Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

5²CelPress

The 14-bp insertion/deletion as a promising gene polymorphism to understand cancer risk: Evidence from a systematic review and comprehensive meta-analysis

Kalthoum Tizaoui ^{a,**}, Mohamed Ali Ayadi ^b, Ines Zemni ^b, Abdel Halim Harrath ^c, Roberta Rizzo ^d, Nadia Boujelbene ^e, Inès Zidi ^{f,*}

^a Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunisia

^c King Saud University, College of Science, Department of Zoology, Riyadh, Saudi Arabia

^d Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy

^e Department of Pathology, Salah Azaiz Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia

^f Laboratory of Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia

ARTICLE INFO

Keywords: HLA-G gene 14-bp I/D polymorphism Cancer Meta-analysis

ABSTRACT

Background: HLA-G is associated with cancer cell escape. The 3'UTR polymorphism is involved in the regulation of membrane-bound HLA-G and soluble HLA-G proteins. The aim of our study was to assess the association of the HLA-G 14-bp insertion (I)/deletion (D) polymorphism with cancer susceptibility and its interaction with clinicopathological features and environmental factors. Methods: A meta-analysis was performed to investigate the association between the HLA-G 14-bp I/D polymorphism and different types of cancers according to the Prisma guidelines. Results: Thirty-nine publications that studied the 14-bp I/D polymorphism in cancers met our inclusion criteria. The findings of the meta-analysis showed a significant association between the 14-bp I/D polymorphism and cancer risk under the allelic contrast model D vs. I (OR = 1,112,95% CI = 1,009–1,227; P = 0,033) suggesting that the D allele was a risk factor for cancer susceptibility. Stratification by cancer type demonstrated a significant association of the 14-bp I/D polymorphism with breast cancer under the D vs. I contrast allele model (OR = 1,267, 95 % CI =1,028–1,563; P = 0,027). No significant association was found for digestive, cervical, haematological and thyroid cancers. A comparison of groups stratified by ethnicity showed a significant association for Caucasians under the D vs. I model (OR = 1,147, 95 % CI = 1,002–1,313; P = 0,047); and for mixed ethnicities under the DD + DI vs. II (OR = 1,388, 95 % CI = 1,083–1,780; P= 0,010) and DI vs. II (OR = 1,402, 95 % CI = 1,077–1,824; P = 0,012) models. A comparison of cancer risks associated with the 14-bp I/D polymorphism according to geographic location revealed significant risks for the D allele and DD genotype in North Africa, the Middle East and South America. However, no significant susceptibility to cancer associated with the 14-bp I/D polymorphism was shown for Europe and North Asia. The findings of a meta-analysis of subgroups by disease stage showed a significant association in both early and advanced stages, with the 14-bp deletion variant being a risk factor. Similarly, a significant cancer risk was shown for

** Corresponding author.

E-mail addresses: kalttizaoui@gmail.com (K. Tizaoui), ines.zidi@istmt.utm.tn (I. Zidi).

https://doi.org/10.1016/j.heliyon.2024.e39740

Received 8 November 2023; Received in revised form 22 October 2024; Accepted 22 October 2024

Available online 23 October 2024

^b Department of Surgical Oncology, Salah Azaiz Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia

^{*} Corresponding author. Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives (LR03ES03), 2092 Tunis, Tunisia.

^{2405-8440/© 2024} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

the 14-bp deletion variant in both low- and high-grade cancers. Finally, the risk associated with the 14-bp I/D polymorphism was higher in cancers with concomitant viral infection with human papillomavirus (HPV), hepatitis B virus (HBV) or hepatitis C virus (HCV).

Conclusion: The findings of the overall meta-analysis showed a significant association between the HLA-G 14-bp I/D polymorphism and cancer susceptibility. The findings stratified analysis and subgroup comparisons showed that the 14-bp I/D deletion variant was associated with an increased risk of breast cancer. The HLA-G 14-bp I/D polymorphism may interact with individual and clinicopathological factors to alter cancer risk. These promising findings for cancer risk provide the basis for further studies that explore 14bp I/D polymorphism in cancer screening and immunotherapeutic approach.

1. Introduction

Human leukocyte antigen-G (HLA-G), is a non-classical major histocompatibility complex class I (MHC-I) antigen [1] encoded by a gene located in region 6p21.3 of chromosome 6 [2]. HLA-G is predominantly expressed at the maternal–fetal interface [3], and has primarily been associated with maternal-fetal tolerance [1]. HLA-G protects the fetus from trophoblast damage caused by maternal natural killer (NK) cells [4] and cytotoxic-T cells (CTLs) [5]. HLA-G is secreted under restrictive physiological conditions in fetal tissues, adult immune-privileged organs and cells of the hematopoietic lineage [1]. HLA-G is also found in pathological conditions such as cancer, viral infections, inflammatory diseases, autoimmune diseases, and transplantation [6]. In cancer, HLA-G expression is heterogeneous and strongly associated with an immunosuppressive microenvironment, advanced tumor stage, poor therapeutic response, and poor prognosis [7,8].

The first identified and most studied polymorphism of the HLA-G gene is the 14-base-pair insertion/deletion (14-bp I/D) located in the 3'UTR (rs66554220/rs371194629) [9]. The 14-bp presence or absence (insertion or deletion, respectively) polymorphism was found to be associated with HLA-G transcript levels and mRNA stability. The presence of a 14-base segment has been shown to be associated with decreased mRNA production, and the absence of this segment (deletion) appears to stabilize mRNA enhancing HLA-G expression [10,11]. HLA-G transcripts presenting the 14-base segment can be further processed by removing 92 bases from the primary mRNA transcript [10], giving rise to a shorter HLA-G transcript reported to be more stable than the full-length isoform [12]. Taken together, the published results provide evidence for a direct relationship between the 14-bp I/D polymorphism and HLA-G protein expression.

Evidence is accumulating for an important role of the HLA-G 14-bp I/D polymorphism in various cancers, but the results of some studies are contradictory or inconclusive. In the current meta-analysis, data from published individual studies were pooled to further explore the association between the HLA-G 14-bp I/D polymorphism and cancer and shed light on the most significant modulating factors investigated in the primary studies.

2. Methods

2.1. Identification of eligible studies and data extraction

We searched for published studies investigating the association between the HLA-G 14-bp I/D polymorphism and cancer in MEDLINE, EMBASE, and Cochrane databases (up to October 2024) using Medical Subject Heading (MeSH) and keyword combinations, such as "HLA-G, "14-bp I/D polymorphism" and "cancer". Furthermore, additional studies not indexed by the MEDLINE, EMBASE and Cochrane databases were included, and the references cited in the collected papers were reviewed. Studies were considered eligible based on the following inclusion criteria: testing for the HLA-G 14-bp I/D polymorphism in cancers and in healthy controls. Studies were excluded if they: (1) included redundant or incomplete data or (2) were reviews, meta-analyses or case reports. From each study, the following information was extracted: primary author, publication year, country of the study, ethnicity, allele and genotype frequencies of the HLA-G 14-bp polymorphism, type of cancer, stage/grade of cancer, and viral infection status. Two independent reviewers KT and IZI extracted the data on the methods and results from the original studies and analyzed them. Discrepancies were resolved by consensus among the reviewers. The meta-analysis was conducted according to the recommendations in the PRISMA guidelines [13].

2.2. Statistical analyses

We performed a meta-analysis to test the allelic, recessive, homozygous, dominant and codominant models of the HLA-G 14-bp polymorphism. For dichotomous data, odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated. Heterogeneity was quantified using I^2 , varying from 0 to 100 % and reflecting the proportion of variation between the studies due to heterogeneity rather than chance [13]. I^2 values of 25, 50, and 75 % were considered to indicate low, moderate, and high heterogeneity, respectively. The random-effects model assumes that there is significant variation in different studies and, therefore, tests both sampling errors within the study and variances between studies [14]. The tau squared (τ^2) test reflects the variance of the true effect sizes, and is used to test the variance of the effect size parameters across the study population while tau (τ) is the estimated standard deviation of underlying true effects across studies [15]. Publication bias was assessed by using Egger's test [16]. A comprehensive meta-analysis program

Characteristics of studies included in the meta-analysis.

Author	Cancer Type	Country	Geographic location	Ethnicity	Chi2
Durmanova 2024	Head and Neck Squamous Cell Carcinoma	Slovakia	Europe	Caucasian	0,680
Okumura 2024	Hepatocellular Cancer	Japan	North Asia	Asian	0,955
Becerra-Loaiza 2023	Breast Cancer	Mexico	South America	Mixed	0,803
Garrach2023	Colorectal Cancer	Tunisia	North Africa	Caucasian	0,265
Al-Tamimi 2022	Leukemia	Saudi Arabia	Middle East	Caucasian	3,022
Bucova 2022	Glioma	Slovakia	Europe	Caucasian	0,609
Dhouioui 2022	Colorectal Cancer	Tunisia	North Africa	Caucasian	0,951
Gan 2022	Cervical Cancer	China	North Asia	Asian	0,863
Haghi 2021	Breast cancer	Iran	Middle East	Caucasian	0,846
de Magalhaes 2021	Glioma	Brazil	South America	Mixed	6,397
Vaquero-Yuste 2021	Gastric Cancer	Spain	Europe	Caucasian	0,279
Kadiam 2020	Breast Cancer	India	South Asia	Caucasian	0,043
Abu hassan 2019	Colorectal Cancer	Saudi Arabia	Middle East	Caucasian	0,416
El Bassiouny 2019	Hepatocellular carcinoma	Egypt	Middle East	Caucasian	0,800
Al Omar 2019	Breast Cancer	Saudi Arabia	Middle East	Caucasian	1,037
Ouni 2019	Breast Cancer	Tunisia	North Africa	Caucasian	1183
Tawfeek 2018	Non-Hodgkin Lymphoma	Egypt	Middle East	Caucasian	0,694
Agnihotri 2017	Head and Neck Squamous Cell Carcinoma	India	South Asia	Caucasian	2,331
de Figueiredo-Feitosa 2017	Thyroid carcinoma	Brazil	South America	Mixed	2,735
Marques 2017	Colorectal cancer	Brazil	South America	Mixed	0,425
Garziera 2016	Colorectal Cancer	Italy	Europe	Caucasian	5,666
Zambra 2016	Prostate Cancer	Brazil	South America	Mixed	0,843
Zidi 2016	Breast Cancer	Tunisia	North Africa	Caucasian	0,049
Bielska 2015	Diffuse Large B-Cell Lymphoma	Poland	Europe	Caucasian	5,301
Haghi 2015	Breast Cancer	Iran	Middle East	Caucasian	11,033
Wisniewski 2015	Lung cancer	Poland	Europe	Caucasian	0,265
Bortolotti 2014	Cervical cancer	Italy	Europe	Caucasian	3,204
Jeong 2014	Breast Cancer	South Korea	North Asia	Asian	0,356
Ramos 2014	Breast Cancer	Brazil	South America	Mixed	0,106
Yang 2014	Cervical cancer	Taiwan	North Asia	Asian	0,325
Eskandarani-Nasab 2013	Breast Cancer	Iran	Middle East	Caucasian	1,996
Kim 2013	Hepatocellular Carcinoma	South Korea	North Asia	Asian	0,346
Silva 2013	Cervical Cancer	Brazil	South America	Mixed	2,527
Teixeira 2013	Hepatocellular carcinoma	Brazil	South America	Mixed	3,167
Chen 2012	Esophageal cancer	China	North Asia	Asian	0,320
Dardano 2012	Thyroid Carcinoma	Italy	Europe	Caucasian	1,789
Ferguson 2012	Cervical cancer	Canada	North America	Caucasian	0,521
Jiang 2011	Hepatocellular Carcinoma	China	North Asia	Asian	0,392
Lau 2011	Neuroblastoma	Newzeland	Australia	Caucasian	0,001

Bold: Control population not in Hardy Weinberg Equilibrium (at ddl = 1, α = 5 %, Chi2 = 3,83).

(Biostat, Englewood, NJ, USA) was used to perform statistical manipulations.

3. Results

3.1. Studies included in the meta-analysis

We identified 150 studies using electronic and manual search methods; of these, 72 were selected for full-text screening based on the title and abstract. Reviews or meta-analyses (15) studies for which the full texts were not available (2), and studies with missing or irrelevant data (16) were excluded. Therefore, in total, 39 articles met our inclusion criteria [17–55]: (Table 1, Fig. 1).

Meta-analysis of the association between the HLA-G 14-bp I/D polymorphism and cancer susceptibility: Overall analysis. The results of the meta-analysis showed a significant association between the 14-bp I/D polymorphism and cancer risk under the D vs. I contrast allele model (OR = 1,112, 95 % CI = 1,009–1,227; P = 0,033) (Table 2, Fig. 2). High heterogeneity ($I^2 > 50$ %) and Tau squared varying between 0.067 and 0,240 were observed. The *P*-value for heterogeneity was significant (P-het<0,05). The observed heterogeneity and interstudy variance were not surprising given the clinicopathological features and population differences among studies. Publication bias was not significant in any model (Fig. 3).

3.2. Subgroup analysis according to different types of cancer

Stratification by cancer type demonstrated a significant association of the 14-bp I/D polymorphism with breast cancer (10 studies) under the D vs. I contrast allele model (OR = 1,267,95 % CI = 1,028-1,563; P = 0,027) (Table 3, Fig. 4). No significant association was shown for digestive, cervical, hematological and thyroid cancers (Table 3). Neuroblastoma (1 study), glioma (2 studies), lung cancer (1 study), and head and neck cancer (2 studies) were underrepresented to be analyzed as subgroups. Heterogeneity and variance among

Fig. 1. Flow diagram of the systematic review and meta-analysis literature search results (HLA-G 14-bp I/D polymorphism and cancer).

able 2	
ssociation between HLA-G 14-bp I/D polymorphism and cancers under the random effects model: Overall ana	lysis.

Genetic models		Effect size	ze and 95 % inter	rval		Heterogeneity				
	N	OR	Lower limit	Upper limit	P-value	I^2	I^2 <i>P</i> - het τ^2		P-Begg (2-tailed)	P-Egger (2-tailed)
D vs. I	41	1,112	1,009	1,227	0,033	71,301	0,000	0,067	NS	NS
DD vs. DI + II	41	1,125	0,988	1,279	0,075	63,601	0,000	0,102	NS	NS
$DD + DI \nu s. II$	41	1,169	0,986	1,386	0,072	67,020	0,000	0,182	NS	NS
DD + II vs. DI	41	1,015	0,905	1,139	0,799	59,400	0,000	0,076	NS	NS
DI vs. II	41	1,124	0,944	1,338	0,190	64,314	0,000	0,184	NS	NS
DD vs. II	41	1,210	0,996	1,469	0,055	67,116	0,000	0,238	NS	NS
DD vs. DI	41	1,093	0,961	1,243	0,175	58,435	0,000	0,093	NS	NS

Bold: significant P-value (<0,05); N: number of studies; NS: Not Significant; OR: odds ratio; I^2 : heterogeneity test; τ^2 , tau-squared; I/D: insertion/deletion; P- het, p-heterogeneity; bp: base pairs.

studies were significantly reduced compared to the overall analysis (Table 3).

3.3. Subgroup analysis according to ethnicity

Stratification by ethnicity showed significant association for Caucasians under the D vs. I model (OR = 1,147, 95 % CI = 1,002–1,313; P = 0,047) (Table 4). Mixed ethnicities showed significant associations (DD + DI vs. II; OR = 1,388, 95 % CI = 1,083–1,780; P = 0,010, and DI vs. II; OR = 1,402, 95 % CI = 1,077–1,824; P = 0,012) (Table 4). The allelic contrast model showed no significant association (Fig. 5). After stratification by ethnicity, Caucasian and mixed ethnic heterogeneity remained significant, while Asian heterogeneity was low to moderate (Table 4).

3.4. Subgroup analysis according to geographic locations

The 14-bp I/D polymorphism was linked to cancers in all geographic locations; however the most significant associations were detected in North Africa (D vs. I, OR = 1,377, 95 % CI = 1,193–1,590; P = 0,000; DD vs. DI + II, OR = 1,561, 95 % CI = 1,241–1,964; P = 0,000; DD + DI vs. II, OR = 1,442, 95 % CI = 1,145–1,816; P = 0,002; DD vs. II, OR = 1,800, 95 % CI = 1,362–2,378; P = 0,000; DD vs. DI, OR = 1,435, 95 % CI = 1,121–1,837; P = 0,004) (Table 5, Fig. 6). Similarly, the 14-bp I/D polymorphism was highly associated with cancers in the Middle East (D vs. I, OR = 1,453, 95 % CI = 1,135–1,860; P = 0,003; DD vs. DI + II, OR = 1,529, 95 % CI = 1,201–1,945; P = 0,001; DD + DI vs. II, OR = 1,718, 95 % CI = 1,015–2,908; P = 0,044; DD vs. II, OR = 2,024, 95 % CI = 1,205–3,398; P = 0,008); DD vs. DI, OR = 1,363, 95 % CI = 1,100–1,691; P = 0,005) (Table 5, Fig. 6). Eight studies from South America showed a high risk of 14-bp deletion variants under the DD + DI vs. II (OR = 1,388, 95 % CI = 1,083–1,780; P = 0,010) and DI vs. II (OR = 1,402,

	Study name	÷	Statisti	cs for e	ach stu	dy		Odds ratio	o and 95% Cl
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value			
	Durmanova 2024	0,844	0,485	1,468	-0,601	0,548	K		<u> </u>
	Okumura 2023	0,667	0,412	1,080	-1,648	0,099	<	-	<u> </u>
	Becerra-Loaiza 2023	0,978	0,741	1,292	-0,156	0,876			
	Garrach 2023	1,833	1,080	3,112	2,244	0,025			
	AL-Tamimi 2022	1,254	0,885	1,778	1,2/2	0,203			
	AL-Iamimi 2022 a	1,043	0,712	1,528	0,214	0,830			_
	Bucova 2022	0,643	0,420	0,983	-2,038	0,042			
	Con 2022	1,407	1,090	1,017	2,017	0,009		10	
	Gall ZUZZ	1,029	1 164	1,340	0,130	0,090			
	Vaguero Vueto 2021	1 740	1,104	2,720	2,001	0,000			
	Vaquero-Tuste 2021 Kadiam 2020	0.643	0 433	2,020	2,292	0,022	(
	Abu Hassan 2019	0 931	0,433	1 349	_0 379	0,705			
	FI Bassiouny 2019	1 222	0.571	2 614	0.517	0,605			
	Al Omar 2019	3 756	2 085	6 766	4 405	0,000			
	Ouni 2019	1 336	1 089	1 641	2 772	0 006			
	Tawfeek 2018	2,314	1.605	3,335	4,496	0.000			$- \longrightarrow$
	Agnihotri 2017	0,798	0.653	0.976	-2.198	0.028			-
de Figuei	redo-Feitosa 2017	1,183	0,786	1,779	0.805	0,421			
de Figuei	redo-Feitosa 2017a	0,732	0,389	1,379	-0,965	0,335	<		<u> </u>
	Margues 2017	1,113	0,790	1,568	0,612	0,541			+ -
	Garziera 2016	0,795	0,633	0,999	-1,969	0,049			-
	Zambra 2016	1,561	1,123	2,169	2,654	0,008			>
	Zidi 2016	1,239	0,821	1,870	1,022	0,307			
	Bielska 2015	0,786	0,583	1,058	-1,587	0,113			+
	Haghi 2015	1,086	0,843	1,399	0,637	0,524			
	Wisniewski 2015	1,054	0,859	1,294	0,503	0,615			
	Bortolotti 2014	1,612	1,069	2,430	2,278	0,023			
	Jeong 2014	1,387	0,816	2,358	1,208	0,227			
	Ramos 2014	1,020	0,688	1,514	0,101	0,920			
E-har	Yang 2014	1,106	0,880	1,390	0,864	0,388			
Eskan	darani-Nasab 2013	1,483	1,136	1,936	2,894	0,004	1		-
	Kim 2013	0,680	0,442	1,040	-1,701	0,078	1		
	Silva 2013	1 457	1,026	1,240	-1,200	0,206			
	Chop 2012	1,457	1 107	2,049	2,103	0,031			
	Chon 2012a	0,771	0.552	2,000	1 524	0,009			
	Dardano 2012	0.823	0,552	1 081	-1,024	0,121			
	Ferruson 2012	0,869	0,676	1 117	-1.098	0 272			<u> </u>
	liang 2011	1 344	1 076	1 677	2 610	0,009			
	Lau 2011	1 085	0.828	1 422	0,593	0.553			
	Luc LVII	1,112	1.009	1,227	2,136	0.033			
			,	,	-,		0.5		1 2
							-,-		
								Patients	Controls

Fig. 2. Forest plot of the association between 14-bp I/D polymorphism and cancers risk with the random effects model under the allele contrast model D vs. I. Forest plot shows the odds ratio and respective 95 % confidence intervals for the different studies included in the meta-analysis. For each study in the forest plot, the area of the black square is proportional to study weight and the horizontal bar represents the 95 % confidence interval. Z-score: the standardized expression of a value in terms of its relative position in the full distribution of values. CI, confidence interval.

Fig. 3. Funnel plot of the association between 14-bp I/D polymorphism and cancers risk with the random effects model under the allele contrast model D vs. I.

Table 3

Association between 14-bp I/D polymorphism and cancers: Subgroup analysis according to cancer type.

Genetic models	Subgroups		Effect si	Effect size and 95 % interval			Heterogeneity				
		N	OR	Lower limit	Upper limit	P-value	I^2	P-het	τ^2	P-Begg	P-Egger
D vs. I	Breast Cancer	10	1,267	1,028	1,563	0,027	73,711	0,000	0,079	NS	NS
	Cervical Cancer	5	1,039	0,829	1,303	0,738	53,186	0,074	0,033	NS	NS
	Gastrointestinal cancers	8	1,167	0,922	1,475	0,198	74,651	0,000	0,082	NS	NS
	Hematological cancers	4	1,235	0,783	1,947	0,364	85,510	0,000	0,184	NS	NS
	Hepatocellular Cancer	5	1,036	0,738	1,453	0,839	72,277	0,006	0,100	NS	NS
	Thyroid Cancer	3	0,905	0,701	1,168	0,442	21,142	0,281	0,012	NS	NS
DD vs. DI + II	Breast Cancer	10	1,327	0,998	1,764	0,052	66,171	0,002	0,133	NS	NS
	Cervical Cancer	5	1,167	0,880	1,547	0,284	42,385	0,139	0,041	NS	NS
	Gastrointestinal cancers	8	1,268	0,934	1,722	0,129	67,068	0,003	0,125	NS	NS
	Hematological cancers	4	1,193	0,907	1,570	0,207	0,000	0,696	0,000	NS	NS
	Hepatocellular Cancer	5	1,049	0,693	1,588	0,821	67,398	0,015	0,136	NS	NS
	Thyroid Cancer	3	0,725	0,433	1,213	0,221	49,692	0,137	0,101	NS	NS
DD + DI vs. II	Breast Cancer	10	1,292	0,961	1,738	0,090	54,626	0,019	0,107	NS	NS
	Cervical Cancer	5	0,953	0,564	1,608	0,856	69,446	0,011	0,231	NS	NS
	Gastrointestinal cancers	8	1,126	0,796	1,593	0,503	62,146	0,010	0,147	NS	NS
	Hematological cancers	4	1,666	0,529	5,248	0,384	92,751	0,000	1,265	NS	NS
	Hepatocellular Cancer	5	1,207	0,745	1,957	0,444	31,853	0,209	0,094	NS	0,027
	Thyroid Cancer	3	1,093	0,746	1,602	0,648	0,000	0,544	0,000	NS	NS
DD + II vs. DI	Breast Cancer	10	1,045	0,870	1,256	0,635	33,768	0,138	0,028	NS	NS
	Cervical Cancer	5	1,155	0,752	1,774	0,510	74,296	0,004	0,167	NS	NS
	Gastrointestinal cancers	8	1,131	0,944	1,355	0,181	18,635	0,282	0,013	NS	NS
	Hematological cancers	4	0,875	0,446	1,714	0,696	86,496	0,000	0,407	NS	NS
	Hepatocellular Cancer	5	1,025	0,793	1,325	0,850	24,524	0,258	0,021	NS	NS
	Thyroid Cancer	3	0,696	0,461	1,050	0,084	35,298	0,213	0,048	NS	NS
DI vs. II	Breast Cancer	10	1,215	0,929	1,589	0,155	39,910	0,092	0,066	NS	NS
	Cervical Cancer	5	0,907	0,475	1,734	0,769	76,439	0,002	0,395	NS	NS
	Gastrointestinal cancers	8	1,001	0,740	1,355	0,993	43,154	0,091	0,078	NS	NS
	Hematological cancers	4	1,627	0,475	5,569	0,439	92,852	0,000	1,458	NS	0,033
	Hepatocellular Cancer	5	1,206	0,823	1,769	0,336	0,000	0,529	0,000	NS	NS
	Thyroid Cancer	3	1,276	0,851	1,914	0,239	0,000	0,551	0,000	NS	NS
DD vs. II	Breast Cancer	10	1,415	0,969	2,066	0,073	61,711	0,005	0,201	NS	NS
	Cervical Cancer	5	0,993	0,626	1,573	0,975	53,162	0,074	0,136	NS	NS
	Gastrointestinal cancers	8	1,313	0,834	2,068	0,239	71,795	0,001	0,293	NS	NS
	Hematological cancers	4	1,744	0,617	4,932	0,294	87,871	0,000	0,982	NS	NS
	Hepatocellular Cancer	5	1,191	0,632	2,245	0,589	52,374	0,078	0,250	NS	NS
	Thyroid Cancer	3	0,875	0,546	1,402	0,579	7,236	0,340	0,016	NS	NS
DD vs. DI	Breast Cancer	10	1,239	0,960	1,599	0,099	52,710	0,025	0,085	NS	NS
	Cervical Cancer	5	1,190	0,802	1,765	0,387	63,618	0,027	0,119	NS	NS
	Gastrointestinal cancers	8	1,247	0,947	1,643	0,116	53,477	0,035	0,081	NS	NS
	Hematological cancers	4	1,116	0,832	1,498	0,463	0,000	0,707	0,000	NS	NS
	Hepatocellular Cancer	5	1,042	0,728	1,492	0,823	52,922	0,075	0,082	NS	NS
	Thyroid Cancer	3	0,661	0,390	1,123	0,126	47,118	0,151	0,102	NS	NS

Bold: significant P-value (<0,05); N: number of studies; NS: Not Significant; OR: odds ratio; I^2 : heterogeneity test; τ^2 , tau-squared; I/D: insertion/deletion; P- het, p-heterogeneity; bp: base pairs.

95 % CI = 1,077–1,824; *P* = 0,012) models (Table 5).

3.5. Subgroup analysis according to cancer stages, grades and concomitant viral infections

Subgroup analysis by disease stage (early stages (I + II) vs. advanced stages (III + IV)) showed a significant association under the allele contrast D vs. I model for both early (OR = 1,393, 95 % CI = 1,074–1,808; P = 0,013) and advanced (OR = 1,641, 95 % CI = 1,124–2,395; P = 0,010) stages (Table 6). We also found similar significant effect risks of the 14-bp deletion variant under the DD vs. DI + II and DD vs. II models for both early and advanced cancer stages (Table 6). However, the DD + DI vs. II model showed a significant association only in advanced stages (OR = 2,126, 95 % CI = 1,066–4,241; P = 0,032) (Table 6). We should note that caution should be taken when interpreting these results since only five studies were included for early stages, and only 4 studies were included in advanced stages.

For stratification by cancer grade, the association was more significant in low grades than in high grades under the D vs. I, DD vs. DI + II, DD + DI vs. II, and DD vs. II genetic models (Table 7). However, caution should be taken when interpreting these results due to the limited number of included studies. Notably, after stratification by cancer grade, the heterogeneity was not significant for any genetic model (P-het >0,05).

Stratification by viral infection status (viral infection vs. not) revealed highly significant risks of the 14-bp deletion variant in cancer patients with concomitant viral infection with either human papillomavirus (HPV) or hepatitis B virus (HBV) or hepatitis C virus (HCV) under the D vs. I (OR = 1,555, 95 % CI = 1,031–2,346; P = 0,035), DD vs. DI + II (OR = 1,438, 95 % CI = 1,116–1,853; P = 0.005) and

Study name	Group by	St	Statistics for each study				Odds ratio and 95% Cl			
	Subgroup within study	Odds I	Lower	Upper	7.Value	n-Value				
Percerta Logiza 2022	Broast Cansor	0.078	0 744	1 202	0.156	0.976	1	-	i	
Haghi 2021	Breast Cancer	1 782	1 164	2 726	2 661	0,008				
Kadiam 2020	Breast Cancer	0.643	0,433	0.053	2 107	0,000	1		_	
Al Omar 2019	Breast Cancer	3 756	2 085	6 766	4 405	0,020				
Quei 2019	Breast Cancer	1 336	1 080	1 641	2 772	0,006				
Zidi 2016	Breast Cancer	1 230	0.821	1 870	1 022	0.307				
Haghi 2015	Breast Cancer	1,236	0.843	1 300	0.637	0.524				
loopg 2014	Broast Cancer	1 387	0,040	2 358	1 208	0,024				
Pamor 2014	Breast Cancer	1,000	0,010	1 514	0 101	0,221		100		
Eckandarani Nacab 2013	Breast Cancer	1 483	1 138	1 036	2 804	0,004				
Eskalidalalii-Nasab 2015	bleast Gancer	1 267	1,130	1,550	2,004	0,004				
Con 2022	Control Concer	1,000	0,605	1 546	0 120	0,021				
Bortolotti 2014	Cervical Cancer	1 612	1 060	2,420	3 379	0,030				
Yong 2014	Cervical Cancer	1 108	1,000	1 200	0.964	0,023				
Cilve 2012	Cervical Cancer	0,000	0,000	1,390	1 365	0,300	1			
Silva 2013	Cervical Cancer	0,000	0,330	1 117	1,205	0,200				
reigusonzorz	Cervical Calicer	1,000	0,070	1 202	-1,050	0,212				
Correct 2023	Controintection concern	1,039	1 090	2 112	2 244	0,730				
Dhouioui 2023	Costrointestinal cancers	1 407	1,000	1 047	2,244	0,020				
Vienuero Viente 2021	Costosistestinal cancers	1,407	1,000	1,017	2,017	0,003				
Abullanana 2010	Gastrointesunarcancers	1,749	1,004	2,020	2,292	0,022		-		
Abu Hassall 2015	Costrointestinal concers	1 112	0,042	1,540	0,518	0,703				
Carriero 2016	Castrointestinal cancers	0,705	0,780	1,000	1,000	0,040			_	
Chap 2012	Costrointestinal cancers	1 509	1 107	2,056	1,909	0,049		1.0		
Chen 2012	Costraintestinal cancers	0,774	0.550	1.077	1 504	0,003				
Chell 2012a	Gasuointesunarcancers	1 167	0,002	1 475	1 396	0,127		-		
AL Tamimi 2022	Homotological concorr	1 254	0,922	1 770	1 272	0,190				
AL-Idililii 2022	Hemotological concers	1,2.34	0,000	1,770	0.214	0,203		1		
AL-Iamimi 2022 a	Hematological cancers	2 314	1 605	1,520	4 406	0,000			-	
Dialska 2015	Hematological cancers	2,314	1,005	3,335	4,490	0,000		14-6		
Bielska 2015	Hematological cancers	1 235	0,000	1,030	-1,307	0,113				
Okumura 2022	Hanatasallular Consor	0.667	0,103	1,047	1 649	0,000	12	-		
El Bassioumy 2010	Hepatocellular Cancel	1 222	0,412	2614	-1,040	0,005		1000	-	
Kim 2013	Hepatocellular Cancer	0,680	0,3/1	1.045	1 761	0,003	-			
Taixaira 2012	Hepatocellular Cancer	1 457	1 026	2040	2 162	0,074	1	2000		
lippa 2011	Hepatocellular Cancer	1 344	1,030	1677	2,103	0,000				
July 2011	riepatocentrial cancer	1.036	0.738	1.453	0.203	0.839				
de Figueiredo-Feitosa 2017	Thyroid Cancer	1,183	0,786	1.779	0,805	0.421				
de Figueiredo-Feitosa 2017a	Thyroid Cancer	0,732	0,389	1,379	-0,965	0,335	<		I	
Dardano 2012	Thyroid Cancer	0,823	0,627	1,081	-1,401	0,161			<u> </u>	
	•	0,905	0,701	1,168	-0,769	0,442				
							0,5		1 2	
								Patients	Controls	

Fig. 4. Forest plot of the association between 14-bp I/D polymorphism and cancer risk: Subgroup analysis according to cancer type under the allele contrast model D vs. I.

Table 4
Association between 14-bp I/D polymorphism and cancers: Subgroup analysis according to ethnicity.

Genetic Model	Subgroups		Effect size	Effect size and 95 % interval			Heterogeneity				
		N	OR	Lower limit	Upper limit	P-value	I^2	P- het	τ^2	P-Begg	P-Egger
D vs. I	Asian	8	1,038	0,842	1,280	0,725	67,069	0,003	0,057	NS	NS
	Caucasian	25	1,147	1,002	1,313	0,047	77,366	0,000	0,085	NS	NS
	Mixed	8	1,119	0,937	1,336	0,215	40,153	0,111	0,025	NS	NS
DD $\nu s. DI + II$	Asian	8	1,072	0,832	1,382	0,589	61,501	0,011	0,077	NS	NS
	Caucasian	25	1,190	0,997	1,421	0,054	68,172	0,000	0,127	NS	NS
	Mixed	8	0,995	0,727	1,361	0,975	56,372	0,025	0,108	0,035	0,016
$DD + DI \nu s. II$	Asian	8	1,014	0,679	1,516	0,945	51,926	0,042	0,159	NS	NS
	Caucasian	25	1,160	0,925	1,455	0,199	75,085	0,000	0,223	NS	NS
	Mixed	8	1,388	1,083	1,780	0,010	0,000	0,494	0,000	NS	NS
DD + II vs. DI	Asian	8	1,084	0,881	1,333	0,447	42,273	0,096	0,036	NS	NS
	Caucasian	25	1,056	0,905	1,232	0,492	64,727	0,000	0,092	NS	NS
	Mixed	8	0,831	0,630	1,095	0,188	50,701	0,048	0,077	NS	0,029
DI vs. II	Asian	8	0,965	0,660	1,411	0,856	41,664	0,101	0,116	NS	NS
	Caucasian	25	1,096	0,868	1,384	0,441	72,929	0,000	0,230	NS	NS
	Mixed	8	1,402	1,077	1,824	0,012	0,000	0,507	0,000	NS	NS
DD vs. II	Asian	8	1,030	0,648	1,637	0,901	60,023	0,014	0,244	NS	NS
	Caucasian	25	1,253	0,967	1,624	0,089	74,234	0,000	0,290	NS	NS
	Mixed	8	1,332	0,949	1,868	0,097	27,200	0,211	0,063	NS	NS
DD vs. DI	Asian	8	1,091	0,858	1,389	0,477	52,875	0,038	0,060	NS	NS
	Caucasian	25	1,159	0,973	1,380	0,098	62,321	0,000	0,113	NS	NS
	Mixed	8	0,898	0,644	1,252	0,526	56,542	0,024	0,122	NS	0,010

Bold: significant P-value (<0,05); N: number of studies; NS: Not Significant; OR: odds ratio; I^2 : heterogeneity test; τ^2 , tau-squared; I/D: insertion/ deletion; P- het, p-heterogeneity; bp: base pairs.

Study name	Group by	Statistics for each study	Odds ratio and 95% Cl
3	Subgroup within study	Odds Lower Upper	
		ratio limit limit Z-Valuep-Value	
Okumura 2023	Asian	0,667 0,412 1,080 -1,648 0,099	
Gan 2022	Asian	1,029 0,685 1,546 0,138 0,890	
Jeong 2014	Asian	1,387 0,816 2,358 1,208 0,227	
Yang 2014	Asian	1,106 0,880 1,390 0,864 0,388	
Kim 2013	Asian	0,680 0,442 1,045 -1,761 0,078	< <u> </u>
Chen 2012	Asian	1,508 1,107 2,056 2,602 0,009	
Chen 2012a	Asian	0,771 0,552 1,077 -1,524 0,127	
Jiang 2011	Asian	1,344 1,076 1,677 2,610 0,009	
		1,038 0,842 1,280 0,352 0,725	
Durmanova 2024	Caucasian	0,844 0,485 1,468 -0,601 0,548	
Garrach 2023	Caucasian	1,833 1,080 3,112 2,244 0,025	
AL-Tamimi 2022	Caucasian	1,254 0,885 1,778 1,272 0,203	
AL-Tamimi 2022 a	Caucasian	1,043 0,712 1,528 0,214 0,830	
Bucova 2022	Caucasian	0,643 0,420 0,983 -2,038 0,042	~
Dhouioui 2022	Caucasian	1,407 1,090 1,817 2,617 0,009	
Haghi 2021	Caucasian	1,782 1,164 2,726 2,661 0,008	 >
Vaquero-Yuste 2021	Caucasian	1,749 1,084 2,820 2,292 0,022	
Kadiam 2020	Caucasian	0,643 0,433 0,953 -2,197 0,028	<u>← =</u>
Abu Hassan 2019	Caucasian	0,931 0,642 1,349 -0,379 0,705	
El Bassiouny 2019	Caucasian	1,222 0,571 2,614 0,517 0,605	
Al Omar 2019	Caucasian	3,756 2,085 6,766 4,405 0,000	
Ouni 2019	Caucasian	1,336 1,089 1,641 2,772 0,006	
Tawfeek 2018	Caucasian	2,314 1,605 3,335 4,496 0,000	
Agnihotri 2017	Caucasian	0,798 0,653 0,976 -2,198 0,028	
Garziera 2016	Caucasian	0,795 0,633 0,999 -1,969 0,049	
Zidi 2016	Caucasian	1,239 0,821 1,870 1,022 0,307	
Bielska 2015	Caucasian	0,786 0,583 1,058 -1,587 0,113	
Haghi 2015	Caucasian	1,086 0,843 1,399 0,637 0,524	
Wisniewski 2015	Caucasian	1,054 0,859 1,294 0,503 0,615	
Bortolotti 2014	Caucasian	1,612 1,069 2,430 2,278 0,023	 >
Eskandarani-Nasab 2013	Caucasian	1,483 1,136 1,936 2,894 0,004	
Dardano 2012	Caucasian	0,823 0,627 1,081 -1,401 0,161	
Ferguson 2012	Caucasian	0,869 0,676 1,117 -1,098 0,272	
Lau 2011	Caucasian	1,085 0,828 1,422 0,593 0,553	
		1,147 1,002 1,313 1,984 0,047	
Becerra-Loaiza 2023	Mixed	0,978 0,741 1,292 -0,156 0,876	
de Figueiredo-Feitosa 201	7 Mixed	1,183 0,786 1,779 0,805 0,421	
de Figueiredo-Feitosa 201	7a Mixed	0,732 0,389 1,379 -0,965 0,335	· · · · · · · · · · · · · · · · · · ·
Marques 2017	Mixed	1,113 0,790 1,568 0,612 0,541	
Zambra 2016	Mixed	1,561 1,123 2,169 2,654 0,008	
Ramos 2014	Mixed	1,020 0,688 1,514 0,101 0,920	
Silva 2013	Mixed	0,668 0,358 1,248 -1,265 0,206	
Teixeira 2013	Mixed	1,457 1,036 2,049 2,163 0,031	
		1,119 0,937 1,336 1,239 0,215	
			0,5 1 2
			Patients Controls

Fig. 5. Forest plot of the association between 14-bp I/D polymorphism and cancer risk with the random effects model: Subgroup analysis according to ethnicity under the allele contrast model D vs. I.

DD vs. DI (OR = 1,399, 95 % CI = 1,065–1,839; P = 0.016) models (Table 8, Fig. 7). No heterogeneity was revealed in the DD vs. DI + II and DD vs. DI genetic models.

4. Discussion

In the current meta-analysis, independent results from studies related to the HLA-G 14-bp I/D polymorphism in various types of cancer (breast cancer, cervical cancer, gastrointestinal cancers, hepatocellular cancer, hematological cancers, and thyroid cancer) were pooled. With the meta-analysis, more accurate data were provided than with individual studies as the statistical power and analytical resolution were increased. We identified an association between the 14-bp I/D polymorphism and cancer. Our results are consistent with the results of the meta-analysis of Jiang et *al.*, conducted in 2019, demonstrating that the HLA-G 14-bp I/D polymorphism may play an important role in reducing cancer susceptibility [56]. Interestingly, the results of a recent comprehensive meta-analysis by de Almeida et *al.*, conducted in 2018, were inconclusive but suggested that other variation sites observed in the HLA-G 3'UTR have well-established roles in the posttranscriptional regulation of HLA-G expression, and the complete 3'UTR segment should be analyzed in terms of disease susceptibility rather than a single polymorphism [57].

In this meta-analysis, we showed that the HLA-G 14-bp I/D polymorphism may contribute to breast cancer susceptibility as found by Li et *al.* 2015 and Ge et *al.* (only for Asians) [58,59]. Elsewhere, the results of the meta-analysis of Zhang et *al.* suggested that the HLA-G 14-bp I/D polymorphism was not associated with total cancer risk but was associated with hepatocellular carcinoma risk [60]. In this meta-analysis, we did not find the same result. The discrepancies between study findings may be due to the differences in the number of included studies and the analytical methods used.

Interestingly, the results of our subgroup analysis showed that the 14-bp I/D polymorphism was associated with cancer in Caucasians, Asians, and mixed-race individuals. Moreover, the 14-bp polymorphism was associated with cancer in all geographic locations except Europe and North Asia. Particularly, in North Africa and in the Middle East, the DD genotype and D allele were significant risk factors for cancer.

The 14-bp deletion and insertion alleles have been extensively studied in relation to HLA-G molecule stability and expression. The presence of the 14 bases is associated with decreased mRNA production of most membrane-bound and soluble isoforms, and absence of this segment (deletion) results in mRNA stabilization and higher HLA-G expression [61,62]. The HLA-G transcript, which includes a 14-base segment, can be further processed by removing 92 bases from the complete mRNA [10], giving rise to a short HLA-G transcript

Table 5

	Association between 14-bp I/D	polymorphism and cancer	s: Subgroup analysis acc	cording to geographic	locations.
--	-------------------------------	-------------------------	--------------------------	-----------------------	------------

Genetic models	Subgroup		Effect siz	Effect size and 95 % interval				neity			
		N	OR	Lower limit	Upper limit	P-value	I^2	P-het	τ^2	P-Begg	P-Egger
D vs. I	Europe	8	0,956	0,780	1,171	0,663	67,979	0,003	0,054	NS	NS
	Middle East	9	1,453	1,135	1,860	0,003	73,911	0,000	0,099	NS	NS
	North Africa	4	1,377	1,193	1,590	0,000	0,000	0,686	0,000	NS	NS
	North Asia	8	1,038	0,842	1,280	0,725	67,069	0,003	0,057	NS	NS
	South America	8	1,119	0,937	1,336	0,215	40,153	0,111	0,025	NS	NS
DD vs. DI + II	Europe	8	0,925	0,697	1,229	0,591	61,591	0,011	0,095	NS	NS
	Middle East	9	1,529	1,201	1,945	0,001	35,193	0,136	0,046	NS	NS
	North Africa	4	1,561	1,241	1,964	0,000	0,000	0,772	0,000	NS	NS
	North Asia	8	1,072	0,832	1,382	0,589	61,501	0,011	0,077	NS	NS
	South America	8	0,995	0,727	1,361	0,975	56,372	0,025	0,108	0,035	0,016
DD + DI vs. II	Europe	8	0,961	0,692	1,332	0,809	59,872	0,015	0,122	NS	NS
	Middle East	9	1,718	1,015	2,908	0,044	80,203	0,000	0,460	NS	NS
	North Africa	4	1,442	1,145	1,816	0,002	0,000	0,552	0,000	NS	NS
	North Asia	8	1,014	0,679	1,516	0,945	51,926	0,042	0,159	NS	NS
	South America	8	1,388	1,083	1,780	0,010	0,000	0,494	0,000	NS	NS
DD + II vs. DI	Europe	8	0,980	0,774	1,240	0,867	52,634	0,039	0,056	NS	NS
	Middle East	9	1,051	0,779	1,420	0,743	65,155	0,003	0,130	NS	NS
	North Africa	4	1,066	0,863	1,316	0,555	4,432	0,371	0,002	NS	NS
	North Asia	8	1,084	0,881	1,333	0,447	42,273	0,096	0,036	NS	NS
	South America	8	0,831	0,630	1,095	0,188	50,701	0,048	0,077	NS	0,029
DI vs. II	Europe	8	0,976	0,712	1,340	0,883	51,854	0,042	0,099	NS	NS
	Middle East	9	1,550	0,893	2,689	0,119	79,568	0,000	0,502	NS	NS
	North Africa	4	1,259	0,982	1,614	0,069	0,000	0,407	0,000	NS	NS
	North Asia	8	0,965	0,660	1,411	0,856	41,664	0,101	0,116	NS	NS
	South America	8	1,402	1,077	1,824	0,012	0,000	0,507	0,000	NS	NS
DD vs. II	Europe	8	0,923	0,624	1,364	0,686	62,879	0,009	0,183	NS	NS
	Middle East	9	2,024	1,205	3,398	0,008	72,140	0,000	0,403	NS	NS
	North Africa	4	1,800	1,362	2,378	0,000	0,000	0,753	0,000	NS	NS
	North Asia	8	1,030	0,648	1,637	0,901	60,023	0,014	0,244	NS	NS
	South America	8	1,332	0,949	1,868	0,097	27,200	0,211	0,063	NS	NS
DD vs. DI	Europe	8	0,923	0,701	1,214	0,566	53,823	0,034	0,078	NS	NS
	Middle East	9	1,363	1,100	1,691	0,005	11,404	0,340	0,012	NS	NS
	North Africa	4	1,435	1,121	1,837	0,004	0,000	0,640	0,000	NS	NS
	North Asia	8	1,091	0,858	1,389	0,477	52,875	0,038	0,060	NS	NS
	South America	8	0,898	0,644	1,252	0,526	56,542	0,024	0,122	NS	0,011

Bold: significant P-value (<0,05); N: number of studies; NS: Not Significant; OR: odds ratio; I^2 : heterogeneity test; τ^2 , tau-squared; I/D: insertion/deletion; P- het, p-heterogeneity; bp: base pairs.

reported to be more stable [12]. The results of published studies showed that the deletion variant increases HLA-G expression [7,63, 64]. The deletion allele is usually associated with high levels of HLA-G allowing tumor progression. Furthermore, HLA-G expression was found to correlate with adverse clinicopathological parameters such as clinical stage, lymph node status, metastasis, and histologic grade, but not with tumor status [65].

The HLA-G 14-bp I/D polymorphism affects the levels of surface and soluble HLA-G expression, and the overexpression of HLA-G molecules contributes to creating tolerogenic conditions [66]. HLA-G protein expression can be driven by genetic variations in the 3'UTR and in the promoter region. Svendsen et *al.* showed that 14-bp insertion at the HLA-G 3'UTR significantly increased the inhibition of natural killer (NK) cell cytotoxicity in the K562 cell line compared to the deleted form, while the ratio of the soluble to the membrane form of HLA-G1 was higher in those with the deletion [11]. Several data indicate that the 14-bp I/D polymorphism is in strong linkage disequilibrium (LD) with other HLA-G polymorphisms in the 5' upstream regulatory region (5'URR) and 3'UTR, suggesting that in a higher or lower HLA-G expression, and some HLA haplotypes are in LD in some populations [67]. These observations show the importance of investigating LD in polymorphic studies in different populations [67].

Interestingly, five single nucleotide polymorphisms (SNPs) in the 3'UTR of the HLA-G gene are predicted to affect the miRNA target sites, and HLA-G deregulation serves as a prognostic marker in some cancers [68]. Furthermore, cancer-associated microenvironmental variability can affect HLA-G protein expression. Genetic variation in the 3' UTR, which involves multiple target sites of microRNAs (miRNAs), regulates HLA-G expression at the posttranscriptional level [69]. Indeed, six miRNAs (miR-148a, miR-148b, miR-152, miR-133a, miR628-5p, and miR-548q) have been reported to regulate HLAG expression [69].

Importantly, HLA-G expression has been linked to high viral infection [70,71]. Indeed, several viruses, including HBV and HCV have been shown to induce the expression of HLA-G [72,73]. A progressive increase in HLA-G protein expression in HPV-infected cervix and cervical cancer has been reported [74]. Indeed, gradual upregulation of HLA-G expression favors HPV persistence in the submissive host response microenvironment, further leading to cervical cancer [74]. Both tumor cells and viruses employ a major common strategy to evade the host's immune response particularly the expression of HLA-G molecules that can modulate immune responses [75–78]. In line with this hypothesis, we demonstrated that viral concomitant infection could enhance susceptibility to cancer. However, the limited number of primary studies leads us to take these results with caution.

Study name	Group by	Statistics for each study	Odds ratio and 95% Cl
	Subgroup within study	Odds Lower Upper ratio limit limit Z-Valuep-Value	
Durmanova 2024	Europe	0,513 0,196 1,342 -1,360 0,174	<u> </u>
Bucova 2022	Europe	0,520 0,248 1,091 -1,729 0,084	
Vaguero-Yuste 2021	Europe	1,809 0,879 3,725 1,609 0,108	
Garziera 2016	Europe	0,752 0,523 1,083 -1,532 0,125	
Bielska 2015	Europe	1,452 0,855 2,466 1,381 0,167	
Wisniewski2015	Europe	1,021 0,744 1,400 0,127 0,899	
Bortolotti 2014	Europe	1,289 0,701 2,372 0,817 0,414	
Dardano 2012	Europe	0,641 0,409 1,005 -1,937 0,053	
		0,923 0,701 1,214 -0,574 0,566	
AL-Tamimi 2022	Middle East	1,022 0,583 1,793 0,076 0,939	
AL-Tamimi 2022 a	Middle East	0,988 0,527 1,854 -0,036 0,971	
Haghi 2021	Middle East	1.672 0.917 3.049 1.678 0.093	
Abu Hassan 2019	Middle East	1,643 0,865 3,119 1,517 0,129	
El Bassiouny 2019	Middle East	1.800 0.472 6.867 0.860 0.390	
Al Omar 2019	Middle East	3,549 1,526 8,254 2,941 0,003	
Tawfeek 2018	Middle East	0.959 0.496 1.853 -0.126 0.900	
Haghi 2015	Middle East	1.306 0.837 2.037 1.176 0.239	
Eskandarani-Nasab 2013	Middle East	1 402 0 891 2 204 1 462 0 144	
		1.363 1.100 1.691 2.824 0.005	
Garrach 2023	North Africa	1 366 0 558 3 346 0 682 0 495	
Dhoujoui 2022	North Africa	1813 1177 2792 2697 0.007	_ >
Ouni 2019	North Africa	1.277 0.891 1.830 1.332 0.183	
Zidi 2016	North Africa	1.252 0.626 2.505 0.635 0.526	
		1 435 1 121 1 837 2 869 0 004	
Okumura 2023	North Asia	0 546 0 279 1 070 -1 762 0 078	
Gan 2022	North Asia	0.890 0.502 1.576 -0.401 0.689	
Jeong 2014	North Asia	1870 0948 3689 1806 0071	
Yang 2014	North Asia	1438 1049 1973 2254 0024	
Kim 2013	North Asia	0.785 0.469 1.314 -0.922 0.357	
Chen 2012	North Asia	1 360 0 861 2 149 1 318 0 188	
Chen 2012a	North Asia	0.785 0.466 1.322 .0.912 0.362	
liang 2011	North Asia	1312 0983 1750 1846 0.065	
Slangzon	North And	1 001 0 858 1 389 0 711 0 477	
Becerra-Loaiza 2023	South America	0.884 0.557 1.401 -0.525 0.599	
de Eigueiredo-Feitosa 2017	South America	0.999 0.544 1.836 .0.003 0.997	
de Figueiredo-Feitosa 2017a	South America	0.284 0.089 0.904 -2.132 0.033	
Margues 2017	South America	1 328 0 799 2 207 1 093 0 275	
Zambra 2016	South America	1 336 0 816 2 180 1 150 0 250	
Pamor 2014	South America	0.550 0.285 1.063 1.778 0.075	
Silvo 2012	South Amorica	0,316 0,103 0,065 3,023 0,043	-
Taivaire 2013	South Amorica	1 384 0 827 2 315 1 238 0 216	
	SouthAmerica	0.808 0.644 1.252 0.634 0.526	
		0,000 0,044 1,202 0,004 0,020	
		0,5	1 2
			Patients Controls

Fig. 6. Forest plot of the association between 14-bp I/D polymorphism and cancer risk with the random effects model: Sub-group analysis according to geographic location under the codominant model DD *vs.* DI.

Table 6

Association between the 14-bp I/D polymorphism and cancers: Subgroup analysis according to cancer stages.

Genetic models	Stages		Effect size and 95 % interval			Heteroge	eneity				
		N	OR	Lower limit	Upper limit	P-value	I^2	P-het	τ^2	P-Begg	P-Egger
D vs. I	Advanced stage	4	1,641	1,124	2,395	0,010	70,69	0,017	0,103	NS	NS
	Early stage	5	1,393	1,074	1,808	0,013	58,82	0,046	0,051	NS	NS
DD vs. $DI + II$	Advanced stage	4	1,501	1,064	2,118	0,021	16,90	0,307	0,021	NS	NS
	Early stage	5	1,482	1,139	1,929	0,003	0,00	0,555	0,000	0,027	NS
DD + DI vs. II	Advanced stage	4	2,126	1,066	4,241	0,032	65,79	0,033	0,294	NS	NS
	Early stage	5	1,762	0,914	3,398	0,091	80,51	0,000	0,442	NS	NS
DD + II vs. DI	Advanced stage	4	0,764	0.,572	1,020	0,068	8,49	0,351	0,008	NS	NS
	Early stage	5	0,865	0,536	1,396	0,552	75,11	0,003	0,222	NS	NS
DI vs II	Advanced stage	4	2,009	0,982	4,111	0,056	64,07	0,039	0,310	NS	NS
	Early stage	5	1,642	0,801	3,366	0,176	81,60	0,000	0,537	NS	NS
DD vs II	Advanced stage	4	2,558	1,120	5,845	0,026	67,60	0,026	0,441	NS	NS
	Early stage	5	1,957	1,103	3,471	0,022	63,06	0,029	0,262	NS	NS
DD vs DI	Advanced stage	4	1,168	0,842	1,619	0,352	0,00	0,714	0,000	NS	0,006
	Early stage	5	1,282	0,950	1,729	0,104	9,46	0,352	0,011	NS	0,041

Bold: significant P-value (<0,05); N: number of studies; NS: Not Significant; OR: odds ratio; I^2 : heterogeneity test; τ^2 , tau-squared; I/D: insertion/ deletion; P- het, p-heterogeneity; bp: base pairs. Early stage includes stages I + II. Advanced stage includes stages III + IV.

It has become increasingly evident that the HLA-G molecule is involved in modulating both innate and adaptive immune responses and in promoting immune escape in various types of cancers [10-13] and infectious diseases [14-16].

Finally, the findings of our meta-analysis showed an overall significant association between the HLA-G 14-bp I/D polymorphism and cancer risk. A major limitation of this meta-analysis was related to the limitation of primary studies that lacked information on gene-gene interactions, family history, tobacco smoking, treatment, and other regulating factors. Additionally, heterogeneity was found between individual studies and subgroups. This could be due to the etiological and physiopathological differences in the studied cancers, and to ethnicity differences.

2

Table 7

Table 8

Association between mer-bp 1/b polymorphism and cancers, subgroup analysis according to cancer grad	Association between the14-bp	p I/D polymorp	hism and cancers: Sub	group analysis according	g to cancer grades
---	------------------------------	----------------	-----------------------	--------------------------	--------------------

Genetic models	Grades		Effect siz	e and 95 % inter	Heterog	eneity					
		N	OR	Lower limit	Upper limit	P-value	I^2	P-het	τ^2	P-Begg	P-Egger
D vs. I	High grade	4	1,288	0,992	1,672	0,057	19,13	0,295	0,014	NS	NS
	Low grade	5	1,354	1,148	1,597	0,000	0,00	0,604	0,000	NS	NS
DD vs. $DI + II$	High grade	4	1,529	1,079	2,166	0,017	0,00	0,484	0,000	NS	NS
	Low grade	5	1,451	1,111	1,896	0,006	3,52	0,387	0,004	NS	NS
DD + DI vs. II	High grade	4	1,246	0,724	2,144	0,428	38,02	0,184	0,117	NS	NS
	Low grade	5	1,496	1,142	1,960	0,003	0,00	0,992	0,000	NS	NS
DD + II vs. DI	High grade	4	1,121	0,746	1,685	0,581	31,65	0,222	0,055	NS	NS
	Low grade	5	0,978	0,774	1,235	0,850	0,00	0,623	0,000	NS	NS
DI vs. II	High grade	4	1,121	0,624	2,012	0,702	39,75	0,173	0,141	NS	NS
	Low grade	5	1,350	1,009	1,804	0,043	0,00	0,984	0,000	NS	NS
DD vs. II	High grade	4	1,573	0,908	2,724	0,106	22,46	0,276	0,074	NS	NS
	Low grade	5	1,768	1,281	2,440	0,001	0,00	0,781	0,000	NS	NS
DD vs. DI	High grade	4	1,449	0,999	2,102	0,051	0,00	0,440	0,000	NS	NS
	Low grade	5	1,296	0,973	1,726	0,076	3,14	0,389	0,004	NS	NS

Bold: significant P-value (<0,05); N: number of studies; NS: Not Significant; OR: odds ratio; I^2 : heterogeneity test; τ^2 , tau-squared; I/D: insertion/ deletion; P- het, p-heterogeneity; bp: base pairs. Low grade includes Grades I + II. Low grade includes Grades III + IV.

			- · ·	
Association between 14-h	hn I/D nolymornhisr	n and cancers. Subgro	un analysis accordin	g to viral infection
resourced in permeeting in the	op i/ o polymorphisi	ii una cuncers. Dabgio	up unuryous accordin	5 to vinta infection.

Genetic models	Viral infection	Effect size and 95 % interval				Heterog	eneity				
		N	OR	Lower limit	Upper limit	P-value	I^2	P-het	τ^2	P-Begg	P-Egger
D vs. I	Viral infections-	3	1,523	1,002	2,316	0,049	67,63	0,046	0,092	NS	NS
	Viral infections+	4	1,555	1,031	2,346	0,035	76,35	0,005	0,132	NS	0,006
DD vs. $DI + II$	Viral infections-	3	1,403	1,011	1,947	0,043	0,00	0,894	0,000	NS	NS
	Viral infections+	4	1,438	1,116	1,853	0,005	0,00	0,500	0,000	NS	NS
DD + DI vs. II	Viral infections-	3	2,412	0,610	9,536	0,209	87,72	0,000	1,291	NS	NS
	Viral infections+	4	2,163	0,704	6,646	0,178	85,47	0,000	1.077	NS	0,035
DD + II vs. DI	Viral infections-	3	0,817	0,354	1,887	0,636	84,07	0,002	0,456	NS	NS
	Viral infections+	4	1,040	0,632	1,711	0,878	69,54	0,020	0,175	NS	NS
DI vs II	Viral infections-	3	2,207	0,481	10,125	0,308	88,58	0,000	1,602	NS	NS
	Viral infections+	4	1,830	0,571	5,866	0,309	84,70	0,000	1,155	NS	0,029
DD vs II	Viral infections-	3	2,551	0,745	8,742	0,136	81,78	0,004	0,964	NS	NS
	Viral infections+	4	2,421	0,804	7,288	0,116	83,13	0,000	1,003	NS	0,046
DD vs DI	Viral infections-	3	1,218	0,855	1,733	0,275	0,00	0,684	0,000	NS	NS
	Viral infections+	4	1,399	1,065	1,839	0,016	0,00	0,892	0,000	NS	NS

Bold: significant P-value (<0,05); N: number of studies; NS: Not Significant; OR: odds ratio; I^2 : heterogeneity test; τ^2 , tau-squared; I/D: insertion/deletion; P- het, p-heterogeneity; bp: base pairs. The overall analysis gives estimations among subgroups; Viral infection+: presence infection; Viral infection-: absence infection.

Fig. 7. Forest plot of the association between 14-bp I/D polymorphism and cancer risk with the random effects model: Subgroup analysis according to viral infection under DD vs. DI + II genetic model.

5. Conclusion

The current meta-analysis is the most comprehensive and extensive study into how the HLA-G 14 bp I/D polymorphism is involved in cancer susceptibility. The 14 bp deletion was found to be a significant risk factor for susceptibility to cancer. The clinicopathological and environmental factors investigated here altered the risk of cancer, but their mechanisms of action need further investigation. Based on our results and previous functional studies, the 14 bp I/D polymorphism seems to be a good target for both cancer diagnosis and prognosis.

CRediT authorship contribution statement

Kalthoum Tizaoui: Writing – original draft, Resources, Methodology, Formal analysis. Mohamed Ali Ayadi: Writing – review & editing, Data curation. Ines Zemni: Writing – review & editing, Validation, Data curation. Abdel Halim Harrath: Writing – review & editing, Validation, Data curation. Roberta Rizzo: Writing – review & editing, Validation, Data curation. Nadia Boujelbene: Writing – original draft, Validation, Data curation. Inès Zidi: Writing – review & editing, Visualization, Validation, Supervision, Methodology, Investigation, Formal analysis, Data curation.

Data availability

Data included in article material is referenced in the article.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:Ines Zidi is currently serving as an Associate Editor for Heliyon Immunology. Although she was not involved in the review of this specific manuscript, she is disclosing this position to ensure transparency and uphold the integrity of the review process for this submission. The other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported by Ministry of Higher Education and Scientific Research of Tunisia. The authors extend their appreciation to the Researchers Supporting Project number (RSP2024R17) at King Saud University, Riyadh, Saudi Arabia.

References

- E.D. Carosella, B. Favier, N. Rouas-Freiss, P. Moreau, J. Lemaoult, Beyond the increasing complexity of the immunomodulatory HLA-G molecule, Blood 111 (10) (2008) 4862–4870.
- [2] B.H. Koller, D.E. Geraghty, R. DeMars, L. Duvick, S.S. Rich, H.T. Orr, Chromosomal organization of the human major histocompatibility complex class I gene family, J. Exp. Med. 169 (2) (1989) 469–480.
- [3] D.S. Berger, W.A. Hogge, M.M. Barmada, R.E. Ferrell, Comprehensive analysis of HLA-G: implications for recurrent spontaneous abortion, Reprod. Sci. 17 (4) (2010) 331–338.
- [4] N. Rouas-Freiss, R.M. Goncalves, C. Menier, J. Dausset, E.D. Carosella, Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis, Proc. Natl. Acad. Sci. U.S.A. 94 (21) (1997) 11520–11525.
- [5] F.A. Le Gal, B. Riteau, C. Sedlik, I. Khalil-Daher, C. Menier, J. Dausset, J.G. Guillet, E.D. Carosella, N. Rouas-Freiss, HLA-G-mediated inhibition of antigenspecific cytotoxic T lymphocytes, Int. Immunol. 11 (8) (1999) 1351–1356.
- [6] L. Amiot, S. Ferrone, H. Grosse-Wilde, B. Seliger, Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell. Mol. Life Sci. 68 (3) (2011) 417–431.
- [7] E. Alegre, R. Rizzo, D. Bortolotti, S. Fernandez-Landazuri, E. Fainardi, A. Gonzalez, Some basic aspects of HLA-G biology, J Immunol Res 2014 (2014) 657625.
- [8] A. Lin, W.H. Yan, Human leukocyte antigen-G (HLA-G) expression in cancers: roles in immune evasion, metastasis and target for therapy, Mol. Med. 21 (1) (2015) 782–791.
- [9] G.A. Harrison, K.E. Humphrey, I.B. Jakobsen, D.W. Cooper, A 14 bp deletion polymorphism in the HLA-G gene, Hum. Mol. Genet. 2 (12) (1993) 2200.
- [10] T.V. Hviid, S. Hylenius, C. Rorbye, L.G. Nielsen, HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels, Immunogenetics 55 (2) (2003) 63–79.
- [11] S.G. Svendsen, B.M. Hantash, L. Zhao, C. Faber, M. Bzorek, M.H. Nissen, T.V. Hviid, The expression and functional activity of membrane-bound human leukocyte antigen-G1 are influenced by the 3'-untranslated region, Hum. Immunol. 74 (7) (2013) 818–827.
- [12] P. Rousseau, M. Le Discorde, G. Mouillot, C. Marcou, E.D. Carosella, P. Moreau, The 14 bp deletion-insertion polymorphism in the 3' UT region of the HLA-G gene influences HLA-G mRNA stability, Hum. Immunol. 64 (11) (2003) 1005–1010.
- [13] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, P. Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, PLoS Med. 6 (7) (2009) e1000097.
- [14] R. DerSimonian, N. Laird, Meta-analysis in clinical trials, Contr. Clin. Trials 7 (3) (1986) 177–188.
- [15] M. Borenstein, J.P. Higgins, L.V. Hedges, H.R. Rothstein, Basics of meta-analysis: I(2) is not an absolute measure of heterogeneity, Res. Synth. Methods 8 (1) (2017) 5–18.
- [16] M. Egger, G.D. Smith, A.N. Phillips, Meta-analysis: principles and procedures, BMJ 315 (7121) (1997) 1533–1537.
- [17] M. Abu Hassan, S. Al Omar, H. Halawani, M. Arafah, S. Alqadheeb, J. Al-Tamimi, L. Mansour, Relationship of HLA-G expression and its 14-bp insertion/deletion polymorphism with susceptibility to colorectal cancer, Genet. Mol. Res. 18 (2) (2019) GMR18324.
- [18] V. Agnihotri, A. Gupta, R. Kumar, A.D. Upadhyay, S. Dwivedi, L. Kumar, S. Dey, Promising link of HLA-G polymorphism, tobacco consumption and risk of head and neck squamous cell carcinoma (HNSCC) in NorthNorth Indian population, Hum. Immunol. 78 (2) (2017) 172–178.
- [19] S.Y. Al Omar, L. Mansour, Association of HLA-G 14-base pair insertion/deletion polymorphism with breast cancer in Saudi Arabia, Genet. Mol. Res. 18 (2) (2019) 18263.

- [20] J. Al-Tamimi, S.Y. Al Omar, F. Al-Khulaifi, A. Aljuaimlani, S.A. Alharbi, A. Al-jurayyan, L. Mansour, Evaluation of the relationships between HLA-G 14 bp polymorphism and two acute leukemia in a Saudi population, J. King Saud Univ. Sci. 34 (6) (2022) 102139.
- [21] M. Bielska, M. Bojo, G. Klimkiewicz-Wojciechowska, D. Jesionek-Kupnicka, M. Borowiec, E. Kalinka-Warzocha, M. Prochorec-Sobieszek, T. Robak, K. Warzocha, W. Mlynarski, E. Lech-Maranda, Human leukocyte antigen-G polymorphisms influence the clinical outcome in diffuse large B-cell lymphoma, Genes Chromosomes Cancer 54 (3) (2015) 185–193
- [22] D. Bortolotti, V. Gentili, A. Rotola, D. Di Luca, R. Rizzo, Implication of HLA-G 3' untranslated region polymorphisms in human papillomavirus infection, Tissue Antigens 83 (2) (2014) 113–118.
- [23] M. Bucova, K. Kluckova, J. Kozak, B. Rychly, M. Suchankova, M. Svajdler, V. Matejcik, J. Steno, E. Zsemlye, V. Durmanova, HLA-G 14bp ins/del polymorphism, plasma level of soluble HLA-G, and association with IL-6/IL-10 ratio and survival of glioma patients, Diagnostics 12 (5) (2022) 1099.
- [24] Y. Chen, X.J. Gao, Y.C. Deng, H.X. Zhang, Relationship between HLA-G gene polymorphism and the susceptibility of esophageal cancer in Kazakh and Han nationality in Xinjiang, Biomarkers 17 (1) (2012) 9–15.
- [25] A. Dardano, R. Rizzo, A. Polini, M. Stignani, S. Tognini, G. Pasqualetti, S. Ursino, C. Colato, M. Ferdeghini, O.R. Baricordi, F. Monzani, Soluble human leukocyte antigen-g and its insertion/deletion polymorphism in papillary thyroid carcinoma: novel potential biomarkers of disease? J. Clin. Endocrinol. Metab. 97 (11) (2012) 4080–4086.
- [26] N.L. de Figueiredo-Feitosa, G. Martelli Palomino, D.C. Ciliao Alves, C.T. Mendes Junior, E.A. Donadi, L.M. Maciel, HLA-G 3' untranslated region polymorphic sites associated with increased HLA-G production are more frequent in patients exhibiting differentiated thyroid tumours, Clin. Endocrinol. 86 (4) (2017) 597–605.
- [27] K. de Magalhaes, K.R. Silva, N.A. Gomes, I. Sadissou, G.T. Carvalho, M.A. Buzellin, L.S. Tafuri, C.B. Nunes, M.B. Nunes, E.A. Donadi, I.L. da Silva, R.T. Simoes, HLA-G 14 bp In/Del and +3142 C/G genotypes are differentially expressed between patients with grade IV gliomas and controls, Int. J. Neurosci. 131 (4) (2021) 327–335.
- [28] S. Dhouioui, A.-B. Laaribi, N. Boujelbene, R. Jelassi, H. Ben Salah, H. Bellali, H.-I. Ouzari, A. Mezlini, I. Zemni, H. Chelbi, I. Zidi, Association of HLA-G 3'UTR polymorphisms and haplotypes with colorectal cancer susceptibility and prognosis, Hum. Immunol. 83 (1) (2022) 39–46.
- [29] M.A. El Bassiouny, A.A. Elshaarawy, G.A. Tawfeek, M.I. Elashmawy, Association of HLA-G gene polymorphism with hepatocellular carcinoma in Egyptian population, Menoufia Medical Journal 32 (1) (2019) 255–260.
- [30] E. Eskandari-Nasab, M. Hashemi, S.S. Hasani, M. Omrani, M. Taheri, M.A. Mashhadi, Association between HLA-G 3'UTR 14-bp ins/del polymorphism and susceptibility to breast cancer, Cancer Biomarkers 13 (4) (2013) 253–259.
- [31] R. Ferguson, A.V. Ramanakumar, A. Koushik, F. Coutlée, E. Franco, M. Roger, T. the, Biomarkers of Cervical Cancer Risk Study, Human leukocyte antigen G polymorphism is associated with an increased risk of invasive cancer of the uterine cervix, Int. J. Cancer 131 (3) (2012) E312–E319.
- [32] J. Gan, X.-H. Di, Z.-Y. Yan, Y.-F. Gao, H.-H. Xu, HLA-G 3'UTR polymorphism diplotypes and soluble HLA-G plasma levels impact cervical cancer susceptibility and prognosis, Front. Immunol. 13 (2022) 1076040.
- [33] M. Garziera, E. Catamo, S. Crovella, M. Montico, E. Cecchin, S. Lonardi, E. Mini, S. Nobili, L. Romanato, G. Toffoli, Association of the HLA-G 3'UTR polymorphisms with colorectal cancer in Italy: a first insight, Int. J. Immunogenet, 43 (1) (2016) 32–39.
- [34] M. Haghi, M.A. Hosseinpour Feizi, M. Sadeghizadeh, A.S. Lotfi, 14-bp insertion/deletion polymorphism of the HLA-G gene in breast cancer among women from North western Iran, Asian Pac. J. Cancer Prev. APJCP 16 (14) (2015) 6155–6158.
- [35] M. Haghi, M. Ranjbar, K. Karari, S. Samadi-Miandoab, A. Eftekhari, M.A. Hosseinpour-Feizi, Certain haplotypes of the 3'-UTR region of the HLA-G gene are linked to breast cancer, Br. J. Biomed. Sci. 78 (2) (2021) 87–91.
- [36] S. Jeong, S. Park, B.W. Park, Y. Park, O.J. Kwon, H.S. Kim, Human leukocyte antigen-G (HLA-G) polymorphism and expression in breast cancer patients, PLoS One 9 (5) (2014) e98284.
- [37] Y. Jiang, S. Chen, S. Jia, Z. Zhu, X. Gao, D. Dong, Y. Gao, Association of HLA-G 3' UTR 14-bp insertion/deletion polymorphism with hepatocellular carcinoma susceptibility in a Chinese population, DNA Cell Biol. 30 (12) (2011) 1027–1032.
- [38] S. Kadiam, T. Ramasamy, R. Ramakrishnan, J. Mariakuttikan, Association of HLA-G 3'UTR 14-bp Ins/Del polymorphism with breast cancer among South Indian women, J. Clin. Pathol. 73 (8) (2020) 456–462.
- [39] S.K. Kim, J.H. Chung, J.W. Jeon, J.J. Park, J.M. Cha, K.R. Joo, J.I. Lee, H.P. Shin, Association between HLA-G 14-bp insertion/deletion polymorphism and hepatocellular carcinoma in Korean patients with chronic hepatitis B viral infection, Hepato-Gastroenterology 60 (124) (2013) 796–798.
- [40] D.T. Lau, M.D. Norris, G.M. Marshall, M. Haber, L.J. Ashton, HLA-G polymorphisms, genetic susceptibility, and clinical outcome in childhood neuroblastoma, Tissue Antigens 78 (6) (2011) 421–427.
- [41] D. Marques, L.R. Ferreira-Costa, L.L. Ferreira-Costa, R.D.S. Correa, A.M.P. Borges, F.R. Ito, C.C.O. Ramos, R.H. Bortolin, A.D. Luchessi, A. Ribeiro-Dos-Santos, S. Santos, V.N. Silbiger, Association of insertion-deletions polymorphisms with colorectal cancer risk and clinical features, World J. Gastroenterol. 23 (37) (2017) 6854–6867.
- [42] N. Ouni, A.B. Chaaben, G. Kablouti, F. Ayari, H. Douik, H. Abaza, S. Gara, A. Elgaaied-Benammar, F. Guemira, R. Tamouza, The impact of HLA-G 3'UTR polymorphisms in breast cancer in a Tunisian population, Immunol. Invest. 48 (5) (2019) 521–532.
- [43] C.S. Ramos, A.S. Goncalves, L.C. Marinho, M.A. Gomes Avelino, V.A. Saddi, A.C. Lopes, R.T. Simoes, I.J. Wastowski, Analysis of HLA-G gene polymorphism and protein expression in invasive breast ductal carcinoma, Hum. Immunol. 75 (7) (2014) 667–672.
- [44] I.D. Silva, Y.C. Muniz, M.C. Sousa, K.R. Silva, E.C. Castelli, J.C. Filho, A.P. Osta, M.I. Lima, R.T. Simoes, HLA-G 3'UTR polymorphisms in high grade and invasive cervico-vaginal cancer, Hum. Immunol. 74 (4) (2013) 452–458.
- [45] G.A. Tawfeek, S. Alhassanin, HLA-G gene polymorphism in Egyptian patients with non-hodgkin lymphoma and its clinical outcome, Immunol. Invest. 47 (3) (2018) 315–325.
- [46] A.C. Teixeira, C.T. Mendes-Junior, F.F. Souza, L.A. Marano, N.H. Deghaide, S.C. Ferreira, E.D. Mente, A.K. Sankarankutty, J. Elias-Junior, O. Castro-e-Silva, E. A. Donadi, A.L. Martinelli, The 14bp-deletion allele in the HLA-G gene confers susceptibility to the development of hepatocellular carcinoma in the Brazilian population, Tissue Antigens 81 (6) (2013) 408–413.
- [47] C. Vaquero-Yuste, I. Juarez, M. Molina-Alejandre, E.M. Molanes-Lopez, A. Lopez-Nares, F. Suarez-Trujillo, A. Gutierrez-Calvo, A. Lopez-Garcia, I. Lasa, R. Gomez, E. Fernandez-Cruz, C. Rodrigez-Sainz, A. Arnaiz-Villena, J.M. Martin-Villa, HLA-G 3'UTR polymorphisms are linked to susceptibility and survival in Spanish gastric adenocarcinoma patients, Front. Immunol. 12 (2021) 698438.
- [48] A. Wisniewski, A. Kowal, E. Wyrodek, I. Nowak, E. Majorczyk, M. Wagner, E. Pawlak-Adamska, R. Jankowska, B. Slesak, I. Frydecka, P. Kusnierczyk, Genetic polymorphisms and expression of HLA-G and its receptors, KIR2DL4 and LILRB1, in non-small cell lung cancer, Tissue Antigens 85 (6) (2015) 466–475.

[49] Y.C. Yang, T.Y. Chang, T.C. Chen, W.S. Lin, S.C. Chang, Y.J. Lee, Human leucocyte antigen-G polymorphisms are associated with cervical squamous cell carcinoma risk in Taiwanese women, Eur. J. Cancer 50 (2) (2014) 469–474.

- [50] F.M. Zambra, V. Biolchi, C.C. de Cerqueira, I.S. Brum, E.C. Castelli, J.A. Chies, Immunogenetics of prostate cancer and benign hyperplasia-the potential use of an HLA-G variant as a tag SNP for prostate cancer risk, HLA 87 (2) (2016) 79–88.
- [51] I. Zidi, O. Dziri, N. Zidi, R. Sebai, N. Boujelebene, A. Ben Hassine, H. Ben Yahia, A.B. Laaribi, W. Babay, H. Rifi, A. Mezlini, H. Chelbi, Association of HLA-G + 3142 C>G polymorphism and breast cancer in Tunisian population, Immunol. Res. 64 (4) (2016) 961–968.
- [52] V. Durmanova, M. Tedla, D. Rada, H. Bandzuchova, D. Kuba, M. Suchankova, A. Ocenasova, M. Bucova, Analysis of HLA-G 14 bp insertion/deletion polymorphism and HLA-G, ILT2 and ILT4 expression in head and neck squamous cell carcinoma patients, Diseases 12 (2) (2024) 34.
- [53] T. Okumura, S. Joshita, T. Yamazaki, T. Iwadare, S.-i. Wakabayashi, H. Kobayashi, Y. Yamashita, A. Sugiura, T. Kimura, M. Ota, T. Umemura, HLA-G susceptibility to hepatitis B infection and related hepatocellular carcinoma in the Japanese population, Hum. Immunol. 84 (8) (2023) 401–407.
- [54] D.S. Becerra-Loaiza, L.F. Roldan Flores, L.A. Ochoa-Ramírez, B.M. Gutiérrez-Zepeda, A. Del Toro-Arreola, R.A. Franco-Topete, A. Morán-Mendoza, A. Oceguera-Villanueva, A. Topete, D. Javalera, A. Quintero-Ramos, A. Daneri-Navarro, HLA-G 14 bp ins/del (rs66554220) variant is not associated with breast cancer in women from western Mexico, Curr. Issues Mol. Biol. (2023) 6842–6850.

- [55] B. Garrach, A. Ben Othmen, W. Khamlaoui, S. Yatouji, I. Toumi, S. Zaied, K. Zouari, M. Hammami, S. Hammami, Association of HLA-G 3' untranslated region indel polymorphism and its serum expression with susceptibility to colorectal cancer, Biomarkers Med. 17 (12) (2023) 541–552.
- [56] Y. Jiang, J. Lu, Y.E. Wu, X. Zhao, L. Li, Genetic variation in the HLA-G 3'UTR 14-bp insertion/deletion and the associated cancer risk: evidence from 25 casecontrol studies, Biosci. Rep. 39 (5) (2019) BSR20181991.
- [57] B.S. de Almeida, Y.C.N. Muniz, A.H. Prompt, E.C. Castelli, C.T. Mendes-Junior, E.A. Donadi, Genetic association between HLA-G 14-bp polymorphism and diseases: a systematic review and meta-analysis, Hum. Immunol. 79 (10) (2018) 724–735.
- [58] Y.Z. Ge, Q. Ge, M.H. Li, G.M. Shi, X. Xu, L.W. Xu, Z. Xu, T.Z. Lu, R. Wu, L.H. Zhou, J.P. Wu, K. Liang, Q.L. Dou, J.G. Zhu, W.C. Li, R.P. Jia, Association between human leukocyte antigen-G 14-bp insertion/deletion polymorphism and cancer risk: a meta-analysis and systematic review, Hum. Immunol. 75 (8) (2014) 827–832.
- [59] T. Li, H. Huang, D. Liao, H. Ling, B. Su, M. Cai, Genetic polymorphism in HLA-G 3'UTR 14-bp ins/del and risk of cancer: a meta-analysis of case-control study, Mol. Genet. Genom. 290 (4) (2015) 1235–1245.
- [60] S. Zhang, H. Tao Wang, Association between HLA-G 14-bp insertion/deletion polymorphism and cancer risk: a meta-analysis, J BUON 19 (2) (2014) 567–572.
- [61] T.V. Hviid, R. Rizzo, O.B. Christiansen, L. Melchiorri, A. Lindhard, O.R. Baricordi, HLA-G and IL-10 in serum in relation to HLA-G genotype and polymorphisms, Immunogenetics 56 (3) (2004) 135–141.
- [62] S.G. Svendsen, M.S. Udsen, M. Daouya, T. Funck, C.L. Wu, E.D. Carosella, J. LeMaoult, T.V.F. Hviid, C. Faber, M.H. Nissen, Expression and differential regulation of HLA-G isoforms in the retinal pigment epithelial cell line, ARPE-19, Hum. Immunol. 78 (5–6) (2017) 414–420.
- [63] A. Arnaiz-Villena, I. Juarez, F. Suarez-Trujillo, A. Lopez-Nares, C. Vaquero, J. Palacio-Gruber, J.M. Martin-Villa, HLA-G: function, polymorphisms and pathology, Int. J. Immunogenet. 48 (2) (2021) 172–192.
- [64] E.A. Donadi, E.C. Castelli, A. Arnaiz-Villena, M. Roger, D. Rey, P. Moreau, Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association, Cell. Mol. Life Sci. 68 (3) (2011) 369–395.
- [65] Y. Peng, J. Xiao, W. Li, S. Li, B. Xie, J. He, C. Liu, Prognostic and clinicopathological value of human leukocyte antigen G in gastrointestinal cancers: a metaanalysis, Front. Oncol. 11 (2021) 642902.
- [66] R. Rizzo, V. Audrito, P. Vacca, D. Rossi, D. Brusa, M. Stignani, D. Bortolotti, G. D'Arena, M. Coscia, L. Laurenti, F. Forconi, G. Gaidano, M.C. Mingari, L. Moretta, F. Malavasi, S. Deaglio, HLA-G is a component of the chronic lymphocytic leukemia escape repertoire to generate immune suppression: impact of the HLA-G 14 base pair (rs66554220) polymorphism, Haematologica 99 (5) (2014) 888–896.
- [67] V. Rebmann, F. da Silva Nardi, B. Wagner, P.A. Horn, HLA-G as a tolerogenic molecule in transplantation and pregnancy, J Immunol Res 2014 (2014) 297073.
- [68] E. Emadi, F. Akhoundi, S.M. Kalantar, M. Emadi-Baygi, Predicting the most deleterious missense nsSNPs of the protein isoforms of the human HLA-G gene and in silico evaluation of their structural and functional consequences, BMC Genet. 21 (1) (2020) 94.
- [69] I. Poras, L. Yaghi, G. Martelli-Palomino, C.T. Mendes-Junior, Y.C. Muniz, N.F. Cagnin, B. Sgorla de Almeida, E.C. Castelli, E.D. Carosella, E.A. Donadi, P. Moreau, Haplotypes of the HLA-G 3' untranslated region respond to endogenous factors of HLA-G+ and HLA-G- cell lines differentially, PLoS One 12 (1) (2017) e0169032.
- [70] I. Zidi, Puzzling out the COVID-19: therapy targeting HLA-G and HLA-E, Hum. Immunol. 81 (12) (2020) 697–701.
- [71] S. Jasinski-Bergner, D. Schmiedel, O. Mandelboim, B. Seliger, Role of HLA-G in viral infections, Front. Immunol. 13 (2022) 826074.
- [72] A.B. Laaribi, D. Bortolotti, N. Hannachi, A. Mehri, O. Hazgui, H. Ben Yahia, W. Babay, M. Belhadj, H. Chaouech, S. Yacoub, A. Letaief, H.I. Ouzari, A. Boudabous, D. Di Luca, J. Boukadida, R. Rizzo, I. Zidi, Increased levels of soluble HLA-G molecules in Tunisian patients with chronic hepatitis B infection, J. Viral Hepat. 24 (11) (2017) 1016–1022.
- [73] B. Rehermann, Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells, Nat. Med. 19 (7) (2013) 859-868.
- [74] R. Aggarwal, M. Sharma, N. Mangat, V. Suri, T. Bhatia, P. Kumar, R. Minz, Understanding HLA-G driven journey from HPV infection to cancer cervix: adding missing pieces to the jigsaw puzzle, J. Reprod. Immunol. 142 (2020) 103205.
- [75] L. Amiot, N. Vu, M. Samson, Immunomodulatory properties of HLA-G in infectious diseases, J Immunol Res 2014 (1) (2014) 298569.
- [76] E.D. Carosella, N. Rouas-Freiss, D.T.-L. Roux, P. Moreau, J. LeMaoult, Chapter two hla-g: an immune checkpoint molecule, in: F.W. Alt (Ed.), Advances in Immunology, Academic Press2015, pp. 33-144.
- [77] E. Catamo, L. Zupin, S. Crovella, F. Celsi, L. Segat, Non-classical MHC-I human leukocyte antigen (HLA-G) in hepatotropic viral infections and in hepatocellular carcinoma, Hum. Immunol. 75 (12) (2014) 1225–1231.
- [78] P. Własiuk, M. Putowski, K. Giannopoulos, PD1/PD1L pathway, HLA-G and T regulatory cells as new markers of immunosuppression in cancers, Postepy Hig. Med. Dosw. 70 (0) (2016) 1044–1058.