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Spatially organized tumor-stroma boundary
determines the efficacyof immunotherapy in
colorectal cancer patients

Yu Feng1,2,3,4,10, Wenjuan Ma5,6,10, Yupeng Zang 7, Yanying Guo2, Young Li2,3,
Yixuan Zhang8, Xuan Dong 3, Yi Liu3,7, Xiaojuan Zhan2,7, Zhizhong Pan5,9,
Mei Luo3,7, Miaoqing Wu5,9, Ao Chen 2,3, Da Kang5,9, Gong Chen5,9 ,
Longqi Liu 1,2,3 , Jingying Zhou 8 & Rongxin Zhang 5,9

Colorectal cancer (CRC) patients with mismatch repair (MMR)-deficient
(dMMR) but not MMR-proficient (pMMR) tend to benefit from immune
checkpoint blockade (ICB) therapy. To profile the tumor microenvironments
(TME) underlying these varied therapeutic responses, we integrate spatial
enhanced resolution omics-sequencing (Stereo-seq), single-cell RNA sequen-
cing, and multiplexed imaging analysis to create high-definition spatial maps
of tumors from treatment-naïve and ICB-treated CRC patients. Our results
identify the spatial organization and immune status of the tumor-stroma
boundary as a distinctive feature of dMMR and pMMR CRCs, which associates
with ICB response. The physical interactions and abundance of LAMP3+DCs
and CXCL13+T cells may shape the ICB-responsive tumor-stroma boundary,
whereas CXCL14+cancer-associated fibroblasts tend to remodel extracellular
matrix to form a structural barrier in non-responders. Our work therefore
points out the importance of the molecular and cellular spatial structures of
tumors in ICB response, raising the possibility of reprogramming tumor-
stroma boundary for sensitizing immunotherapies in the majority of CRCs.

Immune checkpoint blockade (ICB) therapy has redefined the man-
agement of patients with colorectal cancer (CRC). In general, CRC
patients with DNA mismatch repair (MMR)-deficient/microsatellite
instability-high (dMMR/MSI-hi) tumors have a high mutational burden
and are tend to be sensitive to ICB therapy, whereas MMR-proficient
(pMMR) ones often have a low mutational burden and are mostly
unresponsive1–4. We recently reported a 93.75% (15/16) overall
response rate (12 were complete response) to anti-program death 1

(PD1) monoclonal antibody (mAb, sintilimab) in the dMMR cohorts,
which potentially spare these patients from radical surgeries5. In con-
trast, ICB has exhibited limited efficacy in pMMR cases, with a 0%
response rate to anti-PD1monotherapy and up to 27% of stable disease
(SD) or partial response (PR) reported in early-stage patients to com-
binatory approaches4,6. The abundance of cytotoxic T cells, numbers
and functional status of myeloid cells as well as expression levels of
immune checkpoint molecules including PD1 and its ligand 1 (PD-L1)
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are commonly recognized as main contributors to govern the ICB
responsive difference between dMMR and pMMR CRCs7–9. Based on
the advancement of single cell RNA-sequencing (scRNA-seq), Pelka
et al. reported shared and distinct features of dMMR and pMMRCRCs
by profiling 371,223 cells from tumors of treatment naïve CRC
patients10. Their data revealed that the existence of a dMMR-enriched
immune hub with activated T cells and C-X-C Motif Chemokine
Receptor 3 (CXCR3) ligand-expressing malignant and myeloid
cells may associate with ICB response10. In addition, a recent study
further showed that the crosstalk between FAP+

fibroblasts and
SPP1+macrophages may stimulate the formation of immune-excluded
desmoplastic structure and limit T cell infiltration in CRC tumors,
which correlate with low ICB response11. Although these substantial
progresses have uncovered numerous key cell subsets in the tumor
microenvironment (TME) that contribute to variable immune
responses of CRC, how these cells are spatially organized and inter-
acted within dMMR or pMMR tumors and how they response towards
ICB treatment remain poorly understood.

While conventional histology andmultiplex-immunofluorescence
(mIF) can provide positional information of cells, these methods do
not supply the detailed molecular information needed to identify and
phenotype cells precisely. The dissociated single cell methods of
scRNA-seq or high-dimensional flow cytometry that widely used in
studying the molecular and cellular heterogeneity, however, lack
information of cell-cell interaction and spatial architectures of tissues.
Several high throughput spatial transcriptomic technologies are
therefore developed to dissect the detailed information of molecular
and cellular features in tissues in situ, including commercialized Vis-
ium by 10XGenomics, CosMx SMI and DBiT-seq12, as well as the spatial
enhanced resolution omics-sequencing (Stereo-seq) developed by
us13,14. The stereo-seq provides customized resolution by binning
neighboring nanoballs as a minimal spot for further analysis, e.g., at
anatomical level with square bins or at single cell level with cell bins13,14.
However, the resolution is often compromised by the tissue nature in
practice, because smaller spots contain fewer detected transcripts.
Considering the smaller size of immune cells and their physical overlay
on the stromal cells in the tumors, here we applied an integrative
analysis of scRNA-seq and Stereo-seq at 50 µm resolution to in-depth
dissect the gene regulatory programs and cell-cell interactions
underlying ICB response in CRC patients.

In this work, through analysis in 25 tumor specimens from CRC
patients of treatment naïve dMMR, pMMRand anti-PD1-treated dMMR
patients that included responders (complete response (CR)/PR) and
non-responders (stable disease, SD), we generated a CRC spatial
transcriptomic atlas and uncovered a 300micrometer (μm) boundary
region (0 ± 150μm) that regulated immune cell influx to the tumor
center region (>150μm). In this microscopic structure of tumor-
stroma boundary, the active interplays among tumor cells, fibroblasts,
macrophage/dendritic cells (DCs) and T cell subsets associated with
the distinctive immune status of dMMR and pMMR CRCs patients,
which may associate with their diverse ICB responses. Overall, our
study uncovered a mix of transcriptomic and spatial programs
underlying specific TME formation, which highlighted the importance
of considering the interplay of innate, adaptive and structural cells in
TME for therapeutic approach development.

Results
Spatial transcriptome atlas of humanCRCs by Stereo-seq in CRC
patients under ICB treatment
To study the spatial organization and heterogeneity of cellular com-
ponents and their responses toward ICB treatment in CRC patients, we
performed scRNA-seq and Stereo-seq on surgical tissues from 23 CRC
patients (Supplementary Data 1). In detail, 16 samples from 15 patients
were sequenced by Stereo-seq, and 10 samples from 10 patients (2
were previously released12) were applied for scRNA-seq (Fig. 1a). 10

pMMR and 4 dMMR patients with no systemic treatment before sur-
gery, i.e. treatment naïve CRC patients, and 11 dMMRpatients received
neoadjuvant anti-PD1 antibody treatment (Supplementary Data 1) that
experienced stable disease (dSD, n = 5), partial response (dPR, n = 2) or
complete response (dCR, n = 4)were included (Supplementary Fig. 1a).
After pre-processing on the raw data generated by Stereo-seq (see
Methods), the spatial transcriptomemapwas lassoed out andmatched
to the tissue edge (https://www.stomics.tech/sap/home.html). As the
single-cell resolution was insufficient to generate an adequate number
of genes per bin for cell type annotation and follow-up analysis in
tumor tissues (Supplementary Fig. 1b), we adjusted the bin size to
bin100, which allowed us to obtain a sufficient gene count for tran-
scriptomic analysis at a resolution of 50μm (Supplementary Fig. 1b–d).
After quality control and batch effect correction, 205,362 spatial bins
with a median gene count of 1849 (Supplementary Fig. 1c) and
27,154 single cells with a median gene count of 1,115 (Supplementary
Fig. 1d) were integrated into a joint map, clustered and subjected to
region annotation (Fig. 1b, Supplementary Fig 1e-f). Using Leiden
algorithm13, we next performed an integration of unsupervised clus-
tering analysis of the spatial transcriptomics data with H&E staining
image. This approach led to the generation of signature score and
enrichment score, enabling the deconvolution of the cellular compo-
sition of spatially defined bins. As a result, we identified 15 spatial
clusters, which captured a wide spectrum of regions of the 6 major
anatomical structures: normal epithelia/tumor (epi/tumor), smooth
muscle, tumor-stroma boundary, stroma, immune aggregates and low
mRNA-enriched (fiber and cavity) regions in the tissues from 15
patients by Stereo-seq analysis (Fig. 1b and Supplementary Fig. 2a).
Further assessment of copy number variation (CNV) score12,14 (https://
github.com/broadinstitute/infercnv/) clearly showed that the tumor
region exhibited higher CNV scores compared to other regions (Sup-
plementary Fig. 2b, c). In addition, we observed a similar gene
expression pattern in the gene set used to define the tumor-stroma
boundary in breast cancer15 within our spatial cluster (Supplementary
Fig. 2d), supporting the robustness of our spatial cluster definition.
Next, we analyzed the spatial clusters in indicated patient groups
(Supplementary Fig. 2e). Using the expressions of differentially
expressed genes (DEGs) in each cluster and taking into account pre-
vious reports on cell type annotation from scRNAseq and image
data10,11,16, we named the 15 spatial clusters based on their phenotype
and predominant DEGs (Fig. 1b). For example, tumor_CEA referred to
tumor cell cluster with predominant expressions of CEA cell adhesion
molecules CEACAM1 and CEACAM5 (Fig. 1b). As expected, specimens
from the three dCR patients contained limited proportions of
tumor_MKI67 compared to the treatment-naïve and dSD patients
(Fig. 1c and Supplementary Fig. 2e). Although the proportions of
tumor-stroma boundary were similar between treatment naïve dMMR
and pMMR patients, dCR patients displayed a significant lower pro-
portion compared to the treatment-naïve and the dSD patients (Fig. 1c
and Supplementary Fig. 2e). In addition, the representative field of
view (FOV) data showed that pMMRdisplayed awell-organizedbarrier-
like structure in tumor-stroma boundary region that clearly separated
the tumor region from the immune aggregates and stromal regions,
whereas the structure of spatial clusters in dMMR was unorganized,
which was further supported by Moran index analysis (Fig. 1d and
Supplementary Fig. 2f). Since ICB treatment is now a first line therapy
for dMMRCRCs, we next compared the spatial transcriptomics data of
dMMRpatients after anti-PD1 treatment. Interestingly, dMMR patients
who experienced lower clinical benefit towards anti-PD1 therapy, i.e.
dSD displayed a well-organized tumor-stroma boundary structure
similar to pMMR, commonly recognized as ICB insensitive group
(Fig. 1d). In line with the lower proportions of proliferative tumor
clusters (tumor_MIK67), theproportionof tumor-stromaboundarywas
also lower in dCR patients (Fig. 1c). The proximity (Fig. 1e) and the
correlation (Fig. 1f) between the boundary and epi/tumor clusters
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further indicated that the presence and spatial organization of tumor-
stroma boundary may associate with ICB response in CRC patients.

dMMR and pMMR tumor-stroma boundaries display dis-
tinguished cellular components and spatial distributions
To in-depth analyse the cellular composition and their spatial organi-
zation in TME, we leveraged the scRNA-seq data of 27,154 cells from 5
treatment-naïve pMMR and 5 anti-PD1-treated dMMR CRC patients

(Supplementary Fig. 1a). We integrated the cells by Batch Balanced K
Nearest Neighbors (BBKNN) algorithm to correct the batch effect,
performed cluster analysis, and annotated cell clustersmanually based
on markers of interests17. In total, we identified 8 major cell clusters
(including 33 sub-clusters), covering 23 immune cell and 10 stromal
cell subtypes (Fig. 2a–c, Supplementary Data 2–3). The cell counts
were comparable in the patients except for patient #24 and #34
(Supplementary Fig. 3a). The stromal cells contained 8 cell clusters of

Fig. 1 | Spatial transcriptome atlas of human CRCs by Stereo-seq reveals ICB
responsiveness. a Schematic of single cell and spatial transcriptomic analysis in
CRC patients with or without neoadjuvant anti-PD1 treatment. b The top differ-
ential express gene (DEG) expressions in each spatial cluster are shown in the
matrix plot. c The box and whisker plot shows the proportions of spatial clusters
tumor_MKI67 and tumor-stromaboundary in indicated patient groups. The smooth
muscle is not included to remove sampling bias. Data are represented asmean±IQR
and analyzed by unpaired 2-tailed Student-t test with Bonferroni correction. Ns, not
significant; *, p <0.05; **, p <0.01; ***, p <0.001; ***, p <0.0001. N number:
pMMR=6; dMMR=4; dSD=2; dPR=1; dCR=3. d Representative images of FOV and
H&E staining in treatment naïve pMMR (patient #59), and anti-PD1 treated dMMR
with stable disease (SD) (patient #95). LowmRNA-enriched region (fiber and cavity)

is not displayed. Scale bars were set at 1200μm for the global spatial plot (left) and
300μm for the FOVs (middle and right). e The box and whisker plot shows the
average distance from epi/tumor cluster to the clusters of tumor-stromaboundary,
immune aggregates, stroma and smooth muscle. Data are represented as mean ±
IQR and analyzed by unpaired 2-tailed Student t test with Bonferroni correction. Ns
not significant; *,p <0.05; **,p <0.01; ***,p <0.001; ***,p <0.0001. N number of the
spots: tumor-stroma boundary=17,639; immune aggregates=16,304;
stroma=28,012; smooth muscle=24,172. f Pearson correlation between spatial
clusters tumor_MKI67 and tumor-stroma boundary. The dot plot color represents
indicated patient group. The line and the band present the linear regressionmodel
and confidence interval (95%) respectively. N number of the patients: pMMR=6;
dMMR=4; dSD=2; dPR=1; dCR=3.
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Fig. 2 | dMMR and pMMR tumor-stroma boundaries display distinguished cel-
lular components and spatial distributions. a Uniform manifold approximation
and projection (UMAP) of the transcriptome of 27,154 single cells from 10 CRC
patients (5 pMMR; 2 dPR/CR; 3 dSD). Cells are colored by single cell subclusters,
bmajor cell typesor (c) patient ID. Thenamesof the cell of interests arehighlighted
in red. d The stacked stream plots of immune cell distribution patterns from distal
stroma (–1000μm, left) to tumor center (1000μm, right) in indicated patient
groups are shown. The mean RCTD frequencies of each immune cell in each 1mm
interval was smoothed using slinger model and colored by cell sub-clusters in
accordance with (a). e Schematic diagram illustrates the definitions of the distant
stroma (<-150 μm; light blue), the tumor-stroma boundary (0± 150μm, light red),
including the tumor edge (0 μm to 150μm), and tumor center (> 150μm; light

yellow). f Scatter-curve plot of the distributive patterns of indicated cell clusters in
treatment naïve dMMR (orange) and pMMR (blue), or (g) dCR/dPR(light pink) and
dSD (green). The tumor-stroma boundary is highlighted in light red. The RCTD
frequencies at the same distance from the boundary were averaged and repre-
sented as a single dot, which was smoothed using a loess model. h Donut charts
show the proportions of immune cells at the central of the tumor-stroma boundary
(0μm). The inner donut representsmajor immune cell types, while the outer donut
represents immune cell subclusters. The colors are in accordance with (a). i The
RCTD frequencies of indicated immune cell subclusters in the tumor-stroma
boundary of the four groups of patients. Data are analyzed by unpaired 2-tailed
Student t test. P values are labeled within each plot.
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fibroblasts (COL1A1), epi/tumor cells (KRT18, EPCAM), and endothelial
cells (PECAM1) (Supplementary Fig. 3b–d). Among immune cells, we
categorized T cells into 10 subclusters, including CD4_CXCL13
(CXCL13+CD4+T cells), CD4_Tcm (central memory CD4+T cell),
CD4_Treg (regulatory CD4+T cell), CD8_Tcyto (cytolytic CD8+T cell),
CD8_Teff (effector CD8+T cell), CD8_Tem (effector memory CD8+T
cell), CD8_CXCL13 (CXCL13+CD8+T cells), and myeloid cells into 8
clusters covering cDC1 (conventional dendritic cell 1), cDC2, plasma-
cytoid DC (pDC), DC_LAMP3 (LAMP3+DC), Mac_M1 and Mac_M2 (M1
and M2-like macrophage), Mac_SPP1 (SPP1+macrophage), mono-
cyte_S100A8 (S100A8+monocyte) and mast cell (Supplementary
Fig. 4a–e), which were commonly reported by scRNA-seq analysis in
CRC patients10. Of note, CD8_CXCL13 and CD4_CXCL13 clusters exhib-
ited a typical T cell exhaustion signature represented by high expres-
sions of TIGIT, LAG3, HAVCR2 (encodes TIM3) and PDCD1 (encodes
PD1) (Supplementary Fig. 4a, b).To further explore the spatial locali-
zation and proportions of these cell subsets in TME, we next used
Robust Cell Type Decomposition (RCTD)18 to deconvolute the spatial
transcriptome with gene signatures generated from the scRNA-seq
dataset, and interpreted their patterns into the spatial map. As
expected, the majority of cell types accumulated in the tumor-stroma
boundary were epithelial/tumor cells, followed by fibroblasts in either
dMMR or pMMR, except for patient #25 and #61 who showed com-
plete response to the anti-PD1 therapy (Supplementary Fig. 4f). This
finding is consistent with previous report that describes the tumor-
stroma boundary as a niche composed of malignant cells in the out-
ermost circle of solid tumor and non-malignant cells that are closely
adjacent in spatial architecture, bridging these distinct spatial
regions19. Since immune cells are the direct targets of anti-PD1 therapy,
we next reanalysed the immune cell components and spatial dis-
tributions as the first step. By continuous mapping the mean RCTD
frequencies of each immune cell in our spatial transcriptomic data, we
generated stacked stream plots that covered ±1000μm to tumor-
stroma boundary (0μm) to study spatial distribution patterns of the
immune cells (Fig. 2d, Supplementary Fig. 4g). Interestingly, we
observed continued accumulation and increased abundance of
immune cell clusters in the spatial proximity within ±500μm to the
tumor-stromaboundary in dMMR,withmajority of themweremyeloid
cells and T_NK cells (Fig. 2d, Supplementary Fig. 4g). In contrast,
immune cells showed a discontinuous distribution in the tumor-
stroma boundary of pMMR, with a trend to accumulate in the stromal
region (<−500μm) but not the tumor region (>500μm) (Fig. 2d, Sup-
plementary Fig. 4g). Of note, after anti-PD1 treatment, a clearer dis-
continuous curve that reflected limited immune cell infiltration was
noticed in dSD patients (Fig. 2d, Supplementary Fig. 4g). These data
suggested that: (1) the abundanceof immune cell clusters in the tumor-
stroma boundary may contribute to a better anti-PD1 response; (2) the
limited infiltration of immune cells in the tumor region may be asso-
ciated with a restricted anti-PD1 response in pMMR and dSD, poten-
tially attributable to the spatial features of the tumor-stroma
boundary.

Since a distinct discontinuous of immune cells was observed in
the spatial maps of pMMR and dSD that covering ±150μm from the
center of boundary (0μm) (Fig. 2d, Supplementary Fig. 4g), we
therefore defined the spatial regions to distant stroma (<−150μm),
tumor-stroma boundary (0 ± 150μm) that cover the tumor edge
region (0μm–150μm), and tumor center (>+150 μm, Fig. 2e) for fur-
ther analysis. By dissecting the spatial distribution pattern of each
immune cell subsets in details, we observed that immune cell subsets
of CD8_Teff, CD8_Tem, CD8_CXCL13, CD4_CXCL13, CD4_Treg,
CD4_Tcm, cDC1 and DC_LAMP3, but not other clusters showed sig-
nificant enrichment peaks within the tumor-stroma boundary in
treatment naïve dMMR compared to pMMR (Fig. 2f), which were also
significantly higher in dPR/dCR compared to dSD (Fig. 2g). Interest-
ingly, when we compared the RCTD frequencies of these immune cell

subsets in the center of boundary (0 μm), we observed that the
majority of immune cells were Mac_SPP1 in both treatment naïve
dMMR and pMMR (Fig. 2h). In addition, the proportion of Mac_SPP1
was higher in treatment naïve dMMR compared to pMMR, while lower
in dPR/CR compared to dSD (Fig. 2h, i). Previous reports on the
immune cell frequencies in CRC tumors have demonstrated that SPP1-
expressingmacrophages (SPP1, APOE, APOC1) (Supplementary Fig. 4c)
were commonly detected and their abundance are reported to corre-
late with less therapeutic benefit from anti-PD1 therapy10,11. This
observation further supported the consistency and importance of
immune cells in the tumor-stromaboundary. Of note, decreased RCTD
frequencies of myeloid clusters (inner donut, dark green) and
increased T cell clusters (inner donut, light pink) were observed in
patients with dPR/dCR compared to dSD (Fig. 2h). The strip plot
graphs comparing RCTD frequencies further validated that treatment
naïve dMMR displayed significantly higher proportions of cDC1 and
cDC2, DC_LAMP3, Monocyte_S100A8, CD4_CXCL13, CD4_Tcm,
CD4_Treg, CD8_Teff, CD8_Tem and CD8_CXCL13 in boundary region,
compared topMMRpatients (Fig. 2i). As theRCTD frequencies of these
cell clusters were also higher in dPR/dCR patients compared to dSD
(Fig. 2i), the result indicated their possible associations towards ICB
response. Indeed, accumulating data from scRNA-seq of CRCs have
demonstrated that the increased cDC1 (XCR1, CLEC9A, BATF3) (Sup-
plementary Fig. 4c) correlates with better ICB response, whereas
CD8_Teff (IFNG, CD69, CCL5, GZMA) and CD8_Tem cells (IL7R, TCF7)
(Supplementary Fig. 4a) are reported to be the key intratumoral CD8+T
cell subsets responding to ICB treatment20,21. Moreover, DC_LAMP3,
which highly expressed signature genes including LAMP3, FSCN1,
CCR7, FSCN1, CD274 (Supplementary Fig. 4c), was reported to repre-
sent a commonmatured DC subset in tumors that exhibited potential
to regulate multiple subtypes of lymphocytes22–24. Although CD4_Treg
is normally considered to be immunosuppressive, CXCL13-producing
CD4+ T cells are demonstrated to drive the formation of tertiary lym-
phoid structure25, a well-recognized biomarker for a better ICB
response10,26. Unlike the previously accepted poor prognostic value of
CD8_CXCL13 in other cancers, the accumulation of CD8_CXCL13 was
reported to favor the clinical outcome in ICB treatment of CRC
patients, when accompanied with CXCL13-producing CD4+T cells27.
Indeed, the representative FOV data suggested increased accumula-
tions and abundances of CD8_Teff, CD8_Tem, CD8_CXCL13,
CD4_CXCL13, CD4_Treg, CD4_Tcm, cDC1 and DC_LAMP3 in the tumor
center (>+150μm) of dMMR (Supplementary Fig. 5). Anti-PD1 treat-
ment was associated with the increased abundance of these subsets
(excluded CD4_Tcm) into the tumor center in dPR/dCR (Supplemen-
tary Fig. 5), suggesting their potential contributions to a better ICB
response in CRCs. Taken together, our scRNA-seq and spatial tran-
scriptomic data analysis uncovered the cellular heterogeneity and
spatial organizations of tumor ecosystem in CRCs, which allowed us to
further investigate the gene expression profile reminiscent of cell
subsets and dissect cell-cell interplays in ICB response in details.

LAMP3+DC and T cell subsets tend to accumulate in the tumor-
stroma boundary of ICB responders
Since we have pointed out the potential importance of cDC1,
DC_LAMP3, CD4_CXCL13, CD4_Treg, CD8_Teff, CD8_Tem and
CD8_CXCL13 in ICB response, we next explored the potential
mechanism of why these cell subsets were more abundant in the
tumor-stroma boundary of dMMR but not pMMR. By comparing the
gene expressions in the tumor-stroma boundary, we detected a sig-
nificant enrichment of positive regulation of positive chemotaxis
(GO:0050927) in treatment naïve dMMR compared to pMMR by gene
set enrichment analysis (GSEA) (FDR =0.009, p = 0.015; Supplemen-
tary Fig. 6a). Specifically, the expressions of CCL2/5/13/15/21 and
CXCL9/10/11/12/13 were significantly higher in the tumor-stroma
boundary of treatment naïve dMMR compared to pMMR
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(Supplementary Fig. 6b). In parallel, consistent higher mRNA levels of
CCL5, CXCL9, CXCL10 and CXCL13 were detected in MSI-hi (MSI
score≥10) compared to MSI-lo (MSI score≤4) CRC from colorectal
adenocarcinoma (COAD) TCGA dataset (Supplementary Fig. 6c).
Moreover, the expressions of CCL2/5/21 and CXCL9/10/12/13 were sig-
nificantly higher in dPR/dCR compared to dSD (Supplementary
Fig. 6b). CCL2/5 and CXCL9/10 are demonstrated to direct T cell
migration, whereas CCL21 and CXCL12 are key chemokines that med-
iate DCs/macrophages trafficking28. Recent advancements on single
cell analysis have also pinpointed the importance of CXCL13 in
recruiting CXCR5+T cells for a better ICB responsiveness in CRC29.
Therefore, we hypothesized that the T cell and DC subsets may be
trapped by chemotaxis pathway to tumor-stroma boundary in ICB
responders. Next, we detected the expressions of corresponding
receptors toward CCL2/5/21 and CXCL9/10/13 on the immune cells that
displayed higher abundance in treatment naïve dMMR or dPR/dCR
using scRNA-seq dataset. The dot plot maps showed that CCR5, the
corresponding receptor ofCCL5, was highly expressed by CD8_CXCL13
and other T cell subsets, whereas CCL21 receptor CCR7 was pre-
dominantly expressed on DC_LAMP3, followed by cDC1 (Supplemen-
tary Fig. 6d, e). Consistent with previous report, theCXCL9/10 receptor
CXCR3 was expressed by T cell subsets but not cDC1 and DC_LAMP330

(Supplementary Fig. 6d, e). Interestingly, the CXCL13 receptor CXCR5
was also expressed by a small proportion (~10%) of CD4_CXCL13,
CD4_Treg, CD8_Teff, CD8_Tem and CD8_CXCL13 (Supplementary
Fig. 6d, e). Taken together, our results indicated that these DCs and T
cell subsets may be recruited to tumor-stroma boundary of ICB
responders via chemotaxis pathways.

As chemotaxis is one of the common pathways thatmediates cell-
cell interaction, we further explored the potential cell-cell interactions
by investigating the cellular resources ofCCL2/5/21 andCXCL9/10/12/13
in the tumor-stroma boundary. Of note, CCL2, CCL5, CCL21, and
CXCL13-expressing cells but no other chemokine-expressing cells
showed significant higher abundances in treatment naïve dMMR
compared to pMMR, which were consistently higher in dPR/dCR
compared to dSD (Supplementary Fig. 6f), indicating that the CCL21-
CCR7, CXCL13-CXCR5 and CCL5-CCR5 may be the key chemotaxis
pathways in controlling the recruitment of DC and T cell subsets in the
tumor-stroma boundary of ICB responders. Interestingly, epithelial/
tumor cell cluster showed limited expressions of these chemokines
(Supplementary Fig. 6g). CCL21 was predominantly expressed by
endothelial cells (Supplementary Fig. 6g), suggesting that the accu-
mulation of cDC1 and DC_LAMP3 in the tumor-stroma boundary of
potential ICB responders may be largely dependent on its crosstalk
with endothelial cells. In comparison, CCL5 and CXCL13 were pre-
dominantly expressed by NK_gdT or CD4_CXCL13 and CD8_CXCL13,
respectively (Supplementary Fig. 6g), reflecting the possible existence
of auto-reinforce chemotaxis pathways for T cells recruitment in ICB
responders, but not non-responders. Therefore, the crosstalk between
DCs and endothelial cells, as well as among different T cell subsets
through chemotaxis pathways may govern DC and T cell subset
accumulation in tumor-stroma boundary, thereby contribute to a
better ICB response.

The juxtaposition and interactions between LAMP3+DCs and
CXCL13-expressing T cells may correlate with a better ICB
response
Next, we explored the potential crosstalk among cDC1, DC_LAMP3,
CD4_CXCL13, CD4_Treg, CD8_Teff, CD8_Tem and CD8_CXCL13 cells
that presented at higher levels in the tumor-stroma boundary of
treatment naïve dMMR by calculating their Pearson’s correlations and
spatial distances. Interestingly, we observed strong positive associa-
tions between DC_LAMP3 but not cDC1 towards CD4_CXCL13,
CD4_Treg, CD8_Teff, CD8_Tem and CD8_CXCL13 in the tumor-stroma
boundary using Stereo-seq dataset (Supplementary Fig. 7a). As the

sample size of our in-house datasets was limited, we also validated
these associations using the bulk-RNAseq datasets of 572 CRC patients
with complete clinical information from COAD TCGA. Consistently,
the DC_LAMP3 gene signature (top10 DEGs in RNA-seq datasets, Sup-
plementary Data 2) was also positively associated with CD4_CXCL13,
CD4_Treg, CD8_Tem and CD8_CXCL13 signatures (Supplementary
Fig. 7b). In addition, the average distance between DC_LAMP3 towards
these T cell subsets was less than 200μm (Supplementary Fig. 7c),
which was the maximal distance for juxtracrine signals31. These data
suggested that DC_LAMP3may interactwithmultiple T cell subsets and
regulate their functional status in the tumor-stroma boundary
of dMMR.

Although LAMP3+DCs are well characterized in hepatocellular
carcinoma (HCC) by scRNAseq analysis22, its potential regulatory roles
in CRC immunotherapy remain to be underestimated. Interestingly,
the expression profiling of PD1-PD-L1 axis, the key factor in deter-
mining the therapeutic efficacy of anti-PD1 treatment32, confirmed that
CD274was predominantly expressed on DC_LAMP3, while CD4_CXCL13
andCD8_CXCL13 subsets showed higher PDCD1 expression (Fig. 3a). Of
note, the ligand-receptor pair analysis of PD1-PD-L1 axis indicated the
potential interactions of DC_LAMP3 towards CD4_CXCL13 and
CD8_CXCL13, but not other cell types (Fig. 3b). In parallel, DC_LAMP3
may also interact with CD4_CXCL13 via CD80-CD28 axis in the tumor-
stroma boundary of treatment naïve dMMR and dPR/dCR patients
(Supplementary Fig 7d, e). Moreover, by calculating the absolute dis-
tance in the spatial maps, we found that the CD274-expressing
DC_LAMP3 resided closely to the PDCD1-expressing CD4_CXCL13 and
CD8_CXCL13 cells in the tumor-stroma boundary as well as tumor
center regions (with a proximity less than 100 µm) (Figs. 3c, d). mIF
staining data of specimens from treatment naïve dMMR CRC further
verified the potential physical juxtaposition (mean distance <100 µm)
of PD1- and PD-L1-expressing cells in the tumor-stroma boundary
(Fig. 3e, f). Furthermore, whenwe scored the Stereo-seq data using the
exhaustion-related gene signatures generated from a pan-cancer T cell
study33,34 in our spatial transcriptomic dataset, we found that T cell
exhaustion score was significantly higher in the tumor-stroma
boundary when compared to distant stroma or tumor center
(Fig. 3g).When further applied these exhausted signatures andPD1-PD-
L1 axis into our spatial transcriptomics FOV analysis, our data con-
firmed an elevation of PDCD1/CD274 and T cell exhaustion signature in
the tumor-stroma boundary of treatment naïve dMMR patients
(Fig. 3h, i). Interestingly, we noticed that DC_LAMP3 also highly
expressed other co-inhibitory molecules, like LGALS9, and co-
stimulatory molecules, including CD80, CD86, ICOSLG, CD70, PVR
(Supplementary Fig. 7f–h). Since the GSEA analysis showed significant
enrichment of regulation of lymphocyte activation in the tumor-
stroma boundary of treatment naïve dMMR compared to pMMR
(FDR > 3.246 × 10–3; p =0) (Supplementary Fig. 7i), our data suggested
that LAMP3+DCs may co-opt surrounding environment to recruit and
regulate multiple aspects of T cells, thereby leading to increased
responding T cell numbers for anti-PD1 targeting in dMMR patients.

The plasticity of CAF correlates with the immune status of
tumor-stroma boundary in ICB non-responders
Compared to dMMR, pMMR CRC patients experience limited benefit
upon ICB treatment6. As we have pinpointed the potential of tumor-
stroma boundary in contributing to ICB respone, we next focused on
analysing the spatial transcriptomic features of treatment-naïve pMMR
and dSD. We extracted the uncured boundary spatial bins of the four
patient groups and applied DDRTree algorithm to study the immune
status35–37. Interestingly, three distinctive immune states were identi-
fied and projected into 2D axis using linear discriminant analysis (LDA)
(Fig. 4a). When applied these immune states into patient groups, we
found that the proportion of state 0 was higher in treatment naïve
pMMR, whereas dMMRdisplayed the enrichment towards 95% of state
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Fig. 3 | The juxtaposition and interactions between LAMP3+DCs and CXCL13-
expressing T cells contribute to better ICB response. a Bubble plots represent the
expression profiling of PDCD1 and CD274 in single cell clusters from scRNA-seq
dataset. The plots are sized by the fraction of cells with positive gene expression,
while the color represents the gene expression level. b The interactions among
indicated cell clusters through PD1-PD-L1 axis from scRNA-seq dataset. c The box
and whisker plot shows show the nearest distance from DC_LAMP3 to CD4_CXCL13
(N number of the counted cell-cell distances: distant stroma =918, boundary
region=1867; tumor center=251) or (d) to CD8_CXCL13 (N number of the counted
cell-cell distances: distant stroma =368, boundary region=567; tumor center=45) in
distance stroma, tumor-stroma boundary and tumor center from treatment naïve
dMMR patients. Data are represented as mean±IQR and analyzed by unpaired
2-tailed Student t test. ns, not significant; *, p < 0.05; **, p < 0.01. Pie charts represent
the fractions of CD4_CXCL13 or CD8_CXCL13 in the indicated regions stratified by
colors in accordance with (c) d. Data are analyzed by unpaired Student-t test. ns,
not significant; ****, p < 0.0001. eRepresentativemIF images of panCK, COL1A1, PD-
L1 and PD1 in treatment naïve dMMR patients (5 samples were analyzed). DAPI was
used as a positive control for cell nuclei staining. Scale bars were set as 5mm for

global image (left) and 50μm for FOVs (middle and right). f The box and whisker
plot shows the nearest distances from PD1+cells to PDL1+cells in distance stroma,
tumor-stroma boundary and tumor center from 7 treatment naïve dMMR patients.
Each dot represents a PD1-expressing cell. N number of the counted cell-cell dis-
tances: stroma = 750; boundary = 935; tumor = 892. Data are represented as
mean ± IQR and analyzed by unpaired 2-tailed Student t test with Bonferroni cor-
rection. Ns, not significant; *, p <0.05; **, p <0.01; ***, p <0.001; ***, p <0.0001.
gTheboxandwhisker plot shows theT cell exhaustion scores in thedistant stroma,
tumor-stroma boundary and tumor center from treatment naïve dMMR patients.
Data are represented asmean±IQRand analyzed by unpaired 2-tailed Student t test.
Ns not significant; *, p <0.05; **, p <0.01; ***, p <0.001; ***, p <0.0001. N number of
the spots: distant stroma =86, boundary region=12; tumor center=287.
h Representative images of H&E staining, FOV, and spatial map of T cell exhaustion
scores in the tumor-stroma boundary of the treatment naïve dMMR patient #56.
Scale bars were set as 1.5mm for global image (left) and 500μm for FOVs71.
i Heatmap of PDCD1 and CD274 expressions in the distant stroma, tumor-stroma
boundary and tumor center of treatment naïve dMMR patients.
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1 (Fig. 4a, b). In addition, anti-PD1 treatment was associated with the
reduction of state 1 and expansion of state 2 in dPR/dCR, but an ele-
vation of state 0 in dSD (Figs. 4a, b). The result suggested that the
polarization towards state 0 may correlate with ICB insensitivity of
CRC. Indeed, the Tumor Immune Dysfunction and Exclusion (TIDE)

analysis, which integrates the expression signatures of T cell dys-
function and T cell exclusion to predict ICB response38,39, verified that
state 0 showed a higher TIDE score indicating an immune dysfunction
and exclusion status (Fig. 4c). Since we have shown that the fre-
quencies of T cell subsets were significantly lower in the tumor-stroma
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Fig. 4 | The plasticity of CAF determines the immune status of tumor-stroma
boundary in ICB non-responders. a Linear discriminant analysis (LDA) of the three
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charts show the proportions of cell clusters in the three states identified from
scRNAseq data. The inner donut represents major immune cell types, while the
outer donut represents immune cell subclusters. b Pie charts show the constitu-
tions of immune states in the tumor-stroma boundary of the four patient groups.
c The box and whisker plot shows the TIDE scores in the three identified cell states
by TIDE algorithm are shown. Data are represented as mean±IQR and analyzed by
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fraction of cells with positive gene expression, while the color represents the gene
expression level. The name of the two CAFs are highlighted in red. e UMAP of CAF
subclusters (n cells =1780; n samples: 5 pMMR, 2 dPR/CR, 3 dSD) are shown and (f)
the representative marker genes are highlighted in each cluster from scRNAseq
dataset. g Pseudo-time inference analysis of the 5 CAF clusters (n cells =1,780; n
samples: 5 pMMR, 2 dPR/CR, 3 dSD) by Slingshots. Cells on the trajectories are
aligned to the possible differentiation routes by the colored arrows. h The box and
whisker plot shows the ratios of CAF_CXCL14/CXCL8 in the tumor-stroma boundary
of indicated patient groups. Data are represented as mean±IQR and analyzed by
unpaired Student t test. Ns, not significant; *p <0.05; **p <0.01; ***p <0.001;
***p <0.0001. N number of the patients: dMMR=4; pMMR=6; dPR/dCR = 4;
dSD = 2.
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boundary of pMMR and dSD (Fig. 2 and Supplementary Fig. 5), toge-
ther, these results suggested that T cell exclusion in the tumor-stroma
boundary may contribute to ICB low response in pMMR and dSD.

To investigate which cell component(s) contribute to the forma-
tion of T cell exclusive tumor-stroma boundary of treatment naïve
pMMR and dSD, we exported the RCTD frequencies of cell clusters in
each branch from spatial transcriptomics dataset. Consistently, higher
proportions of T cell andmyeloid cell subsets were observed in state 1
and 2 compared to state 0 (Fig. 4a, nested donut chart). Interestingly,
we found that over 70% of cells in state 0 were fibroblasts. In addition,
by plotting the top 10 genes of each state, we observed that the top
expressed genes in state 0, CXCL14, SELENOP and PYGB were mainly
expressed by fibroblast subsets, while MUC12, SELENOP, CEACAM6,
PYGB, CEACAM5, CD24 were expressed by epithelial/tumor cells (Sup-
plementary Fig. 8a, b), indicating the potential regulatory role of
fibroblasts in the tumor-stroma boundary of treatment naïve pMMR
and dSD. We thus identified 5 cancer-associated fibroblasts (CAFs)
subsets from other fibroblast clusters by their distinguished expres-
sions of CXCL12 and PDGFRA, which represented the mesenchymal-
derived CAF phenotype (Fig. 4d)25,40–42. We then re-embedded these
cells in a new UMAP for trajectory inference (Fig. 4e). These 5 CAF
subsets were marked by ADAMDEC1, CXCL8, CXCL14, KCNN3 and PI16,
respectively (Fig. 4e, f). CAF_PI16 that highly expressed CD34 is
reported to be a stem-like fibroblast subset and preserved potent
differentiation potentials43. Consistently, our trajectory analysis using
Slingshot algorithm44 reflected two distinctive differentiation paths of
CAF_PI16 into either CAF_CXCL8 or CAF_CXCL14, with sequential gene
expression changes (Fig. 4g and Supplementary Fig. 8c). Transition
state genes were identified as incrementally upregulated or down-
regulated by pseudo-time analysis, in particular CXCL8 and CXCL14
were remarkably upregulated in terminal differentiated CAF_CXCL8 or
CAF_CXCL14, respectively (Fig. 4f and Supplementary Fig. 8c). Of note,
we found that the ratio of CXCL14/CXCL8-expressed fibroblasts was
significantly higher in treatment naïve pMMR compared to dMMR, or
dSD compared to dPR/CR (Fig. 4h), thus highlighting the potential role
of fibroblast plasticity in ICB response of CRCs. Together, these results
prompted us to in depth analyse the phenotype and functions of
fibroblast subsets in the tumor-stroma boundary.

CXCL14+CAFs may contribute to the well-organized matrix
structure and T cell exclusion in TME of ICB non-responders
To investigate the potential functions of CAF_CXCL8 or CAF_CXCL14 in
the tumor-stroma boundary, gene ontology (GO) term analysis was
performed using the top 200 DEGs (ranked by fold change) in
CAF_CXCL14 or CAF_CXCL8, respectively. Of note, extracellular matrix
(ECM) and structure organization were the top 2 most significantly
enrichedpathways inCAF_CXCL14 cluster,whereasCAF_CXCL8 showed
an enrichment of cytokine-mediated signaling pathway (Fig. 5a). GSEA
analysis further confirmed the significant enrichment of ECM organi-
zation pathway, which was positively correlated with increased
CAF_CXCL14 RCTD frequency in the tumor stroma boundary of dSD,
compared to dPR/dCR (r = 0.53, p = 0; Fig. 5b–d).Moreover, the spatial
distribution of CAF_CXCL14 RCTD frequency and ECM organization
signature displayed similar trend that gradually increased when
approaching to the boundary (0-150μm)of treatment naïve pMMRand
dSD (Figs. 5e, f). Furthermore, the representative FOV data of treat-
ment naïve pMMR patient #59 and dSD patient #95 suggested the
existence of well-organized barrier structure in the tumor-stroma
boundary, which was constituted by CAF_CXCL14 and ECM organiza-
tion (Fig. 5g). To further evaluate the distribution of collagen fiber and
CAF_CXCL14, Masson’s trichrome staining and mIF staining were per-
formed. As expected, a well-organized matrix structure and higher
level of COL1A1+CXCL14+cells were clearly observed in the tumor-
stroma boundary of treatment naïve pMMR but not dMMR (Fig. 5h, i).

In addition, higher frequency of COL1A1+CXCL14+cells was also
detected in the tumor-stroma boundary of dSD compared to dPR/
dCR (Fig. 5i).

A recent study by Pelka et al. reported that CXCL14 is mainly
expressed by CAFs from pMMR, but not dMMR patients that may
contribute to lower T cell activity10. Consistently, a well-organized
extracellularmatrix structurewas also demonstrated to prevent T cells
infiltration45. Therefore, our data suggested that CXCL14+CAF may
contribute to the formation of structural barrier by the reprogram-
ming ECM organization and structure, thereby leading to a T cell-
exclusive TME of ICB non-responders. Using independent ICB-treated
CRC patient cohort (GSE205506) of which transcriptomic and clinical
data were available, we further observed a significantly higher CXCL14
expression and ECM organization signature score in CAFs from ICB
non-responders compared to responders (Fig. 5j). Consistent higher
expressions of CXCL14 were also found in ICB non-responders of the
patients with renal cell carcinoma (RCC, SCP1288) and melanoma
(GSE115978) (Fig. 5j). These results implicate an important role of
CXCL14 in ICB resistance, supporting that targeting CXCL14+CAFs to
destroy the structural barrier in the tumor-stroma boundary may
sensitize ICB therapeutic efficacy in the majority of pMMR CRCs.

Tumor cells may promote CXCL14+CAFs via IHH/PTCH1 axis to
constrain ICB efficacy in pMMR CRC patients
Finally, we explored the potential mechanism that may drive the CAF
differentiation intoCXCL14+ ones in the tumor-stroma boundary of ICB
non-responsive CRCs. Since cell-cell communication in a close proxi-
mity is one of the key factors in driving cell differentiation, we next
applied our Stereo-seq data into the stLearn algorithm, which co-
considers the contributions of cell-cell distance and ligand-receptor
expressions in the evaluation46. By comparing the tumor-stroma
boundary of treatment naïve dMMR and pMMR, we identified 55
ligand-receptor pairs that were upregulated in pMMR (p < 0.001, fold
change > =2, Fig. 6a andSupplementaryData 4). In accordancewith the
CAF abundance in treatment naïve pMMR, the top10 ranked ligand-
receptors exhibited remarkably enriched expressions on epithelia/
tumor or CAF_CXCL14, but not immune cells in the tumor-stroma
boundary (Fig. 6b). Taken the functional significance of CXCL14+CAFs
on ECM organization, we screened 18 ligand-receptor pairs that were
up-regulated in the tumor-stroma boundary of treatment naïve pMMR
and positively associated with ECM organization scores (Pearson’s
correlation r > 0.05; Fig. 6c, d). Of note, we found that IHH_PTCH1 and
WNT5A_FZD5/8wereprimarily expressedby tumor cells orCAF_CXCL14
(Fig. 6e). Interestingly, the expression of Matrix metallopeptidase 11
(MMP11), a downstream target of IHH/PTCH1/GLI pathway47,48 was
predominantly expressed by CAF_CXCL14 (Fig. 6e). Moreover, the
expressions of MMP11, IHH, PTCH1 and CXCL14 were significantly
higher inMSI-lo tumors (MSI sensor score≤4) compared toMSI-hi ones
(MSI sensor score≥10) from the COAD TCGA dataset (n = 572), which
were alsopositively correlated (Fig. 6f, g). Furthermore, by plotting the
expression of IHH/PTCH1/CXCL14 from tumor center to boundary
( + 300 μm~0μm), we found the significant increased expression
pattern of CXCL14, PTCH1 and IHHwhen approaching to the boundary
region ( + 150μm~0μm) in both treatment naïve pMMR and dSD
(Fig. 6h, i), which was in accordance with the distributions of
CAF_CXCL14 and ECM organization (Fig. 5e, f). As expected, the tumor
cell-derived IHH exhibited no difference between tumor center and
tumor edge (Fig. 5e, f). Interestingly, we observed higher expression of
IHH in pMMRCRCcell linesHT29 and SW620compared to dMMRCRC
cell lines, including HCT116, HCT8 and HCT1549 (Supplementary
Fig. 9a). Treatment of CXCL14+CAFs (Guangzhou Saliai Stem cell Sci-
ence and Technology Co., Ltd) with IHH recombinant protein (Glpbio,
5μg/mL) resulted in a notable increase in MMP11 release (Supple-
mentary Fig. 9b–d). Furthermore, exposure of CXCL14+CAFs to
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conditional medium (CM) from pMMR CRC HT29 cells also let to a
similar upregulation of MMP11. Importantly, this upregulation could
be suppressed by IHH inbitior Vismodegib (Selleckchem, 25 µM)
(Fig. 6j). Taken together, these results indicated the potential inter-
action between pMMR tumor cells and CAF_CXCL14 through
IHH_PTCH1 axis.

Discussion
Although ICB therapies have revolutionized the treatment paradigmof
dMMR CRC patients, the majority of CRC patients with pMMR are
barely benefit. A number of recent studies have therefore explored the
TME features of dMMRandpMMR tumors fromCRCpatients at single-
cell resolution, revealing the heterogenicity and gene expression
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programs of fibroblasts and immune cells, and their functional
consequences10,11. However, what are the spatial features of TME in
dMMR and pMMR patients that may contribute their distinctive
response rate to ICB treatment are still unclear. Herein, we charted the
cellular and molecular landscape of ICB responsive and non-
responsive TME, combining scRNA-seq, spatial transcriptomics, mIF
and integrative bioinformatics of 23 treatment naïve or ICB-treated
CRC patients. We identified spatially organized cell-cell interactions
that contribute to a coordinated multi-cellular tumor-stroma bound-
ary (0 ± 150 µm) in dMMR and pMMR CRC patients, which may con-
tribute to the ICB response. Our data suggested the importance of
spatial distributions and regulatory landscape of LAMP3+DCs and
CXCL13+T cells in shaping the tumor-stroma boundary of ICB respon-
ders. In addition, we pinpointed that the tumor cell-CXCL14+CAF
interactions may cause the formation of structural barrier in the
tumor-stroma boundary, leading to an immune-exclusive and ICB
insensitive TME inpMMRCRCpatients. These results clarify the effects
of TME spatial architecture, in particular the tumor-stroma boundary
on ICB efficacy and highlight the potential of sensitizing ICB response
by targeting CXCL14+CAFs in pMMR CRCs.

It has long been shown that TME is a well-organized complex
ecosystem, functioning in tumor development, recurrence, metastasis
and therapeutic responsiveness. However, studies that underestimate
the potential importance of the TME spatial architecture are unable to
completely elucidate its complexity. Using high-flux and high-
dimensional scRNA-seq and Stereo-seq, we mapped the spatial land-
scapes of TME in dMMR and pMMR CRC patients, with or without ICB
treatment. Our results pinpointed that the immune cells spatial dis-
tribution, instead of abundance may differentiate ICB sensitive and
insensitive TME inCRCpatients. By employing the bifurcation analysis,
we revealed that distinctive immune states in the tumor-stroma
boundary, insteadof the tumor center or stroma region, associatewith
the clinical outcomes towards ICB treatment. In general, the tumor-
stroma boundary of treatment naïve dMMR patients displayed an
immune activation state (state 1 & 2) compared to an immune exclu-
sive one (state 0) in pMMRpatients. This distinction was also observed
in ICB-treated patients, where dPR/dCR displayed an immune activa-
tion state (state 1 & 2), whereas dSD demonstrated an immune exclu-
sive state (state 0). Consistently, it was reported that the pre-existence
of CD8+T cells, which distinctly located at the invasive tumor margin,
were associated with the expression of the PD-1/PD-L1 immune inhi-
bitory axis and may predict response to ICB therapy in melanoma50.
Nirmal et al. further highlighted the concept of tumor-stroma
boundary in melanoma, where invasion and immunoediting may
coexist to regulate tumor progression and metastasis51. A most recent
study inHCCpatients also identified a tumor immunebarrier structure
that consisted by SPP1+macrophage and CAFs in ICB non-responders52.
Although it is still unclear exactly which spatial features are important
in dictating ICB response of individual cancer types as TME spatial
characterizations are just at the beginning, taken together with our
analysis in CRC patients, it strongly suggests that the distributions and

aggregative structures of stroma and immune cells are important in
ICB clinical implications across cancer types. Our integrative scRNA-
seq and Stereo-seq analysis also enabled the visualization of coordi-
nated cellular neighborhood into a prominent accuracy over other
spatial and single transcriptomics integration tools in a benchmark
test53. Through continuous mapping of mean RCTD frequencies in our
spatial transcriptomic data, we delivered a high-fidelity readout of
immune cell distribution curves that covered ±1000μm to tumor-
stroma boundary (0μm) to investigate spatial patterns of dMMR and
pMMR tumors, as well as their possible alterations under anti-PD1
treatment. Hence, we witnessed a strong interaction between
CXCL13+T cells and LAMP3+DCs in dMMR and dPR/CRmediated by the
PD1-PD-L1 axis, which was proximity dependent and took place within
a distance less than 250μm in tumor-stroma boundary and tumor
center, but not in distant stroma. Thus, considering distance between
different cells would be essential for juxtracrine signal and cell-cell
interaction analysis.

CXCL13 is widely reported to be crucial for the formation of TLS
that correlates with better outcomes of ICB treatment in various type
of cancers, including breast cancer, melanoma, non-small cell lung
cancer (NSCLC) andHCC32. Mechanistically, CXCL13 ismainly secreted
by CD4+T cells to track CXCR5+T cells and help facilitate B cell
response54. In addition to CD4+ T cells, studies also identified the
existenceofCXCL13-expressing PD1hiCD8+T cells inTLSwithpredictive
potential in late-stage NSCLC patients under anti-PD1 treatment55. In
this study, we additionally observed obvious expressions of CXCL13 in
both CD4+ and CD8+ T cell subsets from treatment naïve dMMR
compared to pMMR, which we defined as CD4_CXCL13 and
CD8_CXCL13. In parallel, anti-PD1-treated dPR/dCR also displayed
higher proportions of these CD4_CXCL13 and CD8_CXCL13 subsets,
compared to anti-PD1-treated dSD patients. Interestingly, these T cell
subsets alsoexpressed high level of PDCD1, granzymeA (GZMA),TIGIT1,
LAG3 and HAVCR2, suggesting their possible plasticity in the tumor-
stroma boundary. How to drive these T cell subsets into potential
effectors instead of exhausted ones for a better ICB efficacy is still
unclear. In addition, we found that these T cells were closely located
and interactedwith LAMP3+DCs via PD1-PD-L1 axis in the tumor-stroma
boundary of treatment naïve dMMR and anti-PD1-treated dPR/dCR. In
consistent with our findings, previous study in HCC also showed that
LAMP3+DCs highly expressed CD274 (PD-L1) and exhibited the physical
juxtaposition towards PDCD1-expresing T cell subsets22. Our additional
analysis of COAD TCGA data indicated strong associations between
LAMP3+DC signature and T cell exhaustion as well as T cell activation
signature. Furthermore, the scRNAseq and Stereo-seq data showed
high expressions of both immune checkpoint ligands (e.g.,CD274) and
maturation markers (e.g., CD80, CD86, CD40) in LAMP3+DCs from ICB
responders but not non-responders, implying the plasticity of DC
functions, independent of their maturation features.

Another important question is to explore the possible mechan-
isms underlying ICB insensitivity of pMMR CRCs. Our integrative
analysis demonstrated that the existence of the structural barrier,

Fig. 5 |CXCL14+CAFsmay contribute to thewell-organizedmatrix structure andT
cell exclusion in TME of ICB non-responders. a The top 5 GO terms of DEGs (p
value < 0.001; fold change >2) identified from CAF_CXCL14 and CAF_CXCL8 clusters
are shown. Comparison ismade by two-tailed t test.bGSEA plot of the upregulated
genes related to extracellular matrix organization in CAF_CXCL14 (n cells=268)
compared to CAF_CXCL8 (n cells=118) is shown. Comparison ismade by two-tailed t
test. c RCTD frequencies of CAF_CXCL14 (up) and ECM organization signature
scores (below) in the tumor-stroma boundary of dPR/dCR (n spots=1436) and dSD
(n spots=2244) patients are shown as violim plots. Data are analyzed by unpaired
2-tailed Student t test. Ns, not significant; *, p <0.05; **, p <0.01; ***, p <0.001; ***,
p <0.0001. d Pearson correlation of RCTD frequencies of CAF_CXCL14 and ECM
organization signature scores in dPR/dCR and dSD patients. e Loess smoothed
curves and (f) violin plots of RCTD frequencies of CAF_CXCL14 (up) and ECM

organization signature scores (below) in tumor ( + 300μm, n spots = 9313) to the
tumor-stroma boundary (0 μm, n spots = 56,357) from treatment naïve pMMR and
dSD patients are shown. The tumor edge region ( + 150 μm to 0μm) is highlighted
in the yellow frame. g Representative images of FOV, CAF_CXCL14 and ECM orga-
nization scores in the tumor-stroma boundary of treatment naïve pMMR patient
#59 and dSD patient #95 are shown. h Representative images of Masson’s tri-
chrome staining from treatment naïve dMMR and pMMR patients (3 samples were
analyzed in each group). Scale bar = 50μm. i Representative mIF images of panCK,
COL1A1, CD3 and CXCL14 in indicated patient groups (3 samples were analyzed in
each group). DAPI was used as a positive control for cell nuclei staining. Scale bars,
50μm. j CXCL14 expression level and ECM organization scores in fibroblasts from
the three public scRNAseq datasets16,70,71.
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induced by ECM organization dysregulation, contributed to the dis-
continuous of immune influx and the formation of immune exclusive
TME. As dMMR patients who showed insensitive to anti-PD1 therapy
(dSD) displayed similar structural barrier, we spectulated that this
spatial structure in the tumor-stromal boundarymay contribute to ICB
low response in pMMR CRCs. Our observation was supported by a
recent publication in triple negative breast cancer (TNBC), showing
that the collagen fiber alignment in the tumor margin determines
immune cell tumor infiltration and the formation of ‘cold’ TME56.

Importantly, our data further revealed that the abundance of
CXCL14+CAFs in the tumor-stroma boundary may contribute to the
dysregulation of ECM organization to restrict immune cell tumor
infiltration in pMMR. Furthermore, the CXCL14+CAF differentiation
maymainly be driven by IHH/PTCH1 pathway through interaction with
pMMR tumors. Interestingly, CXCL14+CAFs from pMMR also showed
high expression ofWNT5A, whereas its receptors FZD5 and FZD8 were
expressed by epi/tumor cells or fibroblasts, respectively, suggesting
the potential of WNT/β-catenin signaling in modulating CXCL14+CAFs
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in CRCs. Taken the importance of hedgehog and WNT/β-catenin sig-
nals in tumors48,57,58, inhibitors that targeting thesepathwaysmay show
great potential to sensitize ICB treatment in pMMR by co-opting both
tumor cells and CXCL14+CAFs. In summary, our analyses established an
integrated molecular and spatial landscape of CRC patients under ICB
treatment and provided a rich dataset for therapeutic targeting of the
tumor-stroma boundary underlying ICB insensitive TME formation.

While this study provides a thorough characterization of the
in vivo architecture of human CRCs, it is subject to certain limitations.
Firstly, due to the limited dMMR patient number that showed partial
response to the current ICB neoadjuvant therapy, we only have 2 dPRs.
Therefore, we are unable to further clarify the differences between
partial and complete responders whowould display survival or relapse
difference. For dMMRpatients, ICB has exhibited limited efficacy, with
a 0% response rate to anti-PD1 monotherapy and up to 27% PR/SD rate
reported in early-stage patients to combinatory approaches4,59.
Instead, CRC patients with pMMR showed improved disease-free sur-
vival with neoadjuvant chemoradiotherapy, especially for stage III
disease60. Therefore, neoadjuvant anti-PD1 therapy is infrequently
employed in the clinicalmanagement of CRCpatients with pMMR.As a
consequence, we were also unable to collect tissues from anti-PD1-
treated pMMR patients in our current study. In parallel, we were only
able to collect patient specimens at a single timepoint, either before or
after ICB treatment, thereby lacking dynamic analysis in the spatial
mapofTME.New technology like live-seq61, which couldprovide a time
course transcriptome profile at a single-cell resolution, may help
Stereo-seq to co-generate an authentic spatiotemporal profiling of
TME. Integrative analysis by including new technologies will be
essential for a better understanding of how ICB treatment modulates
TME and drives the responsiveness in patients. Secondly, the Stereo-
seq technique has not reached the single-cell resolution when ana-
lyzing heterogenous and complex tumor specimens in the current
study. The nanoscale resolution (capture spot diameter: 220nm;
center-to-center distance: 500 nm) of Stereo-seq merely supported an
estimate of 1-10 cells in each bin in CRC tumor tissues compared to
previous analysis in mouse embryos and axolotl brain62–64. One prob-
able explanationmay be the difference on the average cell size and the
complexity among different tissues. This observation indicated the
limitation of our Stereo-seq platform, which may not be universally
applicable, particularly in tissues enriched with small-sized immune
cells, such as tumors, spleen and thymus. Amore precise spatialmap, if
we can develop in the future, will be essential for better understanding
of how to therapeutically target the spatiotemporal heterogeneity of
the complex TME of CRCs, as well as other cancers. For example,
enrichment of the variable regions of T and B cell receptor mRNA
accompanied with the current Stereo-seq platform would present a
compelling strategy formapping the immune cells, at least T cell and B

cells at single cell resolution in tumors in situ. Thirdly, it remains
unclear how to therapeutically remodel the tumor-stroma boundary
by our identified targets, including CXCL14+CAF, IHH/PTCH1 to sensi-
tize the ICB antibodies in non-responders. Pre-clinical orthotopic
mouse models that we previously developed28 may serve as proof of
concept for evaluating the therapeutic efficacy of our identified com-
binatory treatment strategies in the future. Clearly, additional work in
preclinical and clinical trials will be needed to better assess the future
potential for sensitizing ICB therapy by remodeling the spatial archi-
tecture of TME in ICB non-responders.

Methods
Patients
Tumor tissues were collected from 23 patients with CRC who under-
went colon resection with or without neoadjuvant ICB treatment at
Sun Yat-Sen University Cancer Center. Tumors were staged with the
8th edition of the American Joint Committee of Cancer (AJCC) tumor
node-metastasis (TNM) staging classification for CRC. Enhanced CT
scans of the chest and abdomen, and MRI scans of the rectum, were
used to ascertain the TNM stage. Transrectal ultrasonography or
endoscopic ultrasound was used to ascertain the tumor and nodal
stage for patients unsuitable forMRI tests becauseofmetal implants or
other reasons. Mismatch repair was determined by immunohis-
tochemistry (IHC) for mismatch repair proteins and microsatellite
instability status was determined by PCR for microsatellite instability
markers. Patient response to neoadjuvant ICB treatment was deter-
mined by image-based evaluation such as endoscopy or MRI using
Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 as
well as postoperative pathological evaluation according to the criteria
from National Comprehensive Cancer Network (NCCN) Tumor
Regression Grade (TRG) system. The clinical information including
age, gender, MMR/MSI status, TNM stage, anti-PD1 monoclonal anti-
bodies used, course of treatment and tumor response grade, as well as
the stratification of the patients in the current study were listed in
Supplementary Data 1. This study was done in accordance with the
Declaration of Helsinki (B2023-178-01). The protocol was reviewed and
approved by The Institutional Review Board of BGI Ethical (BGI-
IRB21083-T1). All participants provided written informed consent and
the clinical information was collected at Sun Yat-Sen University cancer
center.

Sample preparation and processing for Stereo-seq and
scRNAseq
For Stereo-seq, tumor specimens were embedded in Tissue-Tec OCT
(Sakura, 4583) within 30min after surgical resection or biopsy collec-
tion. Tissue sectioning (5 μm) was performed using Leica Cryostat
(CM1950) at –20 °C. The RNA integrity was evaluated and tissue

Fig. 6 | Tumor cells promote CXCL14+CAFs via IHH/PTCH1 axis to constrain ICB
efficacy in pMMR CRC patients. a Ligand-receptor pair enrichment analysis
(ranked by p value) in tumor-stroma boundary of Stereo-seq dataset. The top 10
enriched ligand-receptor pairs in pMMR (-log10 p value ≥ 5) are highlighted.
Comparison ismade by two-tailed t test.bThe heatmap represents the expressions
of the top 10 enriched ligand-receptor pairs in single cell clusters from scRNA-seq
dataset. Ligands are labeledwith brown,while receptors are labeledwith light blue.
Epithelia cells and CAFs are highlighted in red. c Pearson correlation of ligand-
receptor pairs towards ECM organization scores in tumor-stroma boundary of
pMMR patients. The positive correlations (r > 0.05) are labeled in red, and the
negative correlations (r < 0.05) are labeled in blue. d Venn diagram of ligand-
receptor pairs upregulated in the tumor-stroma boundary of treatment naïve
pMMR patients and positively correlated with ECM organization identified 18
overlapped ligand-receptor pairs. e Bubble plots of expression profiling of identi-
fied ligand-receptor pairs and IL1B, IL1R1, CXCL8 in single cell clusters from scRNA-
seq dataset are shown. The plot are sized by the fraction of cells with positive gene
expression, while the color represents the gene expression level. f Pearson

correlations and (g) expressions of IHH_PTCH1, MMP11 and CXCL14 from COAD
TCGA dataset are shown. Patients are stratified to MSI-hi (MSI sensor score≥10,
patient number = 78) and MSI-lo (MSI sensor score≤4, patient number = 494)
accordingly. IHH_PTCH1 scores are calculated as sum of IHH and PTCH1 Z-scores.
Data are represented asmean±IQRand analyzed by unpaired 2-tailed Student t test.
Ns, not significant; *, p <0.05; **, p <0.01; ***, p <0.001; ***, p <0.0001. The line and
the band present the linear regression model and confidence interval (95%)
respectively. h Loess smoothed curve and (i) violin plots represent the distribution
and expressions of PTCH1, CXCL14, and MMP11 from tumor center ( + 300μm) to
the tumor-stroma boundary (0μm) in dSD and pMMR patients. Data are repre-
sented as mean± IQR and analyzed by unpaired 2-tailed Student t test with Bon-
ferroni correction. Ns, not significant; *, p <0.05; **, p <0.01; ***, p <0.001; ***,
p <0.0001. N number of the spots: center=9313; edge=56,357. j Western blot ana-
lysis of MMP11 in indicated group is shown. β-actin serves as loading control.
Number indicates the relative expression towards β-actin. This result represents 3
independent experimental repetitions.
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sections with RIN value over 6.0 were proceeded for Stereo-seq ana-
lysis. The sections were stained with Hematoxylin and Eosin staining
(H&E) (Beyotime, C0105S) and the image were generated using Motic
EasyScan System. The tissues sectioned onto the Stereo-seq chips
(10μm)were dried at 37 °C for 4min, fixedwithmethanol at –20 °C for
30min, and then stained using Qubit™ ssDNA Assay Kit (Thermo-
Fisher, Q10212). The tissues were washed using 0.1x SSC solution and
permeabilized as describedpreviously62. After permeabilization, in situ
reverse transcription was performed at 42 °C for 1.5 h, followed by
tissue removal at 55 °C for 1 h. The cDNAs, which included coordinate
identifier and unique molecular identifier (MID), were released from
Stereo-seq chip and sequenced using BGISEQ-T10.

For scRNA-seq, single cell isolateion was performed using Tumor
Dissociation Kit according to themanufacturer’s protocols (Eppendorf
ThermoMixer® C). Cell viability was determined using Acridine
Orange/Propidium Iodide staining kit (NEXCELOM, CS2-0106). Speci-
mens with a cell viability over 85%were proceeded to scRNA-seq using
droplet-based DNAelab-C4 High-throughput Single-cell RNA Library
Preparation Set V2.0 (MGI Tech Co., Ltd, Cat. No.: 940-000519-00).
The cDNA library was sequenced using BGISEQ-T1.

Sequencing and Raw data processing
The cDNA was sequenced by paired ends. For Stereo-seq, barcodes
(CID:1–25 bp, MID: 26–35 bp) and cDNA inserts (100bp) were located
in the forward reads (read1) and the reverse reads (read2), respectively.
In scRNA-seq, barcodes (cell barcode 1, 1–10 bp; cell barcode 2,
11–20bp; and MID: 21–30 bp) and cDNA inserts (100bp) were in read1
and read2, respectively. The sequencing parameters remained con-
sistent with those previously described62. The raw data processing was
carried out using the spatial_RNA_visualization tool (version 5) on the
STOMICS online platform (https://cloud.stomics.tech/home.html). In
details, the read1 was split into CID sequences (1–25 bp) and UMI
sequences (26–35 bp) based on the read length. The CID sequences
were then mapped to the white CID list (the BarcodeToMap.h5 file). A
single base mismatch was allowed to account for errors in sequencing
and amplification (PCR). MID sequences containing either N bases or
more than 2 bases with a quality score lower than 10 were filtered out.
The remaining valid reads were then aligned to the reference genome
(hg38) using STAR65. Aligned reads with a mapping quality (MAPQ)
score greater than 10 were counted and annotated as described
previously62. Reads sharing the same UMI and CID were considered
PCR replicates and collapsed into a single read. The output of spa-
tial_RNA_visualization (version 5) included two gem files: one for the
entire slide andone for the tissue cut. These gem files consisted of four
columns, containing the gene symbol, x and y coordinates, and UMI
counts. After online processing, the tissue cut gem file was down-
loaded and further analyzed.

Data quality control, integration, clustering and annotation
For stereo-seq, the spot size was set to bin100 (50μm×50μm). The
spots with gene numbers lower than 500 were filtered out. The gene
expression matrix was normalized using scanpy.pp.normalize_total
and logarithmized using scanpy.pp.log1p. The log-transformed matrix
was then subjected to batch effect correction using Seurat (V4) built-in
canonical correlation analysis, which was achieved by setting the
nfeatures parameter to 10,000 and the batch to specimens66. The
aligned expression matrix was further processed using SCANPY built-
in functions, which included principal components analysis (PCA),
neighborhood graph computing (n_pcs=20) and unsupervised clus-
tering using Leiden algorithm (resolution = 3.0). The cluster annota-
tion was determined by the top DEGs in each cluster and the
image data.

For scRNA-seq, cells were filtered based on gene number and
mitochondria-related gene percentage. Cells with a gene count lower
than 300 or higher than 5000, or with over 50% mitochondria-related

genes, were excluded from analysis. Genes detected in fewer than 3
cells were filtered out for analysis. After normalization and log trans-
formation, transcriptome annatation was performed using two rounds
of batch effect correction with batch balanced k nearest neighbors
(BBKNN)17 and unsupervised clustering by Leiden13. In the first round,
the BBKNN-aligned single cell transcriptome (set_op_mix_ratio=0.5,
batch_key=sample ID) was subjected to unsupervised clustering
(resolution=1) and annotated using gene of interests. The 8 major cell
clusters including epi/tumor cells (KRT18, EPCAM), T_NK cells (CCL5,
TRBC2, CD3E, NGLY), myeloid cells (LYZ, CD14), fibroblasts (COL1A1,
PDGFRA), mast cells (GATA2, TPSAB1), endothelial cells (PECAM1), B
cells (CD19, MS4A1) and plasma cells (JCHAIN, IGHA1, IGHG4) were
annotated. For each cell type, a gene expression matrix (with raw
counts) was constructed and subjected to another independent run of
batch effect correction (BBKNN), unsupervised clustering, and anno-
tation of cell sub-clusters as indicated in Supplementary Fig. 3b.

Calculation of boundary distance and construction of immune
influx stream
To determine the distances from the tumor-stroma boundary, we first
set the boundary spots as 0. For other spots, we calculated their
center-to-center distances to the nearest boundary spot, which served
as their distances to the boundary. The distances to the boundarywere
used to define different regions: stroma, immune aggregates, smooth
muscle, fiber, and cavity regions were considered outside the tumor
(indicated by negative numbers), while the boundary distances of the
epi/tumor were represented as positive numbers (Fig. 2d). To analyze
the distribution of immune cell types in the spatial map, we averaged
the RCTD frequencies for immune cells at the same distances. These
averaged frequencies were then aligned and stacked, starting from the
furthest stroma to the tumor center. To visualize the influx stream, we
centered the stacked Y-axis around zero by using the ‘wiggle’ baseline
in the matplotlib.stackplot function. For data presentation, we uni-
formed the Y-axis range to (-0.15, 0.15).

Cell cluster deconvolution
Deconvolution of cell clusters in the spatial map was calculated using
RCTD algorithm in R package spacexr-2.0.018 in combined with
scRNAseq dataset. The raw counts of scRNA-seq (with subtype anno-
tation) and the stereo-seq were input to construct the RCTD object.
For stereo-seq data, we set the minimal UMI count to 0 to avoid filing
out any spots. Since the cell diameters typically ranged from 5 to
12μm, the 50μm-binned spatial spots may contain multiple cell types
that might not be consistent across the spot. Therefore, we ran the
RCTD in full mode, without restrictions on the number of cell types. In
this study, the normalizedprobabilities of cell typeswere referred to as
“RCTD frequencies”, whichwere exported and integrated into SCANPY
h5ad objects for further visualization and analysis.

Immune state analysis
The immune state of the tumor-stroma boundary spots was identified
usingMonocl35–37. The rawcounts of the tumor-stromaboundary spots
were input to construct the CellDataSet object by setting expression-
Family as negbinomial.size. Genes expressed in fewer than 10 spots
and spots with fewer than 100 detected genes were filtered out. Next,
the spots were subjected to stratification using AddCellType function,
with CXCL14 and LAPTM5 serving as markers to define the “cold” spots
(CXCL14 counts ≥1) and “hot” (CXCL14 counts <1 & LAPTM5 counts >1)
spots. To construct the state transition model, we reduced the
dimensionality of the boundary spots using DDRTree and ordered the
spots on the tree-like structures using orderCells function. The
resulting tree-like structure consisted of three branches. Spots
assigned to the same branch were annotated as the same state. These
annotated boundary spots were then used as input for linear dis-
criminant analysis, employing the scikit-learn machine learning tool67.
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Analysis of CAF trajectories and pseudo-temporal gene
expressions
The CAF trajectory inference was performed using the python imple-
mentation of the Slingshot pseudotime algorithm44. To account for
batch effects, the raw counts of the 5 CAF subpopulations were
extracted for a new round of batch effect correction (by BBKNN) and
UMAP embedding. The resulting UMAP was then used as input for the
Slingshot analysis, with the starting node set as PI16_CAF. To examine
the pseudo-temporal gene expression pattern, the Monocle software
was employed, specifically utilizing the built-in function for branched
expression analysis modeling (BEAM_res <- BEAM(rds, branch_point =
1, cores = 1)). Subsequently, the top 100 genes ranked by log2 fold
change were visualized using the plot_pseudotime_heatmap function.

Cell lines and culture
The human cancer-associated fibroblasts68 were obtained from
Guangzhou Saliai Stem Cell Science and Technology (Cat# CatiCel1-
0030a)68. The human cancer-associated fibroblasts68 were obtained
from Guangzhou Saliai Stem Cell Science and Technology (Cat# Cati-
Cel1-0030a), and the humancolorectal cancer cell linesHCT116, HCT8,
HCT15, SW480, SW620, and HT29 were obtained from the American
Type Culture Collection (ATCC). These cell lines were subjected to
short tandem repeat (STR) testing at the time of purchase. The STR
testing results were provided by the vendor and third-party testing
agencies, ensuring the authenticity of the cell lines.

A commercial mycoplasma detection kit (Vazyme, Cat# D101-01)
was used for monthly contamination testing of the cell lines. The
procedure involved adding the cell culture supernatant to the reaction
system, incubating at 60 °C for 1 h, and then determining the con-
tamination status of the cell lines by comparing the results with
negative and positive controls. Only cell lines with a negative myco-
plasma status were used in this study.

All cell lines were cultured inDulbecco’smodified Eagle’smedium
(DMEM; Gibco, New York, USA) or RPMI-1640 (Thermo Fisher Scien-
tific, Waltham, MA, USA) supplemented with 10% fetal bovine serum
(FBS, HyClone, Massachusetts, USA) and 1% penicillin/streptomycin
(Gibco, USA) in a 37 °C humidified chamber with 5% CO2.

Real-time quantitative PCR analysis (qRT‒PCR)
Total RNA from cells was extracted using TRIzol reagent (Thermo
Fisher, Cat# 15596018). The quality and quantity of total RNA were
determined by measuring absorbance at 260 nm/280 nm using
NanoDrop Spectrophotometer ND-2000 (NanoDrop Biotechnolo-
gies). 1μg RNA was reverse transcribed to cDNA using HiScript III RT
SuperMix( + gDNA wiper). Quantitative PCR (qPCR) was performed in
triplicates by qPCR SYBR Green Master Mix (Yeasen, Cat# 11201ES08)
on a LightCycler 480 System (Roche). Relative gene expression was
determined using the 2-ΔΔCT method and the primer sequences using in
this study were listed as follows:

MMP11 forward: 5ʹ-CCGCAACCGACAGAAGAGG-3ʹ
MMP11 reverse: 5ʹ-ATCGCTCCATACCTTTAGGGC-3ʹ
ACTB forward: 5ʹ-CATGTACGTTGCTATCCAGGC-3ʹ
ACTB reverse: 5ʹ-CTCCTTAATGTCACGCACGAT-3ʹ

Western blotting
Protein lysates fromcells were prepared using RIPA lysis buffer (Merck
Millipore, Cat# 20-188), containing protease and phosphatase inhi-
bitor cocktail (Beyotime, Cat# P1046). Protein concentration was
measured by DC Protein Assay (Beyotime, Cat# P0010). 20–80μg of
protein lysates were separated by sodium dodecyl sulfate poly-
crylamide gel electrophoresis (SDS-PAGE) (EpiZyme) and transferred
to 0.45μm PVDF membrane (Merck Millipore). After blocking with 5%
non-fat milk in 1 × TBST, membranes were probed with primary anti-
bodies β-actin (Proteintech, Cat# 20536-1-AP, 1:1000) and MMP11

(Abcam, Cat# ab53143, 1:1000) overnight at 4 °C, followed by sec-
ondary antibodies conjugated with horseradish peroxidase (HRP)
(Proteintech, Cat# SA00001-2, 1:5000) for 2 h at room temperature.
Antibody-antigen complexes were detected with Enhanced Chemilu-
minescence (GE Healthcare Life Sciences) and ChemDoc Imaging
System (Bio-Rad).

Enzyme-linked immunosorbent assay (ELISA)
Secretion of MMP11 in the culture supernatant was masured using
MMP11 ELISA kit (ELK Biotechnology, Cat# ELK2113) following the
manufacturer’s instructions.

Masson’s trichrome staining
The paraffin sections were dewaxed and rehydrated, and then stained
with Weigert iron hematoxylin for 10min. Differentiation was per-
formed using 1% hydrochloric acid alcohol after water wash. The sec-
tions were washed with water until the blue color was restored
(approximately 15min). Next, the sections were stained with Ponceau
AcidMagenta for 10min, followed by a water wash and treatment with
phosphomolybdic acid for 5min. Toluidine Blue staining was applied
for 5min, and the sections were then treatedwith 1% glacial acetic acid
for 1min. After dehydration and rendering them transparent, the
sections were sealed with neutral gum. The image was taken by
microscope (Olympus, Germany).

Multiplex immunofluorescent (mIF) staining
Human tissues were collected and fixed in 4% paraformaldehyde
(Sigma-Aldrich) for 24 h, washed in 70% ethanol and embedded in
paraffin. Five-millimeter sections from paraffin embedded tumor tis-
sues were deparaffinized, rehydrated, and rinsed in distilled water.
Antigen retrievalwas done by using a pressure cooker with 1mMEDTA
buffer, pH 8.0, for 10min. The endogenous peroxidase activity was
then blocked by incubating the slides in 3% hydrogen peroxide in
methanol for 30min. The sectionswere then stainedwithHematoxylin
and Eosin staining (H&E). The mIF staining was carried out using
PDOne 6-plex TSA-Rab IF staining kit (Cat No. 10236100100; Paovue,
Beijing, China) for several cycles following the manufacturer’s
instructions. For each cycle, primary antibodies were stained at room
temperature for 1 h, followedbyHRP conjugated secondary antibodies
at room temperature for 10min. The fluorescence dye was then
applied to the slides at room temperature for 10min. The signal was
examined by VS200 (Olympus, Germany), in conjunction with
UPLXAPO 20x objective lens.

Calculation of cell proportions and cell-to-cell distance
The calculation of cell proportions and cell to cell distancewas applied
tomIF images and spatial map. The cell-to-cell distance was calculated
using Euclidean distance. The field of view (FOV) encompassing the
tumor, tumor-stroma boundary, and stroma was manually selected
based on the expressions of COL1A1 and panCK. The selected FOVwas
then analyzed usingQuPath software for precise cell identification and
counting. The cell proportion was calculated using the formula:

1. distance=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXcell1�Xcell2Þ2 + ðYcell1�Ycell2Þ2
p

.

Statistics and reproducibility
All box and whisker plots are presented as the mean± interquatile
range (IQR: 25–75%) with bars indicating upper and lower extremes.
Statistical significance was determined using a two-tailed unpaired
Student’s t test (with Bonferroni correction for multiple comparison).
Exact P valueswere labeled in thefigures. Differencewas considered to
be significant if P < 0.05, (*P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001). For the reproducibility of the results, all the experi-
ments were repeated independently for over 3 times with similar
results.
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Materials availability
The antibodies for mIF staining are listed as follow:

Reagent and resource

antibodies Dilution resource identifier

Anti-PD1 rabbit mAb 1:200 Cell Signaling CST86163

Anti-COL1A1 rabbit mAb 1:500 Cell Signaling CST72026S

Anti-IL-8 rabbit mAb 1:200 Cell Signaling CST94407

Anti-PDL1 antibody 1:200 Abcam Ab213524

Anti-pan cytokeratin antibody 1:200 Abcam Ab7753

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing FASTQ files of the scRNA-seq and stereo-seq data
generated in this studycouldbe accessedonGenomeSequenceArchive
(accession number: PRJCA020107, https://ngdc.cncb.ac.cn/gsa-human/
browse/HRA005647). The processed matrix of Stereo-seq and scRNA-
seq was deposited on STOmicsDB69 of China National GenBank Data-
base (accession number: STT0000036, https://db.cngb.org/stomics/
project/STT0000036). The publicly available TCGAwith Z-scored gene
expression matrix and the MSI scores could be downloaded through
https://www.cbioportal.org/study/summary?id=coadread_tcga_pan_
can_atlas_2018. The publicly available single cell RNA-seq data could be
downloaded through the following links: CRC (gene expression omni-
bus: GSE205506): https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE20550616; RCC (single cell portal: SCP1288): https://singlecell.
broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-
reprogramming-during-immunotherapy-in-advanced-renal-cell-
carcinoma#study-download70; melanoma (gene expression omnibus:
GSE115978): https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE11597871. Source data are provided as a Source Data file. The
remaining data are available within the Article, Supplementary Infor-
mation or Source Data file. Source data are provided with this paper.
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