitor, SA spatial archetype, TLS tertiary lymphoid structures.
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the benefit of employing ST in unraveling the complexity of the TNBC
ecosystems, emphasizing the importance of considering TNBC het-
erogeneity in patients’ care and for the development of future clinical
trials.

Methods
Study population and sample collection
In this retrospective study, 94 early-stage TNBC patients treated at the
Institut Jules Bordet (Brussels, Belgium) with standard-of-care thera-
pies between 2000 and 2016 were included. TNBC patients were
selected based on their negative status for estrogen (ER) and proges-
terone (PR) receptors and the absence of HER2 amplification. Infor-
mation regarding germline mutations in BRCA1 and BRCA2 genes was
extracted from the patients’ medical records. All patients underwent
initial surgery, followed by adjuvant chemotherapy and/or radio-
therapy. For each patient, a clinical follow-up of approximately five
years was required, unless the patient experienced a specific event.
Clinical outcomes were defined following STEEP Version 2.0 criteria73.
Five standardized endpoints were reported as follows: 1. Recurrence-
free survival (RFS) as the time interval from the date of diagnosis to
death related or not to BC, or any recurrence (distant or locoregional),
excluding contralateral BC; 2. Invasive breast cancer-free survival
(iBCFS) as the time interval from the date of diagnosis to death related
or not to BC, or any recurrence (distant or locoregional), including
contralateral BC; 3. Invasive disease-free survival (iDFS) as the time
interval from the date of diagnosis to death related or not to BC, or any
recurrence (distant or locoregional), including contralateral BC and
second primary non-BC related invasive cancer; 4. Distant relapse-free
survival (DRFS) as the time interval from the date of diagnosis to death
related or not to BC or any distant recurrence; 5. Overall survival (OS)
as the time interval from the date of diagnosis to death related or not
to BC (Supplementary Table 12). For patients with a longer follow-up,
clinical outcomes were censored at 10 years.

For each patient, a frozen surgical tumor tissue sample stored at
−80 °Cwas collected from the institutional tissue bank with their prior
consent. For two patients, surgical samples of locoregional relapse
were also collected. The selection of the sampleswas based on the pre-
ST screening H/E slide of the frozen tissue satisfying the criteria of
tumor cellularity >15%and sample size compatiblewith thedimensions
of the ST array. Therefore, a total of 96 TNBC samples were profiled
using ST. The samples were collected in concordance with the
DeclarationofHelsinki and the studywasapprovedby the Local Ethical
Review Board before initiation of the work (research ethics reference:
CE2862). Clinical and pathological data were collected in Supple-
mentary data 1.

Each TNBC sample was profiled for ST as triplicates consisting of
three consecutive sections (16μm-thick). As such, a 3D-stack of spatial
gene expression could be obtained for each sample after image
alignment. The following five consecutive sections (8μm-thick) were
collected for further analysis, one of them being used for lymphocytes
B and T detection using double immunohistochemistry staining with
anti-CD20 antibody (ready-to-use mouse monoclonal, IR604, Dako,
USA) and anti-CD3 antibody (rabbit monoclonal, IR503, Dako, USA).
CD3 was applied first to the tissues section and detected with the
ultraView Universal DAB Detection Kit (760-500, Roche Ventana
Medical Systems, Inc.). CD20 was applied next to the same tissue and
detected with an UltraView Universal Alkaline Phosphatase Red
Detection Kit (760-501, Roche Ventana Medical Systems, Inc.)74. The
IHC could not be performed for eight samples due to a lack ofmaterial
(from TNBC 21 to TNBC 28). Finally, ten additional consecutive sec-
tions (8μm-thick) were used to extract RNA for bulk sequencing.

External validation cohorts
BC datasets. Data from BC cases were collected from three external
BC datasets: METABRIC (335 TNBCs), SCAN-B (672 TNBCs) and I-SPY2

(987 BCs including 363TNBCs). The latter datasetwas specifically used
to assess response to immunotherapy in early-stage BC patients.

TheMETABRICdataset is a product of theMETABRIC40. Data were
downloaded from https://www.cbioportal.org/study/summary?id=
brca_metabric. It contains normalized RNA microarray profiling of
2509 fresh-frozen BC samples performed on the Illumina HT-12 v3
arrays. TNBCs were identified as having both the “ER_STATUS” and the
“HER2_STATUS” fields as negative. Clinical outcomes were updated
with amore recent publication of the same group75. OS and DRFS were
assessed following the same criteria as the ones used in our ST cohort
(described in Methods: “Study population and samples collection”).
EFSwasdefined as the time interval from thedate of diagnosis to death
related or not to BC, or any recurrence (distant or locoregional)
without specific precision about the contralateral BC.

The SCAN-B dataset comes from the Swedish Cancerome Analysis
Network–Breast study (SCAN-B, ClinicalTrials.gov ID NCT02306096)41.
Expression data, obtained by whole transcriptome RNA sequencing,
were downloaded from https://data.mendeley.com/datasets/
yzxtxn4nmd. The library protocol of the adjusted version was used.
TNBC patients were identified based on negative status for both HER2
and ER. Clinical outcomes such as OS followed the same criteria as the
ones used in our ST cohort. By addingdeath as an event (including if the
death occurred less than 1 year after the end of the last follow-up), we
refined distant recurrence-free interval (DRFi) and breast cancer-free
interval asDRFS and iBCFS, respectively, according to theSTEEPversion
2.0 criteria along with the times to event being adapted if needed.

The I-SPY2dataset comes from the adaptive phase II I-SPY2 trial, in
which multiple experimental groups were compared to evaluate new
agents in BC in the neoadjuvant setting42. Expression data were
downloaded from the GEO database (GSE194040). Clinical data,
including the pathological complete response (pCR), were down-
loaded from the article “Supplementary information”. TNBCs were
selected using the “Receptor.Subtype” field from the clinical data.

Non-BC immunotherapy datasets. Fourteen datasets with available
gene expression data were downloaded fromhttps://www.orcestra.ca/
clinical_icb, for a total of 1073 patients with diverse metastatic cancers
treated with immune checkpoint blockades, including 370melanoma,
296 renal, 195 bladder, 51 urothelial, 31 lung and 128 other cancers43.
Available clinical outcomes were progression-free survival (PFS)
(N = 572 patients), OS (N = 856 patients) and RECIST radiological
response (N = 842 patients).

ST experiments
STArrays. The STmicroarraysweregenerated as a grid of 1934printed
spatially barcoded spots of 100μm diameter containing approxi-
mately 200 million uniquely barcoded (spatial barcodes) oligonu-
cleotides with poly-T20 VN capture regions per spot and a center-to-
center distance of 150μm. The dimensions of the ST microarray are
6.2mm×6.4mm and each glass slide contains six ST microarrays
(=subarrays) allowing up to six different tissue sections.

Tissue handling, staining, and imaging. The protocols used in our
study have been described previously in Andersson et al.24, Ståhl
et al.29, Salmén et al.30, and Ji et al.76. In short, fresh-frozenmaterial was
sectioned at 16μm. After placing the tissue on top of the barcoded
microarray, the glass slide was warmed at 37 °C for 1min for tissue
attachment and fixed in ~4% formaldehyde (Sigma-Aldrich, F8775)
diluted in PBS (phosphate-buffered saline, Medicago, 09-9400) for
10min at room temperature (RT). The slide was then washed briefly
with 1× PBS. The tissue was dried with isopropanol (Fisher Scientific,
A461-1) before staining. The tissue was stained with Mayer’s hema-
toxylin (Agilent, S3309) for 4min, washed in Milli-Q water, incubated
in bluingbuffer (Agilent, CS702) for 2min,washed inMilli-Qwater, and
further incubated for 1min in 1:20 eosin solution (Sigma-Aldrich,
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HT110216) in Tris-buffer (pH 6). The tissue sections were dried for
5min at 37 °C and then mounted with 85% glycerol (Merck, 104094)
and a coverslip. Imaging was performed using the Zeiss AxioImager 2Z
microscope and the Metafer Slide Scanning System (Metasystems) at
×20 magnification. The images were processed with the VSlide soft-
ware (v1.0.0). After the imaging was complete, the coverslip and
remaining glycerol were removed by dipping the whole slide in Milli-Q
water followed by a brief wash in 80% ethanol and warming for
1min at 37 °C.

Permeabilization and cDNA synthesis. Using the pre-
permeabilization mix for most tissue types from the protocol, the
pre-permeabilization was carried out using 0.4% Collagenase 1
(Thermo Scientific, 17018-029) in BSA (Bionordika, B9000S) and HBSS
buffer (Thermo Fisher Scientific, 14025-050) and was incubated for
20min in 37 °C. The pre-permeabilization was followed by incubation
in 0.1% pepsin-HCl (Sigma-Aldrich, P7000-25G, pH 1) for 10min at
37 °C to permeabilize the tissue. A cDNA-mix containing Superscript III
(Thermo Fisher, 18080085), RNaseOUT (Thermo Fisher, 10777019),
0.1M DTT (Thermo Fisher, included with Superscript III), dNTPs
(Thermo Fisher, R0191), BSA (Bionordika, B9000S), Actinomycin D
(Sigma-Aldrich, A1410-2MG) was added after which the slide was
incubated at 42 °C overnight (~18 h). The tissue was washed with 0.1×
SSC (Sigma-Aldrich, S6639) between each incubation step.

Tissue removal and cDNA release from the surface. For tissue
removal, a two-step protocol was used30. Beta-Mercaptoethanol (Cal-
biochem, 444203) was diluted in RNeasy lysis buffer (Qiagen, 79216)
and the slidewas incubated for 1 h at 56 °C. Thewellswerewashedwith
0.1× SSC followed by incubation with proteinase K (Qiagen, 19131),
diluted in proteinase K digestion buffer (Qiagen, 1034963), for 1 h at
56 °C. The wells were subsequently washed in 2× SSC +0.1% SDS fol-
lowed by 0.2× SSC and finally with 0.1× SSC after, which they were
dried. The released mix consisting of second-strand buffer (Thermo
Fisher, 10812014), dNTPs (Thermo Fisher, R0191), BSA (Bionordika,
B9000S), and USER enzyme (Bionordika, M5505L) was added to each
well and incubated for 2 h at 37 °C. After probe release, the spatial
spots containing non-released DNA oligonucleotide fragments were
detectedbyhybridizationoffluorescently labeledprobes and imaging,
in order to obtain Cy3-images for image alignment and spot detection,
as described in the protocol29,30.

Library preparation and sequencing. Parts of ST library preparations
were carried out using an automated pipetting system (MBS Mag-
natrix Workstation), also previously reported30,77. Second-strand
synthesis and blunting were carried out by adding DNA polymerase
I (Thermo Fisher, 18010025), RNase H (Thermo Fisher, 18021071),
and T4 DNA polymerase (Bionordika, M0203L). The libraries were
purified and amplified RNA was generated by a 14 h in vitro tran-
scription reaction using T7 RNA polymerase (Sigma-Aldrich,
AM1334), supplemented with NTPs (Sigma-Aldrich, AM1334) and
SUPERaseIN (Sigma-Aldrich, AM2694). Thematerial was purified, and
an adapter was ligated to the 3′-end using truncated T4 RNA ligase 2
(Bionordika, M0242L). Generation of cDNA was carried out at 50 °C
for 1 h by Superscript III (Thermo Fisher, 18080085) in first-strand
buffer (Thermo Fisher, included with Superscript III), RNaseOUT
(Thermo Fisher, 10777019), DTT (Thermo Fisher, included with
Superscript III) and dNTPs (Thermo Fisher, R0191). Double-stranded
cDNA was purified, and full Illumina sequencing adapters and
indexes were added by PCR using 2xKAPA HotStart ready-mix
(Roche, KK2602). The number of amplification cycles needed for
each sectionwas determined by qPCRwith the addition of EVAGreen
(Biotium, 31000). Final libraries were then purified and validated
using an Agilent Bioanalyzer and Qubit before sequencing on the
NextSeq500 (v2) at a depth of ~100 million paired-end reads per

tissue section. The forward read contained 31 nucleotides with 46
nucleotides in the reverse read.

Bulk RNA sequencing
RNA was extracted from 10 consecutive sections of the ST sections
frombulk TNBC samples using the AllPrepDNA/RNA/miRNAUniversal
kit (Qiagen, Germany). Quantification of the RNAwas performed using
the Qubit fluorometer technology according to the manufacturer’s
protocol. Starting from 200ng of total RNA, rRNA was depleted using
the Ribo-ZeroMagnetic Kit (Epicentre; Madison,Wisconsin) according
to the manufacturer’s instructions. Library quality control and quan-
tification were performed using the Fragment Analyzer (Advanced
Analytical) and the QUBIT® (Invitrogen). Total RNA Library Prep was
used for the preparation of the librairies. Sequencing was performed
with a target read depth for rRNA-depleted total RNA (RiboZero Gold)
of 30 × 106 reads on the Illumina NovaSeq 6000 platform in 2×100 bp
paired-end mode at the BRIGHTcore (BRussels Interuniversity Geno-
mics High Throughput core) sequencing facility of the ULB (http://
www.brightcore.be). Reads were trimmed using Trimmomatic 0.3878.
Genes were quantified using Salmon79 on the reference human gen-
ome hg38 and GENCODE release 38.

TILs and TIME classification
The percentage of TILs was evaluated by two dedicated breast
pathologists on H/E-stained slides for each tumour sample following
the international TILs working group guidelines80. Percentages of
CD20+ B- and CD3+ T cells infiltration were determined by double IHC
CD20/CD3 staining74. In addition, each TNBC sample was further
classified according to the TIME classification into one of four
immunophenotypes17: FI (characterized by intratumoral localizationof
TILs (iTILs)], SR (absence of iTILs, but presence of TILs in the stroma),
MR (presence of TILs at tumor margins), and ID (low quantity of TILs).

Morphological analyses
Morphological annotations. Fifteen histomorphological categories
were annotated by two dedicated breast pathologists from the same
H/E slides, which correspond to one of the three consecutive sections
designated for ST and also used for TILs quantification (Supplemen-
tary Table 2). The QuPath software (version 0.2.3) was used to the
morphological annotation. Three categories were further annotated at
the single-cell level using a machine learning approach available in the
QuPath software for the identification of tumor cells, stroma (=fibro-
blasts) cells and lymphocytes. The other categories were manually
delineated: high TILs stroma (estimated as ≥30% lymphocytes on the
area), low TILs stroma (estimated as <30% lymphocytes on the area),
acellular stroma (stroma formed by collagen fibers underlying differ-
ent cell types of tumor microenvironment), fat tissue, lactiferous
ducts, TLS, necrosis, vessels, nerve, heterologous element, carcinoma
in situ, and tumor region (defined as tumor cells enriched area). Arti-
facts and whitespace were also annotated.

TLS were identified among overall TILs taking into consideration
the double IHC CD20/CD3 staining, when available. In detail, TLS was
defined as lymphoid follicles including a dense cellular aggregate
(recapitulating the germinal center–GC) or lymphoid aggregates and
lymphoid follicles without GC and consisted of CD20-positive B zones
with CD3-positive T zone aggregates.

The morphological annotations were saved as.png files, super-
imposable to the original H/E slides. This allowed to extract the mor-
phological composition of each spot from the annotated H/E.

Contribution of histomorphological categories. We quantified the
contribution of each morphological annotation in each slide as the
fraction of pixels set to that annotation out of the total number of
annotated pixels. Artifact, whitespace and non-annotated pixels were
removed for this analysis.
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To resolve the overlap between certain histomorphological
annotations, we merged some of them together (Supplementary
Table 2). To do so, we defined the category “Tumor” as the sum of
“tumor cells” and “tumor regions” and the category “Lymphocytes” as
the sum of “lymphocytes” and half of the “High TILs stroma”. The
category of “Stroma cells”was defined as the sumof the “stroma cells”,
half of the “Low TILs stroma” and half of the “High TILs stroma” cate-
gories. We added to the “Acellular stroma” category half of the “Low
TILs stroma” category. Of note, the contributions of acellular stroma,
stroma cells and lymphocytes were estimated among the manual
annotations of “Low and High TILs stroma” respectively. “Total
stroma”or “Stroma”was defined as the sumof the acellular stroma and
the stroma cells. In summary, the sum of “Tumor %” + “In situ %” +
“Total stroma%”+ “Lymphocytes%”+ “Tertiary lymphoid structures%”
+ “Necrosis %” + “Fat tissue %” + “Vessels %” + “Lactiferous ducts %” +
“Nerve%”+ “Heterologous element%” = 100% (=total of thepixels from
the morphological annotation).

Organization of tumor and stroma into patches. To assess the spatial
organizationof tumor and stromacells, neighboring cellswere grouped
into “patches”. To this end, cellswere dilated (artificially enlarged) using
a circular kernel with a radius of 15 pixels, which corresponds ~1.5× the
usual size of cancer cells. ‘Patches’were then found by joining adjacent
pixels. Several metrics were then calculated on those patches: size in
pixels (Np), number of patches (N), the number of patches required to
reach half of the total surface for that annotation, and “evenness”which
is the Shannon entropy normalized by the number of patches (Sup-
plementary Data 4–5). Evenness describes the uniformity of the patch
size, measuring distribution equality (an evenness of 1 being a case
where all patches have the same size, while an evenness close to 0
corresponds to a case with one dominant patch).

Data processing
Data preprocessing and normalization. Sequencing data were pre-
processed as previously described29. Briefly, the demultiplexed reads
were then filtered for amplification duplicates using the UMI with a
minimal hamming distance of 2. The UMI-filtered counts were used in
the analysis. ST-pipeline (v.1.6.0) used for the analysis is available at
https://github.com/SpatialTranscriptomicsResearch/st_pipeline. High
quality sequencing data for ST experiments were obtained for 281 out
of the 288 arrays performed, corresponding to 94 out of 96 samples
(TNBC 17 and 18 failed to be sequenced) (Supplementary data 2). For
93 samples, we obtained data for triplicate and for one sample
(TNBC70), we only had duplicate data. A total number of
3,561,450,620 UMIs were generated.

Spot selections were performed following different steps. First,
we filtered out spots extending outside of the tissue region or had
more than 1% of their pixels annotated as “artifacts” (usually tissue
folds). From a total of 3,561,450,620 UMIs and 537,069 spots, there
remained 2,864,571,670 (82.6%) UMIs and 281,852 spots (52.5%) after
this filtering.Most of the spotswere removed because theywere out of
tissue: this concerned 46.4% of the spots and 17.4% of the UMIs. Fur-
thermore, 5822 spots (1.1%) containing 78,864,709 UMIs (2.2%) were
removed as artifacts. Finally, we removed 11,542 spots (2.1%) corre-
sponding to 2,404,110 UMIs (0.07%), because they had less than 500
UMIs. We did not remove ribosomal protein genes (RPL and RPS),
mitochondrial genes (MT−), norMTRNR genes. After all filtering, there
remained 270,310 spots and 2,862,167,560 UMIs for further ST ana-
lyses (Supplementary data 2).

Genes among the ST spots were normalized using:

Log 1 +
10,000xP

x

� �
ð1Þ

with the sum being by spot.

Slides superposition. Two or three consecutive ST tissue sections,
named subarrays (duplicate or triplicate) were available for each TNBC
sample. These tissue sections were distant from each other only by 16
microns, and we found that there were relatively little biological dif-
ferences between them. For the analysis, sections were considered as
technical replicates. In order to compare them, we first needed to
make them as stackable as possible using rotation, translation, and
possibly reversion (if the tissue section was flipped upside down
before being placed on the glass slide). These transformations allowed
the analysis for each TNBC sample across the 3D axis and contributed
to the identification of the ‘spatial genes’ across the two or three
consecutive ST tissue sections (described in Methods: “Intra-patient
clustering”). The transformations were performed compared to an
unmodified reference slide, that was always the one that had been
annotated by the pathologist. A custom tool in Rwas developed to this
end using the Shiny package. Quality of registration was judged by eye
and case-by-case.

Batchcorrection. Each tumorwas assayed induplicate or triplicate, on
different “subarrays”. In some cases, there were significant differences
in gene expression levels between those replicates, for which we cor-
rected. Batch effects by gene were estimated with a negative binomial
model using the glmGamPoi R package, size factors being estimated
using the deconvolutionmethod (i.e., size_factors = ”deconvolution” in
glm_gp). Cases where no gene-specific effect was larger than 0.2 were
considered as having no batch effect and were not corrected. For the
others, a reference (“base”) subarray had to be defined. We decided to
pick either the subarray that was closest to the mean of the full
experiment, or themean of all subarrays from the sample. Specifically,
we calculated the correlations between the average of ST global
pseudobulk (PB) defined across all samples and the global PBs of the
subarrays, as well as with the mean of the sample’s PBs. The highest of
those correlations was considered. If it was from one subarray, then
that subarray was taken as the reference. If it was from themean of the
2 or 3 subarrays, then the mean was taken as the reference. However,
unnecessary batch correction could occur due to some technical
issues such as tissue fold on one of the subarrays. We performed visual
inspection and comparison of the projections on ST subarrays and for
some TNBC samples, a manual correction for the reference was per-
formed (Supplementary data 28). Each gene was then regressed out
using the gene-specific coefficient.

Data analyses
Estimation of the fraction of eachmorphological categoryper spot.
We estimated from the gene expression of ST spots, the fraction of
each histomorphological category, as described in Methods: “Con-
tribution of histomorphological categories”. A total of nine categories
were retained: tumor, stroma, necrosis, fat tissue, vessels, lactiferous
ducts, in situ, TLS and lymphocytes (Supplementary Table 3). This was
done by firstly computing the fraction of pixels in each spot that
belonged to each category. Then a regressor was designed to estimate
those fractions from the spot gene expression data. The accuracy of
the regressor was estimated using a leave-a-patient out approach. A
final regressor was finally designed using all data, and applied to each
subarray, annotated or not, to get the fraction of each histomorpho-
logical category in each spot.

Specifically, we used a linear booster regressor, implemented in
the R package xgboost (version 1.6.0.1) (https://CRAN.R-project.org/
package=xgboost), using the “logistic” objective function. Using leave-
a-patient-out cross validation, we found that using 25 rounds and 250
components led to a good accuracy overall. We assessed the quality of
the obtained regressions using AUC for each histomorphological
category, binarized as present in a spot if proportion >25%, calculated
with the R package pRoc81 (version 1.18.0) (Supplementary Fig. 2a). We
usedAUCs to judge thefit quality as it is independent of theprevalence
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of the histomorphological categories, which varies dramatically
between them.

The regressed fractions were projected to all ST subarrays and
visually inspected, showing that they fitted well with the morphologi-
cal annotations (Supplementary Fig. 2b). The use of those regressed
fractions allowed to generalize the annotations across all subarrays,
including those lacking morphological annotations.

Gene expression signatures and gene set variation analysis. We
estimated the contribution of biological processes using gene set
analysis. First, we applied GSVA (R package version 1.44.5) to several
gene sets. Those sets included 46 of the hallmark gene sets31 (version
7.0) downloaded from MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb/). We excluded the following 4 hallmark signatures due to a
lack of association with tumor processes or microenvironment in BC:
pancreas beta cells, spermatogenesis, UV response up, UV response
down. We also applied GSVA to the following gene sets: Cancer-
associated fibroblast S182 (CAF) and various CAFs subtypes83, Tissue-
resident memory T cell84 (Trm), Tumor associated macrophages
(TAM)85 and our in-house developed 30-gene TLS ST signature
(described inMethods: “TLS signature”). GSVA was also applied on the
“biological process” domain of the Gene Ontology, as downloaded
from MSigDB (dataset c5, 9996 signatures in total).

Other signatures involving coefficients for each gene were not
computed as GSVA but as a weighted mean of gene expression values.
This concerned two external TLS signature24,39; two HRD-like
signatures42, previously associated to the response to PARP inhibi-
tors: VCpredTN and Parpi7; three proliferation signatures: Genomic
Grade Index86 (GGI), GENE7087, CIN7088; two stroma signatures:
Stroma189 and Stroma290; and two immune infiltration signatures
Immune191 and Immune290. ESR1 and AR were simply taken as the
normalized gene expression (Supplementary Table 4).

Single genes of interest. We established a list of interesting individual
genes with a relevant biological and/or therapeutic role in TNBC using
the recent literature (Supplementary Table 5). This list included 45
immune genes, 8 mismatched repair genes, 6 target genes for ADC
therapy, 13 genes involved in signaling pathways, 5 genes involved in
(de-)methylation, 5 angiogenesis-related genes, 11 cell-cycling-related
genes, 3 genes involved in the hormonal status and 19 genes
involved in HRD.

xCells deconvolution. The xCell package (https://link.springer.com/
protocol/10.1007/978-1-0716-0327-7_19) was used for cell type
enrichment analyses. The enrichment scores obtained by xCell are
similar to fraction of a given cell type, for each cell type from a specific
PB.We selected the 48most relevant cell types: 6 B cell, 8 CD4+ - and4
CD8 + - T-cell subpopulations, 3 other lymphocytes (NK, NKT and Tgd
cells), 11 myeloid derived subpopulations, 5 stroma related cell types,
5 stem/progenitor cell types, as well as adipocytes, preadipocytes,
epithelial cells and neurons (Supplementary Table 6).

TNBC molecular subtyping
Lehmann’s classification. Lehmann’s molecular classification is
composed of six stable subtypes: two basal-like subtypes (BL1 & BL2),
an IM subtype, a LAR subtype, a M subtype, and a MSL. Lehmann’s
molecular subtypes were assigned using a re-implementation of the
published method, based on the published list of genes positively and
negatively associated with each subtype6. Briefly, each gene was first
standardized to amean of 0 and a standard deviation of 1. Positive and
negative signatures were calculated for each subtype as the mean of
the genes positively or negatively associated with that subtype. A
subtype score was obtained using the difference between those posi-
tive and negative signatures. Each TNBC sample was assigned to the
TNBC molecular subtype with the highest score. The main difference

with the publishedmethod is the lack of the unstable subtype, as each
sample was associated with a subtype.

Bareche’s classification. In line with Bareche et al.10, samples classi-
fied from our re-implementation of Lehmann’s classification as BL2
were reclassified using the second highest score. In this setting, the
Basal-like 1 (BL1) subtype was referred as the BL subtype.We used only
Bareche’s molecular classification system for our analyses.

Molecular subtypes on a subset of ST spots or at the single-
spot level. The calculation of subtypes starts with a gene normal-
ization and standardization. Becauseof this, if the subtyping isdoneon
PBs based on a given histomorphological category (i.e., tumor spots),
the standardization would be very different than what would be
obtained on a real bulk sample.

For this reason, for subtypes calculated on a subset of spots or
even a single spot taken from the ST, we standardized the genes based
on the means and standard deviations obtained across the samples
global PBs, i.e., we used the same standardization as the one used to
determine the sample PBs subtypes.

Deconvolution methods
Morphological deconvolution. We defined the full slide pseudobulk
(=global PB) as the sum of the reads from all the selected spots of a
sample’s ST subarray.We endeavored to estimate the PB that would be
obtained on the different histomorphological compartments, each
potentially being a mixture of cells (e.g., ‘necrosis’ is a mixture, while
‘tumor’ is a single type of cells). To find those PB expressions, a
deconvolution-based method was designed. For this method, it was
necessary to have anestimate of the proportion of eachmorphological
category in each ST spot. Directly exploiting the morphological
annotations proved to be unreliable and would confine the analysis to
the annotated ST slide only. Hence, we used the estimates of the
proportion of each annotation as obtained by the regressor (described
in Methods: “Estimation of the fraction of each morphological cate-
gory per spot”).

Wemodeled the observed data as coming from aweightedmeans
of the different PBs corresponding to the different histomorphological
category. Those PBs were considered as different in each sample. The
sampling error was modeled using a negative binomial distribution.
Specifically, we postulated that the mean expression of each gene g in
each ST spot s is a function of sample-specific cell type (or histomor-
phological category) prototypes p and the amount of the given cell
type (or histomorphological category) e, as given by the regressor. We
added a spot-specific scaling factor as some spots hadmore reads than
others. The observed UMI count number was drawn from a negative
binomial around this mean:

cgs � NB ss
XNt

i

eispgi, rg

 !
ð2Þ

whereNt is the number of annotations, eis is the fraction of annotation
i in sample s, pgi is the expression of gene g in PB i, rg is the gene-
specific extra variance from the negative binomial, and ss is the spot-
specific scaling factor.

The likelihood was optimized on the genes (pgi and rg) and the
scaling factors (ss) iteratively, for 5 iterations. Histomorphological
category i was only considered for a sample if it represented at least a
total of 2 spots across all replicates, that is

P
seis>2.

Tumor and stroma compartments. The tumor compartment was
defined as the weighted means of the expression of the “tumor”
category exclusively. The stroma compartment was defined as the
weightedmeans of the expression of all histomorphological categories
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except for “tumor”, “necrosis” and “in situ”:

�pstroma =
X

i≠tumor,necrosis, in situ

X
s

eis �pi ð3Þ

A third compartment designated as “other” recapitulated
“necrosis” and “in situ” categories. Of note, we excluded one sample
from the analysis of the tumor/stroma compartments (TNBC 10) as it
was infiltrated only by in situ carcinoma.

TLS signature
To increase the specificity, we considered only the TLS compartments
of patients forwhomthepathologist and/or the regressor detected the
presence of TLS (N = 52 patients), while still using all patients for the
other compartments (Supplementary data 8). We performed a differ-
ential gene expression analysis between PBs derived from the TLS
compartment and each of the other 8 compartments (lymphocytes,
tumor, stroma, lactiferous ducts, fat tissue, necrosis, vessels and
in situ) usingWilcoxon rank sum tests. This way, we obtained a P value
and a fold change (FC) for each gene and all eight compartments. For
each gene, we retained the highest P value and the smallest FC across
all eight compartments to increase specificity and we obtained a list of
differential expressed genes associated to one P value and one FC.
From it, we selected genes having a P value < 10−9 and a FC > 2, leading
to a 30-genes TLS signature (Supplementary Table 13, Supplementary
data 13 and 14). The biological function of each genewas characterized
manually using https://www.genecards.org.

The TLS signature expression level was estimated on spots across
our ST cohort as the mean expression of TLS genes. The projections
showed concordance with the manual annotation and the morpholo-
gical deconvolution of TLS. To quantify the level of the signature
accuracy, we assessed the AUCs reached by each individual gene of the
signature to predict the presence or absence of TLS from morpholo-
gical annotation and from morphological regression on ST global PB
and bulk RNA seq data (Supplementary data 17). Comparing ST bulk
RNA seq and global PB allowed us to assess the predictive accuracy
from the bulk analyses. Moreover, we assessed the AUC of the global
TLS signature to predict the presence or absence of TLS from mor-
phological annotation and from morphological regression on ST glo-
bal PB and bulk RNA seq data and we compared it with the AUC of an
external ST-derived TLS signature24 (as described in Methods: “Gene
expression signatures and gene set variation analysis”). Overall, the
AUC of our TLS signature is higher if we calculated it from ST global PB
in the regression setting of TLS detection (AUC =0.79, CI = 0.7–0.89)
compared to the annotation setting (AUC =0.67, CI = 0.55–0.78). We
also compared it to the AUC of the external ST-derived TLS signature
(Lundeberg sig) and the results were similar (Supplementary data 16).

Clustering-based methods
Intra-patient clustering. To identify ‘spatial genes’, for each sample,
we stacked all replicate ST subarrays into a single 2D space before
identifying the 10 closest neighbors for each spot. Spatial nearest
neighbors for each spotwere obtained using the Euclideandistance on
the x and y coordinates, potentially across subarrays. Expression of
each genewas standardized to ameanof 0 and a standarddeviation of
1 across all spots from all subarrays. We calculated for each gene the
variance between standardized expression of a given spot and the one
of the 10 nearest neighboring spots. The variance was averaged across
all spots. Genes with a lower variance were considered as ‘spa-
tial genes’.

We performed several clustering’s testing different sets of para-
meters and selected the result that was as well spatially defined as
possible. Specifically, clustering was performed on the top 100, 200,
300, 400 or 500 spatial genes, using k-means with the number of
clusters Nc between 2 and 10. Moreover, clustering was performed

using either the original expression values of those top spatial genes,
or their projections via UMAP embeddings. This way, a total of
5 × 9 × 2 = 90 clustering’s were obtained for each sample.

We reasoned that the optimal clustering should be the most
spatially conserved. To assess this, we compared for each spot its
cluster to the one of its neighbors, and computed the fraction of cases
where the clusters were identical, F :

F =
1
Ns

X
s

1
10

X
n2N sð Þ

ðcs = cnÞ ð4Þ

whereNs is the number of spots,N sð Þ is the set of 10 neighbors of spot
s, and cs is the cluster of spot s. If clusters were randomly spread, on
average F = 1=Nc. Hence, we selected the clustering with the high-
est F � 1=Nc.

Identificationof cluster prototypes. Using the clusters as given by the
k-means led to prototypes that were too similar, due to many spots
being located at the margin between multiple clusters. Ideally, proto-
types should correspond to spots whose expression profile is derived
solely from one single cluster. However, it is not guaranteed that such
spots exist, and since we wanted to use as much data as possible, a
deconvolution method was designed. The basic idea of the method is
that each spot could belong to more than one cluster (similarly to
fuzzy clustering), while also ensuring that the obtained solution
remained close to the original clustering.

This is formalizedby stating that the expression of a gene in a spot
is drawn from a negative binomial distribution whose mean is a mix-
ture of some pure clusters:

cgs � NB
XNc

i

mispgi, rg

 !
ð5Þ

where cgs is the count of gene g in spot s, Nc is the number of clusters,
mis is the contribution of cluster i in spot s, pgi is the mean expression
of gene g in cluster i, NB is the negative binomial distribution, and rg is
theparameter controlling the extra variance for gene g. Optimizing the
log likelihood would lead to a seeded non-negative matrix factoriza-
tion. To ensure that the end results remained relatively close to the
original clustering, a penalty term was added to the log likelihood:

/ Nc

X
s

1� r m:s ,m:s
0� �� �2

ð6Þ

where r is the Pearson correlation coefficient, and m:s is the vector of
the mixture for spot s across clusters.m:s

0 is the samemixture vector
but taken from the k-means (so an indicator function, 1 if the spot is in
the cluster, and 0 otherwise), and / is a weight that sets the trade-off
between the factorization and the anchoring, that we set at 1000.

The likelihood was optimized alternatively on the prototypes
(pgi, rg) and the mixtures (mis) for 40 iterations.

Pseudobulks of deconvoluted prototypes were used to perform
inter-patient clustering to avoid sample-driven clustering effect.
Example of the projections of both versions (k-means and deconvo-
lution) of intra-patient clusters were reported in Supplementary
Fig. 10. The method is also further detailed in the vignette of the R
package STstuff.

Intra-patient clustering (megaclustering). The 424 prototypes pgi

were clustered using k-means, leading to clusters of clusters, whichwe
named MC. Some data transformations were performed on the pro-
totypes before clustering. First, we removed prototypes that we
deemed to represent too few spots. For this, the 6 prototypes which
represented less than 50,000 reads, as estimated from the deconvo-
lution, were merged with another prototype from the same patient.
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That prototype was chosen as the one having the highest Spearman
correlation with the prototype to remove using the 5000 most
expressed genes. Second, the data were normalized and log trans-
formed from the count-like pgi:

xgi = log 104pgi=
X
g

pgi + 1

 !
ð7Þ

Genes for which >95% of the clusters had less than 1 read per
10,000 were discarded, ending with 3888 genes to perform the
megaclustering. K-means was done at least 1000 times, with random
starts, or as many times as needed to ensure that the best solution was
found at least five times.

In the resulting clustering, if any MC consisted of clusters from
one sample only, it was removed. The clusters from that MCwere then
reassigned to the closest remaining MC.

K-means were done for 5–20 clusters. We used a measure of
robustness of the resulting clustering to decide the optimal number of
clusters, as described in Methods: “Selection of the number of MCs”
(Supplementary data 22).

Recovery of MCs in ST bulk RNA seq and other bulk gene expres-
sion datasets. We wanted to be able to estimate the proportion of
each MC from bulk RNA seq. For this, we designed a deconvolution
method. This method was tested on the bulk RNA seq data obtained
from the ST samples.

We first defined the prototype Pgi of MC i as the mean of all its
cluster prototypes:

Pgi =
1
Ni

X
k2MCi

pgk ð8Þ

whereMCi is the set of clusters belonging theMC i,Ni being the size of
this set. We considered that each sample was a mixture of MCs, hence
of those prototypes, using negative binomial distributions. To account
for differences between studies, we added a study-specific scaling
factor for each gene, leading to the following model:

xgi � NB
X
j

sgmijPgj , rg

 !
ð9Þ

where xgi is the count of gene g in sample i, mij is the contribution of
megacluster j in sample i, and rg is the extra variance for gene g. An
initial estimate for sg was obtained by comparing themean expression
of each gene in the other dataset with the mean expression in the
spatial dataset. Then mij , and sg , rg are optimized in turn. Practically
only one iteration was done (so mij was optimized, then sg , rg , then
mij again).

Selection of the number of MCs. We reasoned that a proper mega-
clustering should be robust, hence recoverable from the ST bulk
RNA seq data. We verified this assumption using a 10-fold cross-vali-
dationmethod, on the data from thebulkRNA seq samples. Practically,
9/10th of the patients were used as a training set, the last 1/10th being
used as the test set. The prototypes for the MCs Pgi were obtained on
the training set. We estimated the proportion of those MCs in the test
set using themethod as described inMethods: “Recovery ofMCs in ST
bulk RNA seq and other bulk gene expression datasets”.

This was done for all splits and repeated five times. We binarized
those proportions. The result estimates of the presence of each MC
were then compared to the actual presence of the MC in the corre-
sponding samples, using the AUC. We picked the number of MCs
leading to the highest mean AUC (Supplementary data 22 and 23).

Per-spot projection ofMCsbydeconvolution. To find the proportion
of each MC in each spot, we used a method similar to the one used to
recover MCs in other datasets. The only difference was that no
rescaling of the genes was performed as the prototypes were calcu-
lated on the same dataset (i:e:, sg = 1). Deconvoluting MCs at the spot
level led to a higher number of MCs found by sample than obtained by
the original k-means, as MCs appearing only on a subset of spots, or
only present mixed with another MC, could be missed by the k-means
(Supplementary Fig. 10).

By summing thoseproportions by spots,we obtained a number of
cumulated spots for each MC and then, an estimate of the proportion
of each MC by sample. Those proportions were used for most of the
downstream analyses on MCs (i.e., survival analysis, SA).

Spatial archetypes
Definition of the SA. “Spatial archetypes” are a further clustering of
the MCs proportions, to stratify the TNBC patients. They are based on
a hierarchical clustering (Wardmethod, more specifically WardD2) on
the MC compositions obtained by spot deconvolution, using the
Euclidean distance. To determine the optimal number of SAs, we used
the R package NbClust which compile a large number of indices used
for this purpose. We used the most common number of clusters
obtained from those indices (Supplementary data 24).

Recovery of SAs from bulk expression data. To recover the SAs in
bulk RNA seq datasets (ST cohort, METABRIC and SCAN-B), we used a
nearest-neighbor classifier. In these datasets, we performed the
deconvolution of MCs as previously described in Methods: “Recovery
of MCs in ST bulk RNA seq and other datasets”. We used a quantile
transformation to rescale the MC proportions from the bulk RNA seq
dataset to make themmore similar to the distribution of the ST TNBC
dataset used for the clustering. Values below 0.01 were put to 0.01.
Each sample in the bulk RNA seq dataset was assigned to the same SA
as the closest sample in the STdataset, basedon the Euclideandistance
between logarithms of those quantile matrices.

The accuracy of the recovery was assessed by comparing SAs
obtained in the bulk RNA seq of our ST TNBC cohort with the original
SAs, as a confusion matrix (Supplementary data 27).

Quantification and statistical analysis
Univariate and multivariate Cox proportional hazard models were
used for survival analyses. In the univariate analyses for survival, P
values were obtainedwith the likelihood ratio test of the Coxmodel. In
multivariate analyses, the model included as co-variates tumor size (>
vs ≤20mm for METABRIC and SCAN-B, >vs ≤T1 for ST), lymph node
status (N0 vs. N +/x), age at diagnosis as a continuous variable. P values
were then derived by using a likelihood ratio test between nested
models, with and without the variable of interest. Confidence intervals
and hazard ratios (HR) were obtained in both cases from the Cox
model. Univariate andmultivariate analyses were performed including
all patients with complete data.

Firth’s penalized likelihoodmethod was applied in case of infinite
hazard/odd ratios for logistic regression (logistf package) and cox
model (coxphf package). It was only obtained for the HR/OR, the P
values from the original analysis were conserved.

Survival curves were estimated using Kaplan-Meier method by
considering aforementioned clinical end points (iBCFS, RFS, iDFS,
DRFS, OS). P values of different prognostic groups were obtained with
a permutation version of the log-rank testwhen no controls for studies
or co-variates are required92.

Wilcoxon rank sum (for comparisons between two groups) and
Kruskal-Wallis tests (for comparisons between three or more groups)
were used to compare continuous variables to categorical variables.
Odds ratios (OR) were obtained using logistic regressions.
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All P values were two-sided except for differential analysis of GO
on TLS compartment vs. other (Fig. 5c, Supplementary Fig. 5b, c) and
for the expression of five targetable genes across SAs in combined
TNBC cohorts (Fig. 8f) where the P value was one-sided. False-
discovery rates (FDRs)wereobtainedby adjustingp values formultiple
comparisons using the Benjamini & Hochberg procedure. Some P
values thatweremostlydescriptivewerenot corrected. In that case, no
FDR was reported. P values and FDRs were considered significant
when <0.05.

The dot plots (i.e., Fig. 4c and Supplementary Figs. 20–21) present
a color code (blue or red) for the direction of the association.Wilcoxon
tests are used for FDRs. Dots are bordered and dark-colored when
FDRs <0.05, compared to lighter-colored dots when FDRs ≥ 0.05.
Effect sizes are ORs, calculated with logistic regression and capped at
4. When none of the classes shows an FDR <0.05, the results are not
included in the plot. Exceptionally, the dot plots from Figs. 4c and 8e
were reconstituted from individual dot plots representing the asso-
ciations between thewhole list of themolecular features separately for
expression-based signatures, cell types or single genes, and TNBC
molecular subtypes (Fig. 4c) or SA (Fig. 8e). In this case, the effect sizes
and the FDRs referred to the source individual dot plots.

All correlations were assessed calculating the Spearman’s rank
correlation coefficient (rho) on pairwise complete observations and
considered significant for P value < 0.05 or FDR <0.05 if corrected for
multiple testing.

For the boxplots, the box bounds are represented by the inter-
quartile range divided by themedian, with the whiskers extending to a
maximum of 1.5 times the interquartile range beyond the box. Com-
parisons across subgroups (pairwise or 1 vs all) were done using Wil-
coxon rank sum and P values adjustment with the Benjamini &
Hochberg and displayed using the “star” notation (****FDR <0.0001;
***FDR <0.001; **FDR <0.01; *FDR<0.05).

All statistical analyses were performed using the R soft-
ware (v4.2.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing files for the ST data and bulk RNA seq of the ST
TNBC cohort generated in this study have been deposited at the Eur-
opean Genome-Phenome Archive (EGA) under accession code
EGAS50000000475. The raw sequencing data are available under
restricted access due to data privacy laws. The data can be obtained
upon signature of a data access agreement (DAA) between the inves-
tigator requesting the access and Institut Jules Bordet (IJB), subject to
applicable laws. Access requests can be initiated by email to the cor-
responding author (christos.sotiriou@hubruxelles.be) with an
approximate timeframe to reply of 4 weeks. The conditions related to
the access to the data are specified in the DAA. In detail, the raw data
are accessible for reproducibility purposes and for academic and non-
academic investigators aiming to perform original research. The data
can be used for a maximum of 3 years after its reception. The pro-
cessed countmatrices derived from the rawSTdata and the associated
brightfield images (H/E-images) are available without any restrictions
via the repository Zenodo [https://doi.org/10.5281/zenodo.8135721].
QC filtering, IHC images, morphological annotations and all the pro-
jections on ST slides (i.e., morphological regression, clusters, mega-
clusters, signatures) are accessible via the repository. The public
datasets can all be accessed via https://www.cbioportal.org/study/
summary?id=brca_metabric for METABRIC, https://data.mendeley.
com/datasets/yzxtxn4nmd for SCAN-B, https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE194040 for I-SPY2 and https://www.
orcestra.ca/clinical_icb for other ICB-treated metastatic cancers. The

samepublic datasets are alsoaccessible via theZenodo repository. The
remaining data are available in the Article, its Supplementary infor-
mation and Source data file. Source data are provided with this paper.

Code availability
All code, data, and results that relate to the content of this manuscript
are accessible via the GitHub repository: https://github.com/BCTL-
Bordet/ST [https://doi.org/10.5281/zenodo.13867936]93. The reposi-
tory also includes the results produced in the analysis and the code
used for this purpose.
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