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ABSTRACT: The incorporation of aromatic difluoromethyl
motifs has proven to be a fruitful strategy for enhancing the
therapeutic profiles of modern pharmaceutical candidates. While
the defluorofunctionalization of trifluoromethylarenes offers a
promising pathway toward diverse aromatic difluoromethyl
compounds, current methods are predominantly limited to two-
component reactions. Multicomponent cascade reactions (MCRs)
involving a transient aromatic difluoromethyl radical are still
uncommon and highly sought after, owing to their capacity to
rapidly generate challenging molecular structures. In this study, we
present a photocatalytic manifold that combines commercially available trifluoromethylarenes, feedstock dienes, and various
nucleophiles to achieve a modular defluorinative MCR. This method features mild reaction conditions and a broad substrate scope
with excellent functional group compatibility. Furthermore, this protocol enables a previously unreported process of defluorinative
editing for the resulting MCR aromatic difluoromethyl adducts. Preliminary mechanistic studies support the proposed photoexcited
palladium catalytic cycle.
KEYWORDS: defluorination, photocatalysis, multicomponent reaction, palladium-catalyzed, difluoromethyl motifs

■ INTRODUCTION
Organofluorine compounds are an important class of molecules
found extensively across natural products, pharmaceuticals,
agrochemicals, and advanced materials.1−8 In particular,
aromatic difluoromethyls (ArCF2), which are prevalent in
drug molecules and serve as privileged bioisosteres of benzoyl
groups,9−17 have garnered increasing attention due to their high
lipophilicity, metabolic stability and desirable electronic proper-
ties (Figure 1a).18 Consequently, there is a growing demand for
the development of direct methodologies for the efficient and
selective integration of ArCF2 moieties into various organic
frameworks. Over the past few decades, considerable efforts
have been devoted to construct this valuable motif through
deoxyfluorination,19,20 site-selective C−H fluorination21-23 and
fluoroalkylation.24−28 In contrast, the selective functionalization
of a single C−F bond in commercially available trifluoromethy-
lated arenes (ArCF3) would generate significant opportunities
to readily access the ArCF2 functionality in modern drug
discovery.

Conventional methods for activating C−F bond for this class
of substrate typically involve electrochemical reduction,29,30

low-valent metals,31-33 or frustrated Lewis pairs.34,35 However,
the reactivity and selectivity of these processes usually suffer
from the high energy of C(sp3)−F cleavage (∼481 kJ/mol for
PhCF3)

36 and the tendency toward exhaustive defluorination.37

Recently, photoredox catalysis has emerged as a potent platform
for the C(sp3)−F cleavage of ArCF3. Notable works from

research groups led by König,38 Jui,39,40 Gouverneur,41

Molander,42,43 Glorius,44 Zhang,45 and others46−50 have
demonstrated the feasibility of single-electron reduction of the
C(sp3)−F bond. Nevertheless, these pioneering advancements
have primarily focused on two-component coupling, high-
lighting the inherent limitation of direct addition between
ArCF2 radicals and acceptors (H, CO2, alkene, etc.) (Figure 1b,
left). Multicomponent cascade reactions, known for their
sustainable nature in rapidly synthesizing complex structures,
drugs, natural products, and materials in a single step, play an
essential role in the synthetic toolkit of organic chemists.51,52

Hence, it is extremely desirable to develop innovative MCRs
involving the challenging selective/cascade defluorination of
ArCF3, thereby inspiring rational reaction design (Figure 1b,
right).53,54 1,3-Butadienes, easily accessible feedstocks and
valuable building blocks, present an attractive platform for
efficient difunctionalization to access complex and high-value
molecules.55−57 Despite the demonstrated utility, a three-
component coupling of N-/C-based nucleophiles, butadiene,
and ArCF3 for the 1,4-difunctioalization of butadiene, which
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Figure 1. Development and construction of (het)aromatic difluoromethyl-contained motifs. a, Representative drug molecule containing
(het)aromatic difluoromethyl group. b, Defluorinative functionalization of trifluoromethylarenes. c, Defluorinative multicomponent cascade reaction
(DF-MCR) of trifluoromethylarenes.

Table 1. Optimization of Reaction Conditionsa

Entry Variation of standard condition Yieldb

1 None 85%(E/Z = 1:2)
2 K2CO3 instead of LiOH 29%
3 TMG instead of LiOH 72%
4 Pd(PPh3)2Cl2 instead of Pd(PPh3)4 79%
5 Pd2(dba)3 instead of Pd(PPh3)4 19%
6 MeCN instead of THF 43%
7 no XantPhos 28%
8 no (o−OMe)Ph2PPh 72%
9 no Pd(PPh3)4 N.D.
10 in the dark N.D.
11 no LiOH trace
12 0.3 mmol scale 91%c(E/Z = 1:2)

aReaction conditions: 1 (0.30 mmol), 2 (0.15 mmol), 3 (0.45 mmol), Pd(PPh3)4 (1.5 mol%), XantPhos (8 mol%), [(o-OMe)Ph]2PPh (8 mol%),
LiOH (0.15 mmol), THF (0.1 M), λmax = 440 nm Kessil (40 W), N2, RT − 40 °C, 6 h. bGC yield with 1,3,5-trimethylbenzene as internal standard.
c12 h, isolated yield. N.D., not detected.
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could provide a straightforward and practical strategy for the
rapid synthesis of intriguing ArCF2-C4 linker-nucleophile
molecules, has remained elusive thus far.58−61

Drawing inspiration from the recent achievements in visible
light-induced palladium catalysis,62−69 we envisioned that the
aforementioned transformation could be realized through this
paradigm with commercially available materials, eliminating the
need for an exogeneous photosensitizer. Herein, we report a
modular, practical, and general photoexcited palladium-
catalyzed 1,4-difunctionalization of butadiene with ArCF3 and
N-/C-based nucleophiles (Figure 1c, > 100 examples, up to 98%
yield). The mild reaction conditions tolerate a wide range of
functional groups and bioactive molecules that are typically
incompatible with traditional palladium catalysis, thereby
creating new opportunities to expedite drug discovery and the
exploration of advancedmaterials. Furthermore, the adaptability
and versatility of this approach are highlighted through a
subsequent defluorinative coupling of the resultant products,

which would be challenging to achieve using the currently
established methods.

■ RESULTS AND DISCUSSION
We began our investigations by selecting 1,3-butadiene 1, 1-
phenylpiperazine 2 and 3,5-bis(trifluoromethyl)-1,1’-biphenyl 3
as the model substrates, and we were delighted to find that the
desired product 112 was obtained in 85% yield under the
standard condition, albeit as a mixture of E/Z isomers (Table 1,
entry 1). It is intriguing that only trace amounts of over-
defluorinated side products were detected by LC-MS analysis,
likely attributed to the overwhelming loading of trifluorome-
thylarenes, which surpasses the generation of difluoromethylar-
ene products. Other bases, such as K2CO3, and TMG, proved to
be less effective, resulting in lower yields (entries 2 and 3).
Furthermore, other palladium species (1.5 mol%) led to inferior
results (entries 4 and 5, see Supporting Information for details).
Switching the solvent toMeCN resulted in a significant decrease
in the yield of the DF-MCR product 112, likely due to the poor

Scheme 1. Scope of Trifluoromethylarenesabcd

aReaction conditions:(Het)ArCF3 (0.9 mmol), 1 (0.6 mmol), 2 (0.3 mmol), Pd(PPh3)4 (1.5 mol%), XantPhos (8 mol%), [(o-OMe)Ph]2PPh (8
mol%), LiOH (0.3 mmol), THF (0.1 M), λmax = 440 nm Kessil (40 W), N2, RT − 40°C, 12 h. Hydrogenation yield is shown in square brackets.
See Supporting Information for hydrogenation procedures. bw/o [(o-OMe)Ph]2PPh, with Mg(OTf)2 (20 mol%), 12−24 h. cTMG (0.3 mmol)
instead of LiOH as base. dK3PO4 (0.3 mmol) instead of LiOH as base.
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solubility for the catalyst and base (43% yield) (entry 6, see
Supporting Information for details). The inclusion of two types

of phosphine ligands proved to be crucial for enhancing the
reaction efficiency. A yield of only 28% was observed in the

Scheme 2. Scope of Nucleophilesabc

aReaction conditions: 3 (0.9 mmol), 1 (0.6 mmol), amine (0.3 mmol), Pd(PPh3)4 (1.5 mol%), XantPhos (8 mol%), [(o-OMe)Ph]2PPh (8 mol%),
LiOH (0.3−0.9 mmol, when amine hydrochloride was used, 1.0 equiv. of hydrochloride consumed additional 1.0 equiv. of LiOH), THF (0.1 M),
λmax = 440 nm Kessil (40 W), N2, RT−40 °C, 12 h. Hydrogenation yield is shown in square brackets. See Supporting Information for
hydrogenation procedures. bw/o [(o-OMe)Ph]2PPh, with Mg(OTf)2 (20 mol%). c11 (0.9 mmol), 1 (0.6 mmol), 1,3-dicarbonyl compound (0.3
mmol), Pd(PPh3)4 (1.5 mol%), XantPhos (8 mol%), [(o-OMe)Ph]2PPh (8 mol%), LiOH (0.3 mmol), THF (0.1 M), λmax = 440 nm Kessil (40
W), N2, RT− 40 °C, 12 h. Hydrogenation yield is shown in square brackets. See Supporting Information for hydrogenation procedures.
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absence of XantPhos, while a slightly reduced yield of 72% was
obtained without the assistance of (o-OMe)Ph2PPh (entries 7
and 8). Finally, control experiments showed that the presence of
the palladium catalyst, light, and LiOH was essential for
achieving useful efficiencies of this transformation (entries 9−
11). Notably, a 91% isolated yield was achieved when the
reaction was carried out on a 0.3 mmol scale (entry 12).

With the optimized conditions in hand, we first evaluated the
generality of the protocol with respect to trifluoromethylarenes.
To simplify purification, the products were isolated as the
corresponding hydrogenated DF-MCR adducts after reduction
with Pd(OH)2/C. As shown in Scheme 1, a wide array of
aromatic bis(trifluoromethyl) compounds bearing electron-
donating and electron-withdrawing substituents were found to
be competent substrates (3-17, 54−95% yield). Notably, various
functional groups such as (het)arenes, ethers, unprotected
amines, and nitriles were all compatible, providing practical
handles for further derivatization. Additionally, aromatic
mono(trifluoromethyl) compounds (18−21) underwent
smooth reactions to yield the desired products in 39−60%
yield. It is worth mentioning that the benzylic alcohol 22 was
cleanly preserved, providing MCR product in 51% yield.

Considering the significance of nitrogen-containing hetero-
cycles in bioactive molecules synthesis, we were pleased to find
that a broad range of pyridine substrates with trifluoromethyl
groups at 2-, 3-, and 4- positions readily engage in this DF-MCR
(23−38, 40−81% yield). Interestingly, the addition of 20%
Mg(OTf)2 significantly enhance the conversion of the ArCF3
and improved the MCR yields. We assumed that Mg2+ could
facilitate C-F bond cleavage or promote single electron transfer
(SET) from Pd(0) to (het)aromatic trifluoromethyls by
anchoring to the nitrogen atom.70,71 Furthermore, this reactivity
could be extended to the quinoline substrates, albeit with slightly
lower yields (39 and 40, 41% and 48% yield, respectively).

Next, we explored the range of nucleophiles in this new
protocol (Scheme 2). It was gratifying to discover that a diverse
array of medicinally relevant nitrogen-based nucleophiles could
engage in this transformation. Commercially available morpho-
line derivatives (41−43), piperidine derivatives (44−52),
piperazine derivatives (53−63) and pyrrolidine derivatives
(64−68) were all tolerated in this DF-MCRs with moderate to
excellent yields (39−95% yield). Pleasingly, the presence of
other polar functional groups such as amides and alcohols did
not impede the reaction efficiency (52, 56−58, and 65).
Moreover, the protocol could employ acyclic amine such as

Scheme 3. Late-stage Modification of Natural Products and Drug Derivativesa

aReaction conditions: ArCF3 (0.9 mmol), 1,3-butadiene (0.6 mmol), amine (0.3 mmol), Pd(PPh3)4 (1.5 mol%), XantPhos (8 mol%), [(o-
OMe)Ph]2PPh (8 mol%), LiOH (0.3−0.9 mmol, when amine hydrochloride was used, 1.0 equiv. of hydrochloride consumed additional 1.0 equiv.
LiOH), THF (0.1 M), λmax = 440 nm Kessil (40 W), N2, RT − 40°C, 12 h. Hydrogenation yield is shown in square brackets. See Supporting
Information for hydrogenation procedures.
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benzylamines (69−74), alkyl amines (75−77) as nucleophiles,
affording the desired products in good yields (42−90% yield).
Additionally, primary amines (78) were reactive under the

optimized conditions, albeit with slightly lower yield (36%
yield). Amides were also applicable substrates; however, only
28% yield of the desired product was obtained, likely due to the

Scheme 4. Synthetic Applicationsa

aReaction conditions: ArCF2R (0.9 mmol), 1 (0.6 mmol), amine (0.3 mmol), Pd(PPh3)4 (1.5 mol%), XantPhos (8 mol%), [(o-OMe)Ph]2PPh (8
mol%), LiOH (0.3 mmol), THF (0.1 M), λmax = 440 nm Kessil (40 W), N2, RT − 40 °C, 12 h. Hydrogenation yield is shown in square brackets.
See SI for hydrogenation procedures.
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less nucleophilic nature of succinimide (80). Remarkably, this
transformation could also accommodate aromatic amines (81−
86) delivering the target products with useful levels of efficiency
(45−62% yield). Encouraged by these promising results, we
next sought to extend the protocol to carbon-based
nucleophiles. Gratifyingly, various 1,3-dicarbonyl cyclic ester
or ketones (87−91, 51−73% yield) could serve as coupling
partners. Additionally, a range of acyclic 1,3-dicarbonyl
compounds (92−95) was examined in the DF-MCRs, yielding
the desired products at useful levels (31−75% yield). Notably,
this protocol demonstrates good to excellent E/Z selectivity with
the C-nucleophiles, in stark contrast to previous instances with
N-nucleophiles that usually resulted in low E/Z selectivity.
Finally, other 1,3-conjugated dienes were examined. Under
standard conditions, 2-methyl-1,3-butadiene exhibited good
reactivity with a regioselectivity of 1:3 (96, 66% yield).
However, when 1-phenyl-1,3-butadiene was used in the
reaction, 1,2-addition was superior to 1,4-addition with 2:1
regioselectivity in 29% yield (97).

Having demonstrated the success of these DF-MCRs, we were
further motivated to explore late-stage modification of natural
products and pharmaceuticals (scheme 3). Trifluoromethylar-
enes derived from estrone, galactose, and azelnidipine were
proved to be effective substrates for late-stage defluorinative
coupling with 1,3-butadiene 1 and 1-phenylpiperazine 2 under
standard conditions, resulting in the corresponding products
98−100 in 60−82% yields. Furthermore, a series of amine-
containing drugmolecules could also be employed to furnish the
target ArCF2-C4 linker-amines in synthetically useful yields.

Methyl amines such as fluoxetine (101), maprotiline (103),
doluxetine (104), betahistine (105) and nortriptyline (110)
were reacted smoothly to give the desired products in moderate
to excellent yields (54−96% yield). Cyclic amines such as
troxipide (102), desbenzyl donepezil (106), D-proline (107),
sitagliptin (108), nortropine (109), and aprepitant (111) were
also competent to deliver satisfying results (65−94% yield),
showcasing the broad compatibility of our protocol with
complex structural scaffolds.

To highlight the potential utility of the DF-MCRs in organic
synthesis, several applications were showcased. First, a cascade
defluorinative coupling of 3 was demonstrated, providing
benzylic monofluoromethyl compound 113 under standard
condition (scheme 4a). To our knowledge, this represents the
first instance of DF-MCRs adducts engaging in a metal-
laphotoredox-catalyzed cascade defluorinative editing process.
It is noteworthy that perfluoroalkylarene 114 could also be
utilized for selectively defluorinative coupling, producing the
corresponding product 115 in 55% yield (Scheme 4b).
Additionally, a gram-scale reaction was performed under the
standard conditions, giving the target products 116 in 88% yield
(Scheme 4c). Moreover, when piperazine was employed as the
nucleophile for iteratively defluorinative coupling, two C−N
bonds were formed in a single step to afford 118 in 75% yield
(Scheme 4d, right). Similar result was also observed with
malonic acid cyclic isopropylidene ester as a carbon-based
nucleophile (117, 85% yield) (Scheme 4d, left). Furthermore, a
cascade C−N bond formation was carried out to provide 119
and 120 in moderate yield by using t-butyloxycarboryl protected

Figure 2. Preliminary mechanistic experiments. a, Radical trapping experiment. b, Radical clock experiment. c, E/Z Selectivity changes over time. d,
DFT analysis.
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amine 68 as a nucleophile (Scheme 4e). Finally, two medicinally
significant drugs (netupitant and betahistine) could be
employed in this newly developed three-component cascade
coupling to generate the C4-linked drug derivative 121 in 59%
yield, a synthesis that would be challenging if using existing
synthetic methodologies (Scheme 4f).

To gain insight into this transformation, several mechanistic
studies were conducted. First, when the reaction was carried out
in the presence of TEMPO, only a trace amount of product 116
was detected, along with the identification of the difluor-
omethyl-TEMPO adduct 124 (detected by GCMS). This
observation suggests the involvement of difluoromethyl radical
intermediates in the process (Figure 2a). In contrast, when BHT
was used as an inhibitor, we found that the yield of 116 remained
largely unaffected, and no BHT adduct 125 was found in the
reaction system, likely due to the rapid recombination of the
difluoromethyl radical with Pd (I) species to form the
difluoromethyl Pd(II) complex (Figure 2a). Furthermore, an
α-cyclopropylstyrene 126 was employed in a radical clock
experiment, where ring-opening followed by intramolecular
cyclization resulted in the formation of the corresponding
product 127 in 30% yield, supporting the radical mechanism in
this process (Figure 2b). A tracking experiment revealed that the
E/Z ratio of 14a did not change over time, indicating that
irradiation did not alter the configuration of the double bond
during the photocatalysis process (Figure 2c). The slightly
favorable Z-configuration suggested by the E/Z ratio led to
speculation that the Z-configuration in the metal complex
intermediates is more stable than the E-configuration. Thus,
density functional theory (DFT) calculations were performed to
investigate some details of these two configurations in the Pd
(II) complex before product releases. The geometries were
optimized in a vacuum at the B3LYP-D3 level. The mixed basis
set was adopted (LanL2DZ for Pd and 6−31G* for nonmetallic
atoms) and it was improved for single-point calculations
(LanL2DZ for Pd and 6−311G** for nonmetallic atoms)
with the inclusion of solvent effects of THF (SMD model). As
shown in Figure 2d, the π-center of the substrate faces inward to
XantPhos in Z- IM, while it faces outward to the ligand in E- IM.
This suggests that the substratemay be stabilized by XantPhos in
the former, a viewpoint supported by the Gibbs free energy
calculations. Specifically, the ΔG of Z-IM is 2.3 kcal mol−1 lower
than that of E-IM. This observation may explain the higher
proportion of Z-products compared to E-products in the
experimental results compared with those reported in the
literature. We also conducted UV−vis experiments and found
that Pd(PPh3)4 can be excited at approximately 340 nm with
moderate absorbance. A similar result was observed upon the
addition of XantPhos, resulting in a red shift to around 360 nm
and decreased absorbance. It was unexpected that the addition
of [(2-OMe)Ph]2PPh led to a significant increase in absorbance
(Figure S6). Furthermore, 31P NMR experiments revealed that
either XantPhos or [(2-OMe)Ph]2PPh can facilitate the ligand
exchange process of Pd(PPh3)4 (Figures S12 and S13). These
results suggest the generation of a Pd(0)-XantPhos-[(2-
OMe)Ph]2PPh complex in the reaction system, which likely
serves as the active catalyst for this reaction.

On the basis of mechanistic experiments and earlier
precedents,58−69 a putative mechanistic pathway was proposed
(Figure 3). Initially, under visible light conditions (blue LED), a
direct single electron transfer from excited Pd(0) complex A to
trifluoromethylarenes generates intermediate B (Tables S6-S11,
Figures S12 and S13), which then produces a hybrid

difluoromethyl Pd(I) radical intermediate C via Li+ assisted C-
F bond cleavage (Table S2).70,71 Subsequently,Cmay undergo a
radical addition into 1,3-dienes to form hybrid allylic Pd(I)
radical species D (path a), or it may proceed through the
recombination of the resulting difluoromethyl radical with Pd(I)
leading to the formation of the difluoromethyl Pd(II) complex
C’45 (path b). This is followed by radical recombination of D or
the migration insertion of C’, resulting in the generation of π-
allylpalladium complexes E. Meanwhile, OH− can serve as a
suitable base in THF conditions to enhance the nucleophilicity
of the amine, which then attacks the π-allylpalladium complexes
E to yield the desired DF-MCR product F and regenerate the
palladium catalyst in a redox-neutral process.

■ CONCLUSIONS
In summary, we have demonstrated a general catalytic protocol
for the defluorinative multicomponent coupling of trifluor-
omethylarenes, dienes, andN-/C-based nucleophiles enabled by
the photoexcited palladium catalytic system. These trans-
formations were characterized by their wide applicability, mild
redox-neutral conditions, and capacity for the late-stage
modification of natural products or drugs. Furthermore, the
successful cascade editing of difluoromethyl groups within this
protocol underscores its potential for efficiently accessing
complex molecular diversity. Mechanistic investigations are
presented and discussed.

■ METHODS
General Procedure for Three Components Coupling

To an 8mL vial equipped with a stir bar was added Pd(PPh3)4
(5.2 mg, 4.6 μmol, 0.015 equiv.), XantPhos (14.0 mg, 0.024
mmol, 0.08 equiv.), bis(2-methoxyphenyl)phenylphosphine
(7.8 mg, 0.024 mmol, 0.08 equiv.), substituted trifluorome-
thylbenzene (0.90 mmol, 3.0 equiv.), amine or 1,3-dicarbonyl
compound (if solid or high boiling point liquid, 0.30 mmol, 1.0
equiv.), LiOH (7.2 mg, 0.30 mmol, 1.0 equiv.) and THF (3.0
mL). The solution was degassed by bubbling with nitrogen for 8
min, and 1,3-butadiene (2.0 mol/L in THF, 300 μL, 0.60 mmol,
2.0 equiv) was syringed into the reaction vessel before sealing
with parafilm. The reaction was carried out in a steel chamber
under the irradiation at room temperature via blue LEDs (40W,

Figure 3. Proposed mechanism.
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λmax = 440 nm) for 12 h. The reactionmixture was removed from
the light, cooled to ambient temperature, and quenched by
exposure to air. After the removal of the solvent, the residue was
purified by flash chromatography on silica gel to afford the
desired product.
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