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ABSTRACT: The dysregulated post-translational modification of
proteins is an established hallmark of human disease. Through
Zn2+-dependent hydrolysis of acyl-lysine modifications, histone
deacetylases (HDACs) are key regulators of disease-implicated
signaling pathways and tractable drug targets in the clinic. Early
targeting of this family of 11 enzymes (HDAC1−11) afforded a
first generation of broadly acting inhibitors with medicinal
applications in oncology, specifically in cutaneous and peripheral
T-cell lymphomas and in multiple myeloma. However, first-
generation HDAC inhibitors are often associated with weak-to-
modest patient benefits, dose-limited efficacies, pharmacokinetic
liabilities, and recurring clinical toxicities. Alternative inhibitor
design to target single enzymes and avoid toxic Zn2+-binding
moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches
focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and
pharmacodynamic profiles of HDAC inhibitors through the extension of the drug−target residence time. This perspective aims to
capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the
coming years.
KEYWORDS: histone deacetylase, covalent inhibitor, slow-binding, inhibitor kinetics, cancer chemotherapy

1. INTRODUCTION − HDAC STRUCTURE AND
FUNCTION

Histone deacetylases (HDACs) are Zn2+-dependent hydrolases
of protein ε-N-acetyllysine (Kac) modifications and of other
acyl-amine groups. HDACs were first discovered to erase Kac
post-translational modifications (PTMs) from histones,1,2

which determined their name and fundamental role in regulating
DNA packing and gene expression. However, research over the
past 30 years has uncovered a much wider network of
modifications and biological processes regulated by HDACs,
as well as deacylation-independent roles in gene regulation and
cell signaling.3−5

The structure of the HDAC catalytic domain belongs to the
arginase-deacetylase superfamily, which spans multiple enzyme
families across the tree of life.4 The α/β arginase-deacetylase
fold in HDACs accommodates a Zn2+ ion within a hydrophobic
tunnel, which coordinates to the acyl-amine substrate and
catalyzes its hydrolysis (Figure 1A).4,6 After initial nucleophilic
attack by a water molecule, the resulting tetrahedral
intermediate is further stabilized by a Tyr residue within the
catalytic tunnel, and two Asp-His pairs help catalysis through
proton exchange (Figure 1B).6 The cavity where the Zn2+ ion
sits varies in size and structure, as highlighted by the variety of
acyl-lysine PTMs that different HDAC isozymes can accom-
modate (Figure 1C).4 In addition, certain HDACs feature a

second cavity or “foot pocket” beyond the Zn2+ ion that has been
employed for inhibitor development.7,8 The rim of the
hydrophobic tunnel also displays isozyme-specific residues
that are critical for their substrate preferences.9 Beyond this
rim, HDACs present a variety of topologies and functionalities,
which are often linked to their substrate recognition
mechanisms and regulatory multiprotein complexes.10,11

There are 11 mammalian HDACs divided into 4 classes: class
I, class IIa, class IIb, and class IV (Figure 1C). HDACs 1, 2, 3,
and 8 (class I) are nuclear enzymes that fulfill the canonical role
of histone deacetylation.3 In particular, HDACs 1−3 are the
most active deacetylases in the nucleus and regulate chromatin
structure and gene expression through modification of histones,
chromatin remodelers and transcription factors.12 These three
enzymes serve as the deacetylase module of a variety of
multiprotein complexes with additional chromatin readers and
modifiers.11,13,14 Thus, they are deeply involved in the
epigenetic network of gene regulation. HDACs 1−3 also
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recognize less abundant histone PTMs such as crotonyl-lysine
(Kcr)15,16 β-hydroxybutyryl-lysine (Kbhb)17 and lactyl-lysine
(Kla),18 which have arisen as key modifications in disease due to
their connection to metabolic imbalance (Figure 1C).19,20 In
contrast with the other class I HDACs, HDAC8 is a less active
histone deacetylase (kcat/KM ∼ 50 M−1 s−1 on H3K9ac
peptides,21 compared to ∼500 for HDAC1 and ∼150,000 for
HDAC3/NCoR2)18 and has not been found to interact with
nuclear multiprotein complexes. Instead, HDAC8 is a more
specific deacetylase of histone complexes, chromatin-associated
structural proteins and transcription factors.12,22,23 HDAC8 can
also hydrolyze longer aliphatic and fatty acid-derived lysine
PTMs.24

The class IIa HDACs 4, 5, 7, and 9 are nuclear proteins with
marginal catalytic activity, due to a shared mutation of the
catalytic Tyr residue to a His (Figure 1B).25 As a result, these
proteins are considered to be readers of Kac marks that recruit
other factors to chromatin.26 Class IIa HDACs feature large N-
terminal extensions that include transcription factor-interacting
domains, and phosphorylation sites that lead to nuclear
export.27,28 Thus, they serve as regulatory switches in gene
activation.29

HDAC6 and HDAC10 belong to class IIb HDACs, and they
are highly efficient deacetylases of cytosolic targets (Figure 1C).
HDAC6 has two catalytic domains: CD1 that targets C-terminal
Kac modifications,30 and CD2 that serves as the main regulator

of α-tubulin acetylation.31,32 HDAC6 also targets microtubule-
associated proteins33 and can bind ubiquitylated targets through
a C-terminal zinc-finger domain.34 HDAC10, on the contrary,
does not target acyl-lysine PTMs (kcat/KM > 200-fold lower on
Kac substrates compared to HDAC1−3 and HDAC6)35 but
rather functions as polyamine deacetylase.36 The respective
substrate selectivity of HDAC6_CD1 andHDAC10 are dictated
by specific mutations within the active side rim.
A conserved Leu residue is replaced by a “gatekeeper” K353 in

HDAC6_CD1, which confers selectivity toward the C-terminal
carboxylate, and by E272 in HDAC10, which interacts with the
positively charged polyamine scaffold.30,36

Finally, the smallest isozyme and sole member of class IV in
mammals is HDAC11.37 Even thoughHDAC11 is present in the
nucleus and involved in gene regulation, its histone deacetylase
activity is elusive. Instead, HDAC11 was found to remove fatty
acid-derived PTMs such as myristoyl-lysine (Kmyr, kcat/KM ∼
15,000 M−1 s−1)38 for protein trafficking and cell signaling.38−41

As primary regulators of the cellular acetylome,42 HDACs
play important roles at every stage of cellular function, including
division, movement, adhesion, metabolism, and signaling.43,44

The deacetylation of histones and other chromatin-associated
nuclear targets (e.g., BRCA1, NF-κB, STAT3) renders HDACs
crucial regulators of chromatin structure and gene regulation.
Importantly, HDACs regulate pro-apoptotic signals (e.g., p21,
BAX), tumor suppressor and angiogenesis factors (e.g., p53.,
HIF1α), as well as biomarkers of cellular adhesion (e.g., CDH1).
Thus, HDACs control neoplastic processes45 and their
dysregulated activity is strongly liked to tumorigenesis and a
variety of human cancers. Despite their general role in oncology,
these enzymes have been mostly studied within the context of
blood cancers revealing important roles in hematopoiesis,
hematopoietic stem cell fate determination, and early stage
differentiation.46 This historical link to hematology likely
emanated out of the initial studies on erythroid leukemia cell
differentiation by Friend, Lapeyre, and Bekhor,47,48 which
ultimately led to the regulatory approval of SAHA (vorinostat)
in cutaneous T-cell lymphoma (CTCL). However, HDAC
targeting keeps holding promise in other types of cancer.49

Outside of oncology, the last 10 years have seen extensive
research linking HDAC activity to alternative indications
including neurodegenerative disease, metabolic disorders,
cardiovascular disease, and viral infections.50 Dysregulated
acetylation is a hallmark of neurological disease and by affecting
synaptic plasticity, tau phosphorylation, and the expression of
cognition-related proteins, HDACs have been widely linked
with Alzheimer’s disease (AD).51 In addition, action on
neuronal demyelination and the induction of cytosolic protein
aggregates has specifically linked class IIb isozyme HDAC6 in
Charcot-Marie-Tooth disease (CMT)�a severe neuropathy of
the peripheral nervous system.52 The roles of HDACs in the
transcription of muscle-specific proteins, autophagy, and
microtubule stability, provided a link to Duchenne muscular
dystrophy (DMD).53 Moreover, dysregulated HDAC activity
related to glucose homeostasis, hepatic fibrogenesis, and
adipogenesis has also linked these enzymes to metabolic
disorders. Here, HDACs are primarily linked to diabetes
mellitus, since multiple HDAC isotypes (HDAC1−3,
HDAC6, HDAC11) regulate insulin signaling, metabolic
switching, hepatic gluconeogenesis, β-cell apoptosis, and renal
inflammation.54 In cardiac disease, HDAC9 has emerged as an
important regulator of vascular health and atherosclerosis. This

Figure 1. (a) Crystal structure of HDAC8 bound to a Kac substrate,
with highlighted residues involved in catalysis (PDB 2V5W, HDAC8
has an inactivating Y306F mutation). (b) Summary of the mechanism
of deacetylation by HDACs. (c) Phylogenetic relationship of the 11
human HDACs, and representative acyl substrates.
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class IIa isozyme was found to play key roles in cholesterol
transport, and the development of atherosclerotic lesions.55

Demonstrating the complex nature of epigenetic signatures
within these multifactor chronic conditions, in cardiac hyper-
trophy, while specific isozymes can cause disease (e.g.,
HDAC2), other HDACs promote protective mechanisms
(e.g., HDAC4).56 Finally, viral infections have been linked to
deacetylase function with roles across viral entry, fusion,
replication, latency, and release.57 A notable example is within
human immunodeficiency virus (HIV), which is in dire need of
novel and improved therapeutic modalities. In this regard,
HDAC6 controls HIV-1 transcription and virion entry and
release by affecting microtubule dynamics and cytoskeletal
structural integrity. Ultimately, through control of cell-wide
acetylation (and downstream signaling cascades), these enzymes
are involved in a myriad of human diseases, and targeted
epigenetic discovery efforts can provide immense benefit to
millions of patients around the world.

2. NON-SELECTIVE ANDSELECTIVEHDAC INHIBITION
As an approach to drug discovery, the targeted inhibition of
HDACs to treat human disease is a relatively recent undertaking.
While the initial link between histone PTMs and mRNA
synthesis was reported in 1964 by Allfrey et al.,58 followed by
studies using n-butyrate to affect histone acetylation and cell
differentiation (Figure 2A), it is only in the last 30 years that
pharmacological modulation of deacetylase enzymes has

advanced into a viable clinical strategy.59 At the time of writing
this, the field has reached over 1,250 articles per year on www.
pubmed.gov (2023−2024), compared to 5 hits in 1990, with
growing applications against various therapeutic indications
(e.g., cancer, neurology, inflammation) and, more importantly, 6
drug approvals.
The discovery of early HDAC inhibitors (HDACi) was quite

serendipitous, emerging from target-agnostic phenotypic
screens of simple polar molecules and entirely unrelated
research on antifungal antibiotics such as trichostatin and
trapoxin (Figure 2A).60 While studying murine erythroleukemia
cells, Friend et al.47 reported that the exposure to mM
concentrations of dimethyl sulfoxide induced terminal differ-
entiation and cell growth arrest. Marks et al.61,62 extended this
observation to other carbonyl compounds including N-
methylacetamide and N-dimethylformamide. Pursuing a pre-
dicted metal interaction, a series of bishydroxamic acids were
found to be several times more potent than their amide
counterparts. Subsequent structure−activity analyses exploring
aromatic tail groups and varied methylene spacers ultimately led
to the discovery of suberoylanilide hydroxamic acid (SAHA,
Sloan-Kettering Institute for Cancer Research, Columbia
University, Figure 2A).63−65 Due to its structural similarity to
the bacterial metabolite trichostatin A (TSA)�a natural
antibiotic and bona fide HDACi1�SAHA was confirmed as
an inhibitor of HDACs. These findings, together with the
isolation and cloning of the first HDAC in 19962 and the first
cocrystal structure of a bacterial deacetylase by Finnin et al.,66

spurred an outburst of interest in deacetylases as ligandable drug
targets.
SAHA was found to cause up-regulation in acetylated

substrates, influencing gene transcription and ultimately
inducing cell cycle arrest and apoptotic cell death. This trend
was observed across a wide panel of cancer cell lines.
Target engagement was also confirmed in follow-up crystallo-

graphic studies, clearly highlighting a bidentate coordination
mode between the hydroxamic acid and the active site Zn2+
ion.67−69 In 2006, SAHA (zolinza, Aton Pharma/Merck & Co.)
was approved for the treatment of CTCL. As the first targeted
deacetylase inhibitor to enter the clinic, the success of SAHA
spurred other clinical oncology studies, which led to several
approvals primarily within the context of blood cancers. These
included prodrug and natural product depsipeptide romidepsin
(istodax, 2009) against CTCL, cinnamoyl hydroxamic acid
belinostat (beleodaq, 2014) and 4-fluoro-2-aminobenzanilide
tucidinostat (epidaza, China 2014), both against peripheral T-
cell lymphoma (PTCL) and cinnamoyl hydroxamic acid
panobinostat (farydak, 2015) in combination with bortezomib
and dexamethasone against multiple myeloma (MM). Beyond
cancer, the phenylhydroxamic acid givinostat (duvyzat, 2024)
has recently received approval for the treatment of DMD as the
first nononcology HDACi on the market (Figure 2A).50 If we
consider the past decade, these breakthroughs have had a strong
influence on all subsequent HDACi research - perhaps in a
manner greater than other drug classes. Ultimately, these first
generation molecules defined a lasting pharmacophore with
repeated sets of privileged motifs and specific design strategies.
Standard HDACi are generally competitive acetyl lysine

mimetics with 3 defining features: A Zn2+-binding group (ZBG),
an elongated linker region, and a surface cap group (Figure 2B).
The critical ZBG aims to coordinate the active site Zn2+ through
mono- or bidentate modes. In most cases, this interaction
represents the central driving force behind the observed

Figure 2. (a) Timeline and chemical structures of early HDACi
identification and drug approvals. (b) Common pharmacophore of
HDAC inhibitors.
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potency. While ZBGs have advanced since the early days of
sulfoxides, thiols, and simple carboxylates, the N-hydroxamic
acid remains the most commonly used motif in HDAC
literature. Despite known metabolic issues and a potential for
idiosyncratic toxicities, this group persists for several reasons: a
particularly superior affinity for Zn2+, simple synthetic routes,
high polarity, improved aqueous solubility (as the rest of the
molecule tends to be quite lipophilic), as well as precedence in
literature (e.g., SAHA), and nature (e.g., TSA).70 Next in line is
the o-aminoanilide group (often referred to as benzamide) seen
in tucidinostat. While weaker as a Zn2+ chelator, this motif is
uniquely selective for class I HDAC1−3 (owing to their larger
active sites) and offers several additional benefits: improved
systemic stability, slow-binding kinetics, and the capacity for
synthetic derivatization. Outside of these two motifs, several
novel ZBGs have also been recently reported. Notable examples
include trifluoromethylketones, α-ketoamides, 2-(difluorometh-
yl)-1,3,4-oxadiazoles (DFMOs), and mercaptoacetamides.71

For the linker region, its extended structure spans the lysine
tunnel (d = 6−10 Å) and has been largely explored using
aliphatic hydrocarbons, vinyl extensions, and aromatic ring
systems. Interestingly, recent studies have highlighted the value
of linker choice, and heteroatom insertions to capture favorable
intratunnel interactions.72 Lastly, the terminal surface cap sees
the highest degree of structural variance and is generally the first
design element optimized in structure−activity relationship
(SAR) programs. This mainly involves the use of varied
aromatics and heterocycles, or larger moieties inspired by
trapoxin or apicidin. The surface cap is also commonly used to
optimize physicochemical properties such as lipophilicity and
solubility.
While this first wave of clinical HDACi set an important

precedent, their widespread and long-term use was quickly
restricted by recurring dose-limiting toxicities (e.g., thrombo-
cytopenia, pyrexia, cardiac arrythmia, diarrhea, fatigue).73 These
symptoms were mainly attributed to the indiscriminate
inhibition of HDAC enzymes and cell-wide disruption of the
acetylome. Without a selectivity scaffold, hydroxamic acids such
as SAHA or panobinostat inhibit about half of the 11 HDACs.
Moreover, with >300 Zn2+ metalloenzymes in the cell,
hydroxamic acids often suffer from side effects due to off-
targets. Strikingly, in a recent study, > 20 established
hydroxamate-based HDACi were found to also inhibit metal-
lo-β-lactamase domain-containing protein 2 (MBLAC2) -
palmitoyl-CoA hydrolase with nM potencies.74 Furthermore,
hydroxamic acids are also notoriously susceptible to phase I
(reduction, hydrolysis) and phase II (glucuronidation) meta-
bolic processes, with established links to mutagenicity and
genotoxicity effects,75 and may also form reactive isocyanates
through Lossen rearrangement in vivo.75,76 The acidity of theN-
hydroxy group (pKa 8.0−9.5, 25 °C) can also compromise oral
bioavailability, intestinal permeability and effective distribu-
tion.77,78

Ultimately, poor safety profiles with unpredictable pharma-
cology and dose-limited clinical use sparked paradigm shifts into
alternative design strategies to overcome these issues. These
included the aim for more selective inhibitors, the use of
alternative ZBGs, combination dosing and, later on, non-
canonical inhibition mechanisms (discussed in the next
section).10,79

Selective HDACi exploit subtle differences in protein
structure to achieve discriminative target engagement. Strategies
focus on either a single isozyme (e.g., HDAC6) or a subset of

deacetylase enzymes (e.g., HDAC1−3). While HDACs are
known to share high catalytic domain sequence identities (35−
94%), the active site differences revealed by crystal structures
have been targeted as selectivity filters via structure-based
approaches.80,81 HDAC1−3 have a slightly larger active site that
can accommodate o-aminoanilides, with HDACs 1 and 2
showing an additional L-shaped “foot-pocket” (d = 3−14 Å).8
Studies into HDAC6 revealed a rigid pair of Phe residues
flanking the lysine tunnel,80 while a buried catalytic Tyr in
HDAC8 forms a surface exposed L1-L6 cavity. The atypical
“gatekeeper” residues of HDAC6 and HDAC10 (Lys in
HDAC6_CD1 and Glu in HDAC10) have also been targeted
for selective inhibition.82 In general, these strategies have been
successful and provided class- and subclass-selective molecules
against HDAC1−3 (entinostat), HDAC4, 5, 7, 9 (TMP269), or
HDAC6, 10 (tubastatin A, Figure 3A) and compounds with

more exquisite selectivity against HDAC3 (compound 16),83

HDAC6 (ACY-738, NN-390, TO-317), HDAC8 (PCI-34051,
MMH410), HDAC10 (DKFZ-748), and HDAC11 (FT895,
Figure 3B).84−92 While useful as chemical probes within
biological studies and preclinical animal models, these selective
molecules have unfortunately not yet resulted in any significant
clinical benefit. This highlights potential disconnects between in
vitro selectivity profiles (derived from isolated inhibition activity
assays) and subsequent in vivo pharmacology.
While targeting a single HDAC can be regarded as a safer

strategy due to reduced toxicity, it can also lead to lower
pharmacological potency. In fact, it has been posited that the
clinical efficacy of the first generation of HDACi stems from the
inhibition of multiple HDAC isozymes. Thus, it appears that a
delicate balance between selectivity, toxicity, and potency must

Figure 3. (a) Structure of selected class- and subclass-selective HDACi.
(b) Structure of selected isozyme-selective HDACi.
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be struck to achieve full clinical potential, within a specific
optimal target profile for each indication.
A second strategy to improve upon the first generation of

HDACi was the exploration of novel ZBGs with improved
pharmacokinetics and acceptable affinities for Zn2+ (Figure 3).
While approved HDACi still rely on the hydroxamic acid, it is
worth noting that these molecules have been long in
development and reflect a time where this motif was in fact
the best option. In hindsight, it appears that for the longest time,
the field operated with a sense of complacency with respect to
the Zn2+ ligand. It was common to install a hydroxamic acid at
the start and focus on the optimization of the other structural
motifs, without probing alternative ZBGs. This matter has been
actively reconsidered in the past decade, with several useful
strides to begin departing from the hydroxamic acid. o-
Aminoanilides have been investigated extensively due to their
added selectivity toward HDAC1−3 and potential for brain
permeability,93 with the goal of addressing neurological diseases.
Similarly, trifluoromethyl heterocycles drew attention for

targeting class IIa HDACs, which are often more difficult to
target with hydroxamic acids (Figure 3A). A more recent
example is the emergence of fluorinated oxadiazoles for the

selective targeting of HDAC6.94 While this group has been
known for several years, it was only recently that Christianson
and Hansen showed DFMOs act as mechanism-based slow-
binding inhibitors.94,95 Preliminary in vitro studies have shown
successful brain penetrance, oral bioavailability, low metabolic
clearance and an acceptable safety profile with no genotoxicity,
or cardiotoxicity. Despite these benefits, DFMOs also present
their own set of challenges, primarily concerning the chemical
stability of the oxadiazole ring in the blood and non-neutral pH
environments.
A third approach was the use of deacetylase inhibitors as

synergizing therapeutics combined with standard-of-care or as
adjuvant drugs following a primary treatment course.96 While
HDACi have long been studied as single agents, they rarely
provided sustained clinical benefits, in part due to the dose-
limited efficacies and recurring toxicities. Alternatively, it was
postulated that HDACi could help sensitize the epigenetic
framework of a diseased cell (e.g., in cancer), allowing the
standard-of-care to achieve better clinical benefits. These
combinations have been shown to improve efficacy and reduce
tumor resistance mechanisms, in addition to allowing smaller
and less frequent doses of either medicine resulting in an overall

Figure 4. Schematic representation of target engagement after addition, incubation and wash of (a) fast-on/fast-off inhibitors, (b) slow-binding
inhibitors, (c) reversible covalent inhibitors, and (d) irreversible covalent inhibitors, with examples of HDACi following each kinetic mechanism.
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safer dosing regimen.97,98 At the same time, combination
strategies enable researchers to “rescue” current inhibitors
instead of initiating new drug discovery programs.
On this front, HDACi have been explored across various

human cancers, in combination with topoisomerase inhibitors
(e.g., doxorubicin), kinase inhibitors (e.g., pazopanib),
glucocorticoid antagonists (e.g., dexamethasone), immuno-
therapies (e.g., anti-PD1 Ab), radiotherapies, as well as other
epigenetic drugs (e.g., 5-azacytidine). These studies are
summarized in an excellent review by Hontecillas-Prieto et
al.99 Furthermore, as epigenetic drug hunters turn their
attention beyond oncology, HDACi have also been combined
with antiretroviral therapeutics for HIV-1 treatment.100,101

These molecules reactivate latent viral reservoirs, allowing
antiretrovirals to eliminate traditionally inaccessible virion
populations and improve patient prognoses.57 Through this
dual shock-and-kill approach, HDACi provide a promising
avenue toward a potential curative therapy against HIV1, with
several clinical trials reported in recent years (e.g.,
NCT03198559, NCT05700630, NCT03525730).57

In the clinic, after a decade without any new drug applications,
givinostat was recently approved for the treatment of DMD�an
incurable neuromuscular disorder, which primarily affects
pediatric males (<6 years old).53,102 Despite its poor selectivity
profile as an unselective HDACi, this approval represents an
important milestone outside of cancer. Another great example is
the CKD series out of Chong Kun Dang Pharmaceutical Corp.
(CKD-504, CKD-510, etc.), currently under investigation for
the treatment chronic neuropathies (e.g., CMT1A).103 While its
structure is not disclosed, clinical candidate CKD-510 is a
nonhydroxamate HDACi, highlighting this more recent move
away from this suboptimal ZBG. Overall, with the increasingly
growing list of HDACi under clinical investigation, it appears
that the clinical landscape of these molecules may be on the cusp

of a new paradigm outside of oncology, away from traditional
structural designs and open to new pharmacological approaches.

3. NON-CANONICAL INHIBITORS: A NEWPARADIGM?
The current limitations of HDAC inhibitors in oncology, as well
as the search for therapeutic avenues in other diseases, has
motivated the investigation of alternative strategies in HDAC
inhibition. On the one hand, compounds with long target
engagement, i.e., slow kinetics, have arisen as more efficient tools
than the first generation of approved drugs. As a result, research
is focusing on the kinetic optimization of reversible inhibitors
and the development of irreversible covalent strategies. On the
other hand, degradation with proteolysis-targeting chimeras
(PROTACs) is regarded as a complementary strategy that may
expand the scope of HDAC-targeting therapeutics.104−107

Driven by preclinical successes and first-in-human validation
against other targets (e.g., ARV-110, ARV-471),108 the HDAC
field has rapidly adopted degradation as an alternative. This
endeavor has provided reports of >100 HDAC-PROTACs in
literature, as it has been reviewed elsewhere.109−111

Similar to the interaction of membrane receptors with their
ligands,112 HDACi interact with their targets to form both short-
and long-lived complexes.113

The combined rate of dissociation of each binding pose
confers an HDAC inhibitor with a characteristic residence time
(τ), which determines the overall duration of the inhibition
event.114,115 This dynamic aspect of inhibition is often
overlooked during compound development, even though high
τ values are often indicative of success in the clinic.114,116
In standard end-point assays, inhibitors are assumed to display

fast-on/fast-off kinetics (Figure 4A), where τ would typically be
on the order of seconds or shorter. Under these circumstances,
inhibitors instantly reach equilibrium with their targets, and any
alteration of free-compound concentration is rapidly reflected
on target occupancy (Figure 4A).115 This is the case for

Figure 5. (a) Standard mechanisms of slow-binding inhibition, and calculation of inhibitor potency (Ki) and residence time (τ).1,2 (b) Mechanism-
based inhibition (as judged by the nucleophilic H2O attack) of HDAC6 by difluoro-1,3,4-oxadiazoles (DFMOs).131−133 (c) Standard mechanisms of
covalent inhibition and calculation of inhibitor potency (Ki) and residence time (τ) for reversible inhibitors or inactivation constant (KI, orKInact, not to
be confused with Ki) and efficiency for irreversible inhibitors. (d) Cysteine residues nearby the HDAC8 (PDB 2V5W) and HDAC2 (PDB 4LXZ)
active sites.
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SAHA,113 and initially assumed for most small-molecule
HDACi. On the contrary, early work from Gottesfeld and co-
workers revealed that an o-aminoanilide SAHA derivative was a
slow-binding inhibitor with τ of hours against HDACs 1−3,
significantly extending the effect of this compound in cells.113

Subsequent kinetic studies revealed that most o-aminoanilides
are slow-binding inhibitors (Figure 4B),117 including entino-
stat3,4 and compounds targeting the “foot pocket”.118 Since
slow-binding inhibitors do not reach equilibrium instantly, their
observed potency increases gradually during incubation. More
importantly, concentration changes are not immediately
reflected on target occupancy, due to their slow dissociation
rates from the enzyme, which is highly attractive in an in vivo
context (Figure 4B).115 Thus, continuous monitoring of activity
and τ determination is essential to determine the potency and
selectivity of slow-binding inhibitors, as reflected by the recent o-
aminoanilide literature.118−120 Importantly, these compounds
can display kinetic selectivity even between a free HDAC
enzyme, the same HDAC in a multiprotein complex,120 and
between different complexes.121

After the identification of o-aminoanilides as slow-binding
inhibitors, many other chemotypes have been shown to display
slow kinetics. A trifluoromethyl ketone version of SAHA,122

various alkyl hydrazides,119,123 and o-substituted benzamides,124

are all slow-binding inhibitors of HDACs 1−3. Slow inhibition
of HDAC8 was achieved with trifluoromethyl ketone inhib-
itors,125 and of HDAC6 with DFMOs (compound 6, Figure
4B).95,126

The natural products romidepsin and trapoxin A were found
to be slow-binding inhibitors with τ of up to several hours, which
serves to rationalize their excellent potency in vivo.127−129

Finally, the hydroxamic acid derivatives of apicidin and trapoxin,
as well as the archetypal inhibitors panobinostat and TSA, are
slow-binding inhibitors of subsets of class I, class IIb and class IV
enzymes with different kinetic profiles of selectivity among them
(Figure 4B).128,129

Even though most approved HDACi are now known to be
slow-binding inhibitors, which highlights the potential of slow
kinetics in the clinic, the lack of clear structure-kinetic
relationships (SKR) hampers slow-binder design. Most slow-
binding inhibitors follow the so-called “mechanism B” of target
inhibition, where a first, fast-binding event is detected, followed
by a transition to a more stable and long-lived enzyme−inhibitor
complex (Figure 5A).114,130 The basis of this transition, often
referred to as “induced-fit”, is unknown for most chemotypes,
and thus difficult to exploit for SKR studies. Interestingly, recent
studies on DFMOs have provided a first rational mechanism B
transition, which does not entail an induced fit but rather a
mechanism-based transformation. These compounds inhibit
HDAC6 with high selectivity and τ of several hours, as the
catalytic water molecule in the HDAC6 active site performs a
nucleophilic attack on the outermost C�N bond of the
oxadiazole and forms a tetrahedral intermediate coordinated to
the Zn2+ ion (Figure 5B). The oxadiazole ring then opens to
afford a hydrolyzed acyl-hydrazide, and this transition is rate-
limiting and likely responsible for the slow-binding behav-
ior.131,132

After that, the acyl-hydrazide dissociates or gets further
deacylated to the free hydrazide, but none of these species show
as high potency, selectivity, or τ as the original
DFMO.95,126,131−133 This mechanism has thus served to
rationalize the oxadiazole structural and electronic requirements

to achieve slow kinetics.131−133 Unfortunately, such knowledge
is still missing for other slow-binding HDAC inhibitor scaffolds.
A second strategy to extend the τ of a compound is to include

a reactive handle for covalent bond formation. This approach is
often more intuitive and easier to design, although it requires
finding accessible reactive residues within the HDAC structure.
Since the covalent interaction provides a large gain of affinity,
this approach can also potentially remove the need for a strong
Zn2+ chelator such as the hydroxamic acid. There are two
possible mechanisms of covalent inhibition: (1) the formation of
a reversible covalent interaction, where the inhibitor can be
regenerated and dissociate from the enzyme (Figure 4C), and
(2) an irreversible bond formation, where the fate of the
complex would be the degradation of the HDAC and/or the
inhibitor (Figure 4D).134 In both cases, the system can be
modeled as a two-step process with a first fast binding step and a
second slow covalent transition. In reversible covalent
inhibition, the kinetic profile is similar to the mechanism B of
slow kinetics, whereas irreversible covalent inhibition affords a
system with theoretical infinite τ values (Figure 5C).
The first two reports of covalent HDAC inhibition were in

2015, on HDAC-targeted compounds that released Cys-reactive
species. The laboratories of Yingjie Zhang and Wengfang Chu
developed SAHA-based compounds with a phenylsulfonylfur-
oxan as a NO-donating functionality,135 which was also later
incorporated into an HDAC6-targeting scaffold.136 The NO
generated by these inhibitors is transferred to neighboring
sulfides such as those of Cys residues on the surface and the
catalytic pocket of HDACs.135,136 The laboratories of Seth
Cohen and Carol Fierke found a similar compound class
serendipitously, as their quinonyl-SAHA (SAHA-TAP) prodrug
led to modification of multiple Cys residues of HDAC8 by the
released quinone cap.137

Class I HDACs and, in particular, HDAC8 have reactive Cys
residues on the surface surrounding the active site and within the
substrate pocket. As the latter residues are relatively close to the
Zn2+ ion (Figure 5D), they are thought to be involved in the
sensing of electrophilic Lys modifications.138 Promiscuous
reactive fragments can label both internal and surface
residues,125,139 and they can be further developed into potent
irreversible inhibitors. For instance, 3-ethynylmethylpyridi-
niums were developed as covalent HDAC8 inhibitors targeting
Cys-containing allosteric sites (compound 3, Figure 4D).139

This new approach permits targeting potentially unique pockets
for isozyme- or complex-selective inhibition, and the develop-
ment of potent HDAC inactivators without a Zn2+-binding
group.139

HDAC1−3 display less surface Cys residues than HDAC8,
but their distribution is similar around the active site (Figure
5D). These four enzymes share a reactive Cys residue 10 Å away
from the entrance of the active site with a slight change in
position in HDAC8 (HDAC8 C275 vs HDAC2 C274, Figure
5D).140 The addition of a Cys-reactive handle to the cap group
of a class I inhibitor thus improves potency by further extending
τ on these enzymes.140 This effect was recently shown by
modifying the scaffold of the HDAC1−3 inhibitor entinostat
with the irreversible pentafluorobenzenesulfonamide electro-
phyle (YSR734, Figure 4D), which adds covalent targeting to
the three enzymes and provides longer lasting effects in cells.140

This proof-of-concept study opens up the possibility of
maximizing τ with the addition of Cys-targeting moieties, and
provides a framework for identifying enzyme-specific residues
toward selective HDAC inactivation. Moreover, recent develop-
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ments in protein covalent chemistry have expanded the
possibilities beyond Cys targeting,141−143 which will facilitate
the rational design of future covalent HDAC inhibitors.

4. THE BENEFITS OF IMPROVING INHIBITOR KINETICS
Traditionally, most (if not all) drug discovery programs quantify
inhibition events by deriving dissociation constants (Kd),
inhibition constants (Ki), or half-maximal inhibitory concen-
trations (IC50). Governed by thermodynamic equilibria, these
macroscopic potency metrics operate within a simple closed
system, which assumes invariable receptor−ligand concen-
trations. While useful for controlled in vitro assays, such a
simplistic view of pharmacology breaks down in the complex
milieu of a living cell (Figure 6A). In our pursuit of bioactive

molecules with clinical benefits in human patients, medicinal
chemists must try to adopt experimental models that most
closely represent their target environment. In this regard,
Copeland et al.115 promoted the use of the drug-target residence
time as a central parameter in lead optimization programs,
providing a measure of the duration of a drug’s action, and thus a
more accurate insight into in vivo drug pharmacology.115

Optimizing residence time (τ), or in the case of irreversible
inhibitors their kinact/KI, is an overall more promising strategy
(Figure 5A, C), as [drug]free in a cellular environment is in fact in
constant flux due to competing mechanisms of absorption,
permeation, metabolism, and excretion. Concurrently, [tar-
get]free also varies due to competing substrates, protein
resynthesis, and degradation pathways (Figure 6A).114 Achiev-
ing extended residence times ultimately results in the decoupling
of pharmacodynamic (PD) profiles, as a slowly dissociating
molecule can outlast its systemic stability (i.e., half-life) or the

protein resynthesis rates.130 Thus, slow-binding and covalent
inhibitors hold better promise toward achieving smaller and less
frequent dosing regimens, as required for most HDACi. Taken
to their clinical extreme, these benefits could offer better safety
profiles, reduced costs, and improved compliance.
For slow-binding and reversible covalent inhibitors, optimiz-

ing τ entails primarily the optimization of their off-rate (Figure
5A, C). Interestingly, Copeland also highlights the importance
of on-rates, which can drive target selectivity as well as the subtle
phenomenon of drug rebinding. As ligands dissociate from their
target, a high local concentration is generated at the binding site
interface, which without any rapid clearing mechanism enables
rebinding and the extended pharmacological effect. For
irreversible covalent inhibitors, there is no off-rate and thus τ
cannot be calculated. Instead, the ratio of the covalent bond
formation kinetics (kinact) and the inactivation constant (KI, or
KInact, not to be confused withKi) serves as a dynamicmeasure of
the compound’s efficiency (Figure 5C). Here, typical thresholds
of kinact = 0.05 s−1 and KInact = 10 nM would define desirable
kinetics (Figure 6B), with lead compounds laying under the kinact
threshold (Q3). These insights are lost when measuring broad
thermodynamic metrics. While previously challenging to
ascertain, dynamic parameters can now be regularly measured
via kinetic binding experiments through, for example, NMR or
surface plasmon resonance, or with continuous enzyme activity
assays using fluorogenic substrates.144 In addition, studies are
proposing new expedited approaches to estimate these
important metrics.145,146 When supported with pharmacoki-
netic AUCfree values, these data would allow the estimation of in
vivo target occupancy, which can help guide covalent dosing
regimens.
The true extent of sustained residence times and decoupled

PK−PD has been regularly exemplified in the rich field of
covalent drugs.147−150 With >50 covalent drugs currently on the
market, >15 FDA-approvals in the past 10 years alone and an
annual market cap estimated at >US$50 billion, covalent
molecules have firmly positioned themselves as arguably one
of the most successful clinical strategies to date.151 Covalent
inhibitors are known for their powerful potencies (pM−nM
range), sustained target engagement (even in the presence of
endogenous substrates), and a unique ability to engage
intractable drug targets (e.g., flat, solvated, allosteric pockets).152

Previous concerns of nonspecific hyperreactivity have been
largely resolved with recent advances in chemoproteomic
protein profiling, soft electrophiles with tunable reactivities,
and an overall better understanding of the required benchmarks
for a successful preclinical/clinical covalent drug candi-
date.134,149,150,153,154

Regarding targeted HDAC binders, researchers have started
to explore the potential benefits of slow-binding or covalent
kinetic mechanisms. Shifting to a long-lived (or permanent)
binding strategy would disengage inhibitor PD from any
inherent PK liabilities and provide more sustained pharmacol-
ogy.155 While several slow-binding HDACi have been reported
in recent literature, we still lack an explicit and predictable
framework of the structure-kinetic forces underlying these
mechanisms. Thus, it is clear that these are complex and
multifactorial processes with important contributions from both
the ligand and target protein. For instance, simple hydroxamic
acids were long presumed to represent a classic case of potent
ligands with fast-on/fast-off kinetics, while bulkier ZBGs such as
o-aminoanilides were assumed to be needed for slow-on/slow-
off kinetics, due to structural rearrangements in the protein

Figure 6. (a) Comparison of closed (laboratory experiment) and open
(human body) systems, inspired by Copeland et al.112 Tube icon
provided by bioicons.com. (b) Quadrant distribution of irreversible
covalent inhibitor properties.
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active site (i.e., break an internal H-bond).117 Instead, recent
reports have demonstrated that small hydroxamic acids and
alkyl-hydrazides can also be slow-binding inhibitors.129,156 On
the other hand, covalent inhibitors represent a more mature field
of study, with defined structure−activity trends, established
design principles and relatively predictable molecular recog-
nition. Several HDAC isozymes have also been shown to have
nucleophilic residues within targetable distances of their
catalytic domains, as seen in studies on HDAC2 (YSR734),
HDAC6 (SAHA-TAP), and HDAC8 (Compound 3).137,140,157

At this early stage, these molecules remain as useful chemical
starting points and further optimization efforts are needed to
effectively probe the potential benefits of irreversible HDACi
binders. As the field compares the preclinical tractability of
reversible, slow-binding, or covalent molecules, detailed
research into current structure-kinetic trends would be a great
step toward improving HDAC targeting.

5. CONCLUSION
Dysregulated acetylation mechanisms are an established hall-
mark of human disease. Intensive research into these signatures
ultimately led to the discovery and classification of a family of
deacetylases with Zn2+-dependent activity (HDACs 1−11).
With cell-wide influence on post-translational acylation of
proteins and acetylation of polyamines, these hydrolase enzymes
have established themselves as master regulators of cell
homeostasis.50 At the same time, uncontrolled HDAC activity
has broad implications in cellular dysfunction and disease
progression, including cancer, neurodegeneration, inflammation
and infection. Thanks to early phenotypic results and extensive
crystallographic work, HDACs are now useful drug targets with a
wealth of inhibitors reported, generally acting as competitive
acetyl-lysine mimetics.4 However, besides a handful regulatory
approvals, the clinical adoption of first gen. HDACi (e.g., SAHA,
belinostat, panobinostat) is far from widespread, and it is largely
confined to small patient populations with specific disease states.
Arguably, the causes of these limitations are the nonspecific
inhibitory profiles and the use of warheads with harmful
metabolites, which afford dose-limited efficacies and recurring
clinical toxicities.
To address limitations in HDAC targeting, several paradigms

shifts have occurred toward the next generation of therapeutics,
namely isozyme-specific inhibition, non-hydroxamate ZBGs,
combination therapies and targeted protein degradation.10

Along with these strategies, recent literature has seen a notable
rise of the novel kinetic mechanisms of inhibition of slow-
binding kinetics and covalent targeting. These mechanisms hold
promise in achieving more sustained efficacies in vivo and better
pharmacokinetic profiles, through extended drug-target resi-
dence times. To accomplish this, studies have explored
substituted o-aminoanilides,8 alkyl hydrazides,158 mechanism-
based difluoromethyl-1,3,4-oxadiazoles,95 quinonyl pro-
drugs,137 ethynylmethylpyridiniums,139 and irreversible per-
fluorinated arylsulfonamides.140 Interestingly, recent reevalua-
tions revealed the slow-binding properties of successful first gen.
HDACi, further supporting this approach.
While great strides have been made and the field is in the

midst of a transformation, these studies remain in their early
stages.159−161 Future efforts on this front will likely focus on
establishing reproducible structure-kinetic relationships, delin-
eating isozyme-specific slow-binding and covalent strategies,
and establishing tractable preclinical and clinical guidelines for
better slow-binding and covalent inhibitor design. All in all, we

envision that HDACi with improved kinetic profiles hold
promise toward extending the clinical benefits of targeting
HDACs in human disease.
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