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There are several important challenges in radiomics research; one of them is feature selection. 
Since many quantitative features are non-informative, feature selection becomes essential. Feature 
selection methods have been mixed with filter, wrapper, and embedded methods without a rule of 
thumb. This study aims to develop a framework for optimal feature selection in radiomics research. 
We developed the framework that the optimal features were selected to quickly through controlling 
relevance and redundancy among features. A ‘FeatureMap’ was generated containing information for 
each step and used as a platform. Through this framework, we can explore the optimal combination of 
radiomics features and evaluate the predictive performance using only selected features. We assessed 
the framework using four real datasets. The FeatureMap generated 6 combinations, with the number 
of features selected varying for each combination. The predictive models obtained high performances; 
the highest test area under the curves (AUCs) were 0.792, 0.820, 0.846 and 0.738 in the cross-
validation method, respectively. We developed a flexible framework for feature selection methods in 
radiomics research and assessed its usefulness using various real-world data. Our framework can assist 
clinicians in efficiently developing predictive models based on radiomics.
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MRI  Magnetic resonance image
PET  Positron emission tomography
AI  Artificial intelligence
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FS  Feature selection
COR  Correlation
VIF  Variance inflation factor
LR  Logistic regression
LASSO  Least absolute shrinkage and selection operator
EN  Elastic-net
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RF  Random forest
SVM  Support vector machine
XGBoost  Extreme gradient boosting
AUC  Area under the curve
OR  Odds ratio
AutoML  Automated ML
XAI  Explainable AI

Radiomic features are radiologic biomarkers that are quantitatively assessed and extracted from medical 
images of one or more modalities, including computed tomography (CT), magnetic resonance imaging (MRI), 
positron emission tomography (PET), and ultrasound1. These biomarkers include first-order statistical features 
describing the distribution of voxel intensities, shape-based features describing the shape of the region of interest 
and its geometric properties, and texture features describing the spatial variations in voxel intensity levels2. 
Radiomics can mean a research area for radiome (i.e., the whole set of radiomic features), but more likely refer 
to a wholistic methodology that encompasses six components: (1) image acquisition and pre-processing, (2) 
image segmentation, (3) feature extraction, (4) feature selection (FS) or dimension reduction, (5) derivation 
and evaluation of predictive models, and (6) clinical application2,3. Despite several unresolved challenges, this 
methodology is extensively utilized to facilitate non-invasive clinical decision-making in oncology research4–7.

Like the other radiomics components, FS is an essential step during which unnecessary noise information 
is reduced by selecting an optimal subset of features that are reliable, likely relevant to a diagnosis or prognosis 
endpoint, but not redundant to each other. Due to the high-dimensional and complex nature of radiomics 
feature data derived from a relatively limited set of images8–10, FS prior to predictive modeling is essential to 
enhance predictive accuracy and mitigate the risk of model overfitting11–13. Current FS methods are categorized 
into three types: filter, wrapper, and embedded methods. FS have been proceeded with a single FS method, or 
with a serial combination of multiple methods. Although pros and cans of FS procedures have been discussed, 
there is a lack of rules of thumb as well as guidelines and tools for choosing a proper FS procedure14–18.

Artificial intelligence (AI) applications have been increased in the medical field, aiming to replace repetitive 
tasks encountered in routinely clinical workflows and to provide clinical decision support systems (CDSSs). AI 
techniques have been employed for diagnosis or prognosis prediction in radiomics research19, and it made the 
cooperation between clinical and AI domains essential20,21. Various technical options have been available for 
key elements of AI development, including machine learning (ML) algorithms, model building and testing data 
construction, and FS. It became a challenge to evaluate all available options and choose an optimal one.

Since ML-based methods have been introduced for FS, clinicians and ML experts need to cooperate to 
establish an optimal FS strategy. It requires an efficient framework that contains easy and fast tools (1) to assess 
and store feature characteristics, including indices of reliability/robustness, clinical relevance, and redundancy; 
and (2) to populate and compare candidate FS strategies by applying various FS methods, model-building 
and evaluation algorithms, and performance measures. Our objective is to develop an efficient and practical 
framework for FS, particularly in the context of high-dimensional data, that delivers all essential information 
and facilitates collaboration between clinicians and ML experts.

Materials and methods
Feature selection in radiomics
The radiomics analysis process can consist of seven steps, from image acquisition to model evaluation (Fig. 1A). 
The FS is an important step to remove noise information, improve the predictive performance, and prevent 
the overfitting risk of the model. Many FS methods predominantly rely on repeatability and reproducibility of 
individual features, relevance to a clinical outcome, and redundancy among features22,23. The repeatability and 
reproducibility are often checked to screen-out features with poor data quality prior to the FS steps based on the 
relevance and redundancy that are considered comprehensively7,11–13,24.

There are three categories of FS methods: filter, wrapper, and embedded approaches (Fig. 1B). These methods 
can be used individually or in combination22,23. Filter methods assign an independent score to each feature, 
and select features whose scores satisfy a pre-defined criterion prior to the model building process. The scores 
are developed by evaluating relevance of each feature to the clinical outcome, with statistical or informational 
metrics, including correlation coefficients, minimum redundancy maximum relevance, or mutual information. 
Because filter approaches operate in per-feature level, they are fast and easy to implement while they may miss 
feature combinations that could be synergetic for prediction.

Wrapper methods search the optimal subset of features with the best model performance among all possible 
subsets when modeling is based on a specific ML algorithm. Such ML algorithms should provide individual 
feature ranking. For example, multivariable regressions with p-values for model difference when eliminating or 
adding a feature, and random forest (RF) and extreme gradient boosting (XGBoost) with feature importance. A 
wrapper technique requires a search method that iteratively adds high-ranked features of removes low-ranked 
ones. Examples include backward elimination, recursive feature elimination, forward selection, sequential 
selection, and Boruta. While the wrapper methods tend to be computationally expensive and susceptible to 
overfitting, they usually result in better predictive performance than filter methods.

Embedded methods incorporate the FS process directly into the ML-based model building process to 
encompass benefits of filter and wrapper methods. Examples include Least Absolute Shrinkage and Selection 
Operator (LASSO) and Elastic-Net (EN). These methods search for the best subset of features with high 
performance during the learning process while maintaining reasonable computational costs. Embedded 
methods are likely to suffer from limited interpretability, and cannot be supported by all ML algorithms.

Scientific Reports |        (2024) 14:29297 2| https://doi.org/10.1038/s41598-024-80863-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Study Design: Framework for optimal feature selection
Our framework facilitates an easy and efficient application of FS methods in combination based on ‘FeatureMap’ 
in Step 1: filter methods in Steps 2 ~ 4 and wrapper or embedded methods in Step 5 (Fig. 2, Supplementary Fig. 
S1). In Step 1, all metrics necessary for decision-making in Step 2 (e.g., p-value, area under the curve (AUC) and 
odds ratio (OR)) are calculated by conducting univariable analyses of individual quantitative features extracted 
from medical images, and saved with basic information (e.g., name, category and category identifier (ID)) 
as backbone of the FeatureMap (Supplementary Fig. S2). The category describes morphologic, intensity- or 
texture-based characteristics of a radiomic feature. An identical category ID signifies that the features belong 
to the same category. All other information required for decision in each step and the corresponding results are 
appended into the FeatureMap throughout the framework.

In Step 2, a single or a set of thresholds for the metrics can be considered for fast screening and dimensionality 
reduction. The filtering status of each feature is recorded in the ‘FeatureMap’ (Supplementary Fig. S3). The Step 
2 was designed to reduce the ultrahigh dimensionality in radiomics data by applying on the sure independence 
screening (SIS)25,26, in which every feature with ‘weak’ relevance to the outcome (e.g., univariable association or 

Fig. 1. The radiomics analysis process. (A) Radiomics workflow. (B) Feature selection methods.
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predictability) should remain for the next filter steps. Because it is necessary to avoid unnecessary elimination of 
useful features for prediction in this step, a threshold(s) need to be too stringent, and FDR correction may not be 
of concern. The Step 2 is optional and can be skipped when data do not suffer from the ultrahigh dimensionality.

The core of this framework generates a ‘FeatureMap’ containing information for decision-making in the first 
step, and then provides various combinations of features in the last step. The FeatureMap saves all information at 
each framework step, thus reducing unnecessary calculations and minimizing resources though recycling saved 
information. This makes it possible to perform FS efficiently and quickly.

Step 3 removes the excessive redundancy (or collinearity) between selected features in Step 2, using the 
absolute value of spearman correlation coefficient (COR) and variance inflation factor (VIF) as the selection 
criterion (Supplementary Fig. S4). To densify the dataset and remove highly correlated features in Step 3, we 
employed a high-correlation filter method: (1) calculate pairwise correlations; (2) eliminate the feature with 
weaker relevance from the most highly correlated pair; (3) repeat until all remaining pairs have a correlation 
below a predefined threshold. This method can be applied to all features whose categories are same. There are 
three options for selecting the criterion for weaker relevance: statistical significance (p-value), effect size (OR), 
and predictability (AUC). For example, the representative feature with the lowest p-value in the FeatureMap is 
selected when using the p-value as the criteria.

Step 4 confirms the relevance (or significance) between the outcome and the selected features from the Step 
3, and also separates into two tracks in order to consider redundancy (COR, VIF) at the same time. In this step, 
the candidate features can be selected that the p-value or AUC is satisfied the criterion and max(OR, 1/OR)-1 is 
greater than threshold (Supplementary Fig. S5).

Step 5 selects the final features using automatic embedded FS algorithms which LASSO, EN and RF. In the 
RF, the top-ranking with a variable importance can be used as the criterion for feature selection. As a result, 
maximum 6 combination of features can be generated through two tracks in Step 4 and three embedded 
algorithms in Step 5 (Supplementary Fig. S6).

In this paper, thresholds were set to 0.5 of p-value in Step 2, 0.8 of COR and 4 of VIF in Step 3, 0.2 of p-value, 
0.55 of AUC and 1e-7 of OR in Step 4, 10 of the top-ranking in Step 5. These thresholds can be changed by 
researcher.

Performance assessment using real datasets
To assess and validate the framework, multiple real clinical datasets obtained for other retrospective studies with 
binary clinical outcome were used. The Institutional Review Boards (IRBs) of the Samsung Medical Center and 
the Soonchunhyang University Seoul Hospital approved this study (IRB No. 2020-03-086 and IRB No. 2019-
05-032, respectively) and waived the requirement for informed consent given the retrospective nature of the 

Fig. 2. The framework for feature selection in radiomics research.
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study and all methods were performed in accordance with the relevant guidelines and regulations. All patient 
information was anonymized and de-identified.

Dataset 1 is metabolic syndrome data with PET-CT images in Soonchunhyang University Seoul Hospital. 
The objective is to develop a predictive model for the improvement of metabolic syndrome after bariatric surgery 
(yes, no). The sample size is 79, with 854 features and 55 categories (IRB No. 2019-05-032).

Dataset 2 is gastric cancer data with CT images in Samsung Medical Center. The objective is to develop 
a predictive model for diagnostic EMT subtype (yes, no). The sample size is 125, with 1223 features and 79 
categories (IRB No. 2020-03-086).

Dataset 3 is low-grade gliomas public-data with MRI images in the cancer genome atlas and the cancer 
imaging archive. The objective is to develop a predictive model for mutation of the 1p19q gene (wild gene, 
mutated gene)27. The sample size is 105, with 640 features and 38 categories.

Dataset 4 is prostate imaging cancer AI (PI-CAI) public-data with T2-weighted MRI images28. The objective 
is to develop a predictive model for a malignancy of prostatic tissue (yes, no). The sample size is 969, with 1015 
features and 67 categories.

We assessed the utility as the perspective of screening to confirm the predictive performance using only the 
selected features from the framework. The procedures for the predictive model were set as follows, and these 
settings can be flexibly changed by the researcher. To develop the predictive models, the full data was randomly 
divided into the model development (70%) and the model validation (30%) data. To improve the predictive 
performance, we performed normalization, standardization, and a random search using 5 repeated 5-fold 
cross-validation for optimization. On the other hand, we considered a bootstrap method with 500 iterations 
for reducing partition bias and used default values of hyperparameter without optimization. We used three 
popular algorithms: logistic regression (LR), RF and support vector machine (SVM). To assess the predictive 
performance of the model, we used accuracy, sensitivity, specificity, balanced accuracy (BA), and AUC. The BA 
was used to determine the optimal cutoff for the predictive model.

We compared the number of features in various combinations selected through the framework and identified 
the effect on the predictive performance according to the number of features. To evaluate the effectiveness of our 
framework, we considered three commonly-used FS methods (i.e., LASSO, XGBoost, and Boruta) as reference 
FS methods. Calibration curves were compared between framework method and reference FS methods for each 
of the final models with the highest test AUC. All procedures of the framework and predictive model from 
development to validation were implemented using R (version 4.1.3).

Results
Though the framework, the optimal combinations of features were different depending on the data (Table 1). In 
addition, the predictive models each data showed overall high performance in various combinations rather than 
in a specific combination.

Dataset 1: predictive model for improvement metabolic syndrome after bariatric surgery 
with metabolic syndrome data
The FeatureMap generated through the framework consisted of 6 combinations as shown in Supplementary 
Fig. S1. The number of features selected based on the COR were 43 with LASSO, 44 with EN and 10 with RF, 
respectively. On the other hand, the number of features selected based on the VIF were 26 with LASSO, 30 with 
EN and 10 with RF, respectively.

The predictive performances of each combination with cross-validation and bootstrap methods are shown 
in Supplementary Table S1. Also, the AUCs were represented using a heatmap according to each combination 
(Supplementary Fig. S7).

Dataset
Sample 
Size

Number of 
features

Class 
balance 
(%) FS method

Number 
of selected 
features

Predictive 
algorithm

Predictive Performancesa

AUC Accuracy Sensitivity Specificity
Balanced
Accuracy

1
79 854 36.7% Framework (VIF-

RF) 10 LR 0.792 0.870 0.625 1.000 0.812

Reference (XGBoost) 10 SVM 0.792 0.783 0.625 0.867 0.746

2
125 1223 38.4% Framework (COR-

RF) 10 LR 0.820 0.811 0.929 0.739 0.834

Reference (Boruta) 1 LR 0.618 0.622 0.643 0.609 0.626

3
105 640 63.8% Framework (COR-

RF) 10 RF 0.846 0.871 0.950 0.727 0.839

Reference (XGBoost) 10 RF 0.827 0.871 0.950 0.727 0.839

4
969 1015 65.7% Framework (COR-

LASSO) 24 LR 0.738 0.738 0.801 0.616 0.709

Reference (LASSO) 41 LR 0.744 0.755 0.801 0.667 0.734

Table 1. Overview of the datasets and comparison of the predictive performances between FS methods. FS, 
feature selection; AUC, area under the curve; LR, logistic regression; RF, random forest; SVM, support vector 
machine; COR, correlation; VIF, variance inflation factor; LASSO, least absolute shrinkage and selection 
operator; XGBoost, extreme gradient boosting. aFinally selected predictive model for each test data.
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In the cross-validation method, the LR model obtained the best performance at combination of VIF and RF, 
with the train AUC of 0.833 and the test AUC of 0.792. The RF model obtained the train AUC of 1.000 and test 
AUC of 0.692 at combination of COR and RF. The SVM model obtained the train AUC of 0.819 and test AUC of 
0.783 at combination of VIF and RF. Similarly, in the bootstrap method, the LR and RF models obtained the best 
performances at combination of VIF and RF, with the train AUCs of 0.890 and 0.900, the test AUCs of 0.641 and 
0.696, respectively. The SVM model obtained the train AUC of 0.996 and test AUC of 0.695 at combination of 
COR and EN. As shown in Supplementary Table S1 and Fig. S7, various performances were obtained depending 
on the various combinations rather than in a specific combination.

Dataset 2: predictive model for diagnostic EMT subtype with gastric cancer data
The number of features selected based on the COR were 2 with LASSO, 71 with EN and 10 with RF, respectively. 
On the other hand, the number of features selected based on the VIF were 2 with LASSO, 5 with EN and 10 with 
RF, respectively (Supplementary Fig. S8).

In the cross-validation method, all models obtained the best performances at combination of COR and RF 
with the test AUC of 0.820 in the LR, the test AUC of 0.758 in the RF and the test AUC of 0.776 in the SVM, 
respectively (Supplementary Table S2 and Fig. S9A). In the bootstrap method, the LR model obtained the best 
performance at combination of COR and LASSO with the train AUC of 0.717 and the test AUC of 0.684. The 
RF model obtained the best performance at combination of VIF and RF with the train AUC of 0.908 and the test 
AUC of 0.680. On the other hand, the SVM model obtained the best performance at combination of COR and 
RF, with train AUC of 0.922 and the test AUC of 0.664, respectively (Supplementary Fig. S9B).

Dataset 3: predictive model for the mutation of the 1p19q gene with low-grade gliomas data
The number of features selected based on the COR were 25 with LASSO, 17 with EN and 10 with RF, respectively. 
On the other hand, the number of features selected based on the VIF were 22 with LASSO, 38 with EN and 10 
with RF, respectively (Supplementary Fig. S10).

In the cross-validation method, the LR model obtained the best performance at combination of COR and 
EN with the train AUC of 1.000 and the test AUC of 0.782. The RF model obtained the best performance at 
combination of COR and RF with the train AUC of 1.000 and the test AUC of 0.846. On the other hand, the 
SVM model obtained the best performance at combination of COR and LASSO, with train AUC of 1.000 and 
the test AUC of 0.836, respectively (Supplementary Table S3 and Fig. S11A). In the bootstrap method, all models 
obtained the best performances at combination of COR and LASSO with test AUCs of 0.875 in the LR, 0.952 in 
the RF and 0.962 in the SVM, respectively (Supplementary Fig. S11B).

Dataset 4: predictive model for the malignancy of prostatic tissue with PI-CAI data
The number of features selected based on the COR were 24 with LASSO, 28 with EN and 10 with RF, respectively. 
On the other hand, the number of features selected based on the VIF were 17 with LASSO, 11 with EN and 10 
with RF, respectively (Supplementary Fig. S12).

In the cross-validation method, the LR model obtained the best performance at combination of COR and 
LASSO with the train AUC of 0.735 and the test AUC of 0.738. The RF model obtained the best performance 
at combination of COR and EN with the train AUC of 1.000 and the test AUC of 0.707. On the other hand, the 
SVM model obtained the best performance at combination of COR and LASSO, with train AUC of 0.762 and the 
test AUC of 0.718, respectively (Supplementary Table S4 and Fig. S13A).

Comparisons of the predictive performance between FS framework and reference FS 
methods
The predictive performances for each reference FS method are shown in Supplementary Table S5, and the final 
models were selected at high test AUC. In datasets 1 and 3, XGBoost selected 10 features, with test AUCs of 
0.792 and 0.827, respectively. For datasets 2 and 4, the Boruta and LASSO algorithms selected 1 and 41 features, 
with test AUCs of 0.618 and 0.744, respectively. Calibration performance of our framework was comparable to 
reference FS methods (Supplementary Fig. S14). In terms of the integrated calibration index, our framework 
showed good calibration for datasets 2, 3, and 4, with values of 0.041, 0.091, and 0.049, respectively.

Discussion
In the present study, we utilized four different real datasets to develop the framework for radiomics research. 
The FeatureMap generated 6 combinations, with the number of features selected varying for each combination. 
The threshold values were set the same for each step of the framework, and the predictive performances were 
compared using only selected features. Compared to reference FS methods, our framework showed mostly 
superior performance (Table 1). In dataset 4, the framework’s AUC was slightly lower by 0.006 (0.738 vs. 0.744) 
but obtained this with 17 fewer features. Despite the slight reduction in discrimination performance, calibration 
performance remained high (Supplementary Fig. S14). By the principle of parsimony (called Occam’s razor), our 
framework is more efficient. When developing clinical prediction models, various factors should be considered, 
such as data size, the number of features, cost, and resources in the clinical environment29,30. Thus, when 
model performances are comparable, selecting a simpler model is advantageous. Through these findings, we 
have validated the usefulness of our framework. If researchers have radiomics feature data, they can select the 
optimal features easily and quickly by setting thresholds. The options of ML were simply applied for quick model 
development as the perspective of screening. These tasks can be flexibly applied, for example, if resources such as 
computing power, time or cost are abundant, the optimization process can be added in the bootstrap method to 
improve the predictive performance. Moreover, we expect that a better predictive model can be developed, if the 
optimal combination of features though the framework is combined with other clinical information.
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In radiomics research, it is necessary to standardize methodology based on reproducibility3,5,7–9,19. Our 
findings confirmed the potential for both standardization and reproducibility for radiomics-based feature 
selection methods. We can secure evidence of standardization as the redundancy and relevance are considered, 
and all processes can be transparently provided. For this way, the mixed FS methods can be consistently 
standardized using the framework. Similarly, reproducibility can also be secured, as all information of the 
FS process is saved in FeatureMap. If the predictive performance of the selected feature combination is not 
satisfactory, then it is possible to develop a new predictive model by utilizing the information of another 
combination saved in the FeatureMap. Our framework is easily expandable to other metrics since any metric 
can be added into ‘FeatureMap’ because of its scalable nature. Through this process, it is possible to develop 
the predictive model quickly and efficiently from the screening perspective, and the FeatureMap can serve as 
a platform within the framework itself. Therefore, it is possible to solve the complexity of radiomics research 
one step further and make more robust decision-making based on reproducibility and standardization of the 
framework.

Another feasibility aspect is an Automated Machine Learning (AutoML) that is pipeline for automated 
machine learning from data preparation to model evaluation, and there are tools using AutoML are Auto-
Weka, MLjar, and H2O, etc31,32. The objective of AutoML is to automate and solve the manual and repetitive 
tasks of ML pipelines by various domain experts when developing the predictive models. Using our framework 
to implement the process from FS to model evaluation as the pipeline, it is possible to develop the AutoML 
for radiomics-based FS. Then, the researcher can automatically evaluate the model through iterative tasks by 
adjusting the threshold of the framework. This can reduce costs and time, while also improving the accessibility 
and productivity of radiomics research. Furthermore, if we expand it as the pipeline that automates all steps 
of the radiomics workflow in Fig. 1, we can develop the platform specialized in radiomics research using only 
medical images.

On the other hand, the ML-based model cannot avoid the “black box” problem, and it is also true in radiomics 
research. To address this issue, there have been many studies on explainable AI (XAI) to gain insight and explain 
factors from the predictive model33–36. Especially in clinical settings, since it is directly related to patient care, it 
is even more important to have the XAI model that provides the interpretation of the results. The use of methods 
such as LIME or SHAP can improve explanatory power37,38. In addition, if we can reversely float the selected 
features with high prediction performance in the framework onto the images and validate the clinical meaning 
by clinicians, it can be utilized as the XAI model.

Our study has several limitations. First, there is a problem applying a numeric and survival outcome 
because our framework used the binary outcome. A study design that can be applied to survival analysis is 
needed in the future. Second, it is necessary to research a method of repeating the model-based step using the 
bootstrap approach within our framework and utilizing the frequency of features selected for each result. This 
means a stability of radiomics features, which is how reliably features are selected. According to the frequency 
of features, the number of top-ranking can be selected, or features selected over a certain percentage of the 
number of iterations can be finally selected. In this way, the framework can be extended, if considering the 
stability in addition to redundancy and relevance. Third, feature data must be prepared in advance. Since the 
framework uses extracted feature data, issues such as feature reliability, data imbalance or missing values must 
be considered before using the framework. Once the data is prepared, the framework can be flexibly applied in 
radiomics research. Fourth, we tried to demonstrate the effectiveness of our framework using four real datasets. 
Although these datasets have different characteristics, such as different sample sizes, the number of features, and 
outcome balances, the demonstration with only four datasets was not enough to confirm the effectiveness of our 
framework. Additionally, some guidelines need to be suggested so that users can set good thresholds. However, 
our framework enables users to explore various threshold settings easily and quickly and to choose an optimal 
setting.

The number of clinical research using radiomics is increasing, and many predictive models are suggested for 
the response evaluation of new treatment for various diseases. However, the poor validation of the model and 
inter-observer variability of the analysis are hurdles of clinical utilization of radiomics. Therefore, establishing the 
standardization of methodology for radiomics research is necessary1. In this study, we developed the framework 
for feature selection methods in radiomics research and assessed its usefulness using various real-world data. 
Our framework can assist clinicians in efficiently developing the predictive models based on radiomics.

Data availability
Dataset 1 and 2 generated during and/or analyzed during the current study are not publicly available due to 
privacy and ethical considerations. However, these datasets can be made accessible to qualified researchers upon 
reasonable request to the corresponding author (W.K.J.), any specific accession codes or unique identifiers asso-
ciated with the datasets will be provided upon approval of the request.
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