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Graphene Microelectrode Arrays, 4D Structured
Illumination Microscopy, and a Machine Learning Spike
Sorting Algorithm Permit the Analysis of Ultrastructural
Neuronal Changes During Neuronal Signaling in a Model of
Niemann–Pick Disease Type C

Meng Lu, Ernestine Hui, Marius Brockhoff, Jakob Träuble, Ana Fernandez-Villegas,
Oliver J Burton, Jacob Lamb, Edward Ward, Philippa J Woodhams, Wadood Tadbier,
Nino F Läubli, Stephan Hofmann, Clemens F Kaminski, Antonio Lombardo,*
and Gabriele S Kaminski Schierle*

Simultaneously recording network activity and ultrastructural changes of the
synapse is essential for advancing understanding of the basis of neuronal
functions. However, the rapid millisecond-scale fluctuations in neuronal
activity and the subtle sub-diffraction resolution changes of synaptic
morphology pose significant challenges to this endeavor. Here, specially
designed graphene microelectrode arrays (G-MEAs) are used, which are
compatible with high spatial resolution imaging across various scales as well
as permit high temporal resolution electrophysiological recordings to address
these challenges. Furthermore, alongside G-MEAs, an easy-to-implement
machine learning algorithm is developed to efficiently process the large
datasets collected from MEA recordings. It is demonstrated that the combined
use of G-MEAs, machine learning (ML) spike analysis, and 4D structured
illumination microscopy (SIM) enables monitoring the impact of disease
progression on hippocampal neurons which are treated with an intracellular
cholesterol transport inhibitor mimicking Niemann–Pick disease type C
(NPC), and show that synaptic boutons, compared to untreated controls,
significantly increase in size, leading to a loss in neuronal signaling capacity.
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1. Introduction

The advent of microelectrode arrays (MEAs)
has facilitated the long-term, large-scale
monitoring of local field potentials of
neurons, offering non-invasive recordings
of a broad range of spatial and tempo-
ral neuronal signals, thus, surpassing
traditional patch-clamp recordings.[1–4]

Nevertheless, non-transparent MEAs
often encounter limitations in funda-
mental and therapeutic neuroscience
research due to their incompatibility with
advanced imaging setups and the con-
straints imposed by existing software tools
required for subsequent spike analysis.

To address these challenges, transparent
MEAs have been developed over the past
decade, which enable the combination of
optical microscopy and electrophysiology,
offering a more integrated approach to neu-
roscience research.[5–9] However, the design
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of transparent MEAs often comes with a trade-off between
the low impedance values of individual electrodes, required to
achieve high signal-to-noise ratios in the electrophysiological
recordings, and the transparency of the imaging field of view
(FOV) required for optical microscopy. State-of-the-art commer-
cial indium tin oxide (ITO) MEAs display impedance values in
the range of around 250 kΩ at 1 kHz, which is sufficient to de-
tect neuronal activity and offer electrode transparency of about
80% in the visible light spectrum.[7,8,10,11] However, despite the
improved transparency, the electrodes themselves are still highly
visible under the microscope, which leads to the uneven attenu-
ation of the excitation light and, by that, to distortions, such as
the warping of excitation patterns, resulting in artifacts of recon-
structed images obtained from high-resolution imaging systems
such as structured illumination microscopy (SIM).

Graphene, i.e., a monolayer of carbon atoms tightly ar-
ranged in a honeycomb structure,[12] exhibits good electrical
conductivity,[13] which is also frequency-independent up to mi-
crowave frequencies,[14] making it suitable for the detection of
spontaneous neuronal activity.[15,16] Furthermore, its biocompat-
ibility permits the long-term cultivation of cells,[15,17–21] which is
another requisite for long-term recordings of neuronal signals,
relevant for the study of neurodegenerative diseases. However,
most importantly, a single layer of graphene has a transparency of
97.7% in the visible light spectrum, with a negligible reflectance
of less than 0.1%,[22] which is, thus far, the highest transparency
measured amongst all electrode materials used for transparent
MEAs. Therefore, graphene is an ideal material to be used in
MEAs to permit the concomitant analysis of neuronal structures
and signals both during in vitro and in vivo studies.[23,24] How-
ever, despite these advances in proof of principle studies, only
a few publications have emerged since, which suggests that im-
provement is needed to make this technology applicable and ac-
cessible for addressing important biological questions. Here, we
have significantly increased the size of the graphene electrodes
to permit higher-order network analysis using high-resolution
imaging. We have further made the G-MEAs compatible with a
commercial headstage, facilitating amplification, recording, and
comparative data analysis across different MEA designs.

One related limitation is that recordings taken at an electrode
often include signals from multiple overlapping neurons and
other electrical noise sources. Therefore, spike sorting, i.e., the
task of distinguishing neuronal activity from background noise
as well as assigning neuronal activity to its respective source neu-
rons, is crucial to ensure proper analysis.[25–27] Recently, the ap-
plication of data-driven, machine learning (ML) approaches to
spike sorting has been proposed.[28–30] We have thus designed
an algorithm that applies, for the first time, Improved Deep Em-
bedding for Clustering (IDEC) for spike sorting. Unlike estab-
lished methods that separate clustering and feature extraction,
IDEC integrates the clustering objective with the autoencoder’s
reconstruction loss. This joint optimization enhances clustering
performance by preserving the local structure of the data, leading
to improved accuracy and efficiency. Our innovative approach sig-
nificantly advances spike sorting technology, particularly for large
datasets. We have compiled these analysis tools into an easy-to-
use Python script which is available as open-source software. As
part of the open-source tool, we also provide a Python script for
the analysis of fluorescence calcium imaging data, where the flu-

orescent calcium traces are bleach-corrected and calcium spikes
are extracted, therefore enabling the cross-comparison of fluores-
cent calcium imaging and electrophysiological data.

We demonstrate with the combined use of graphene MEAs
(G-MEAs), 4D SIM, and our analysis software that we can mon-
itor the activity and morphology of neurons across scales, i.e.,
from the network level to the sub-neuronal domain. We partic-
ularly focus on synchronicity disruptions and morphological de-
fects in hippocampal neurons upon lysosomal cholesterol accu-
mulation, a phenotype mimicking Niemann–Pick disease type C
(NPC). The corresponding long-term recordings over large FOVs
reveal the degeneration of neuronal networks, leading to the loss
of neuronal activity which is accompanied by structural changes
at the single synapse level as evident during neuronal firing.

2. Results and Discussion

2.1. G-MEAs and Machine-Learning Spike Analysis Enable the
Concomitant and Detailed Investigation of Neuronal Structures
and Signals

The fabrication of our G-MEAs involves the largest area of
graphene transfer used for in vitro devices, featuring the longest
graphene electrodes, which significantly enhance the FOV for
high-resolution imaging applications during electrical record-
ings. Indeed, the largest graphene electrode area reported in the
literature to date is 1.4 times smaller in width compared to our
MEAs.[16] Additionally, our MEAs are designed to be compatible
with commercial headstages, facilitating amplification, record-
ing, and analysis of neuronal electrophysiology.

Moreover, our study is the first to utilize graphene MEAs
to examine the impact of disease progression on hippocam-
pal neurons. Previous research has primarily focused on in
vivo electrophysiology,[23] neural activity detection,[16] neural net-
work development,[18] optogenetics,[31] and the analysis of retinal
tissue.[32] Furthermore, the introduced approach and techniques,
including the device fabrication, offer high flexibility, allowing
the design to be easily adapted for custom setups. While the G-
MEAs presented here enable the reliable detection and recording
of neuronal action potentials (see Experimental Section for de-
tails), it is important to note that several factors can be adjusted
to further improve the variation in impedance and the electro-
physiological performance of the G-MEAs. Current limitations
specifically include the production and processing of graphene.
These processes inherently introduce contaminants and defects,
resulting in variable electrical properties and, therefore, affect-
ing the recording performance of G-MEAs (Figure S1, Support-
ing Information). However, this is not a fundamental limita-
tion of the technology, as graphene’s pristine characteristics can
be restored with additional cleaning methods.[33,34] Alternative
strategies may include i) improving the contact between neu-
rons and the graphene surface which would increase the number
of electrodes that successfully record electrical signals per batch
produced,[15] ii) reducing the contact resistance between gold and
graphene, or iii) reducing the resistivity of graphene via doping.

Figure 1a summarizes the experimental pipeline used to facil-
itate the applicability of G-MEAs for the study of complex neu-
ronal degeneration over time. Primary hippocampal neurons are
cultured on G-MEAs, where they are maintained for more than
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21 days before optical as well as electrophysiological data are ac-
quired and, subsequently, analyzed using a spike sorting algo-
rithm. Additionally, on day four in vitro (DIV 4), the hippocam-
pal neurons are transduced with adeno-associated viruses (AAV)
to express the fluorescence calcium sensor GCaMP7b, allowing
for calcium activity tracking of both single neurons and neuronal
networks (Figure 1b).

The subsequently applied analysis software aims to extract
calcium spiking rates of, or spiking synchronicity between, in-
dividual neurons. Given the relevance of this step for the ex-
traction of biological insights as well as the successful inter-
pretation and analysis of complex neuronal networks, various
machine learning as well as non-machine learning algorithms
have been used.[35–37] In particular, we build on insights gained
from existing machine learning models including Deep Embed-
ding for Clustering[38] (DEC) and Improved Deep Embedding for
Clustering[39] (IDEC), both of which have not previously been
applied for spike sorting analyses. DEC introduces a novel ap-
proach by combining feature extraction and clustering into a sin-
gle, simultaneous process, using a deep embedding framework
to learn feature representations while optimizing cluster assign-
ments. Building on this, IDEC further integrates the clustering
objective with the autoencoder’s reconstruction loss, enhancing
the preservation of local data structures. Nevertheless, the syn-
thetic datasets currently used in the field only provide limited
numbers of spike recordings (<5000) and from a low number of
source neurons (typically three),[25] which makes them too small
and simple to capture the analysis-related challenges associated
with real-time recorded MEA data. Hence, to quantify the suit-
ability of our approach, we benchmark the different spike sorting
algorithms using newly simulated datasets. The Small and Large
datasets (Tables S1 and S2, Supporting Information) presented
here have been prepared via NeuroCube[40] and consist of 10 sets
of spike recordings from five source neurons containing around
100000 and 1100000 spikes each, respectively.

Both DEC and IDEC result in improved spike sorting accuracy
compared to the state-of-the-art Autoencoder-Ensemble[28] (AE-
Ensemble) as well as a deep autoencoder approach (Deep AE)
which forms the basis of both DEC and IDEC (Figure 1e). Further
details on how the individual models are trained are provided in
the Experimental Section. Across the Small datasets, DEC, on av-
erage, shows a relative improvement in accuracy of 3.03± 11.32%
(mean ± standard deviation) if compared to the AE-Ensemble.
For Large datasets, the relative improvement of DEC increases

to 12.20 ± 10.65%, while DeepAE shows a relative change of
−1.02 ± 5.48% for the Small and 7.89 ± 11.13% for the Large
datasets if compared to AE-Ensemble. Our results demonstrate
significant improvements, with IDEC showing a relative accu-
racy improvement of 7.00 ± 8.87% and 15.21 ± 12.26% on small
and large datasets, respectively, if compared to the AE-Ensemble
approach (Figure 1e). This performance boost is crucial for han-
dling the large-scale datasets generated by our G-MEAs.

The outperformance of DEC and IDEC compared to AE-
Ensemble with increasing dataset sizes may be based on DEC
and IDEC possessing more trainable parameters and, therefore,
being able to extract spike features from big datasets more ef-
ficiently. This would suggest that their performance scales posi-
tively with training dataset size, which is crucial for future electro-
physiological applications.[30] However, a performance improve-
ment caused by the optimized training methods cannot be ex-
cluded. Additionally, although DeepAE has the same number of
trainable parameters as DEC and IDEC, the joint clustering and
feature extraction, which is only used during the training of DEC
and IDEC, may improve their performance.

Following the benchmarking of the ML method, we have ap-
plied our approach for the analysis of the correlative network
activity of hippocampal neurons grown on G-MEAs. As illus-
trated in Figure 2, G-MEAs permit the independent as well as
simultaneous acquisition of electrophysiological and imaging
data, with Figure 2a displaying the recording of typical neu-
ronal spike shapes. The firing behavior observed in our study,
including burst-like firing (Figure 2b, left) and single spike fir-
ing events (Figure 2b, right), aligns with earlier recordings from
hippocampal neurons.[41] Additionally, building on the G-MEA’s
high transparency, the G-MEAs facilitate the detailed investiga-
tion of spontaneous calcium release, an important phenomenon
not directly coupled to the firing of an action potential.[42]

Figure 2c presents a fluorescence microscopy image from an
area containing four graphene microelectrodes, as illustrated in
the insert, and Figure 2d shows the simultaneous calcium imag-
ing and electrophysiological recordings of neurons that are close
to the electrodes. These neurons display coherent co-occurrence
of spiking events in both signal recording domains. Additionally,
in contrast to previous studies that combine MEAs with simul-
taneous imaging to record neuronal activity,[15–19,22–24,43–45] our
transparent MEAs offer the unique advantage of enabling imag-
ing directly above the electrodes in a locally confined area. This
feature allows for precise correlation of the neuronal activity of

Figure 1. G-MEAs and ML data analysis enable the advanced study of neuronal structures and signals. a) Experimental pipeline for the detailed in-
vestigation of neuron-related diseases using G-MEAs, consisting of post-natal day 2 (P2) hippocampal neurons being plated on transparent G-MEAs.
Simultaneous electrophysiological and imaging recordings of the neurons were obtained and analyzed using ML. b) Left: Stitched image showing the en-
tire transparent area of the G-MEA with a size of 4.84 mm2. Right: Image highlighting a portion of the device containing four graphene microelectrodes.
Scale bar: 50 μm. Tiled images were acquired by 100 ms exposure time with a laser emitting at a wavelength of 488 nm, 20x magnification. Individual
images were acquired by 10 ms exposure time with a laser emitting at a wavelength of 488 nm, 40x magnification with a lens length extender. c) An
overview of the array displaying the microelectrodes and their respective numerical labels. The gold electrodes are shown in magenta and the graphene
microelectrodes are shown in cyan. The reference electrode is situated between electrodes 24 and 25. d) The overlay of the graphene microelectrodes’
blueprint with the image of the whole imaging area ensures correct interpretation and correlation of the orthogonally collected data. The device map is
then split into quadrants to isolate each area for separate imaging techniques and to minimize phototoxic effects. Subsequently, a neuron located close
to an electrode is selected within each quadrant for further investigation. e) Shown are classification accuracies of proposed deep clustering approaches
(DeepAE, DEC, and IDEC) as well as the existing state-of-the-art AE-Ensemble approach for different simulated datasets. Marked are single data points
(black dots), median (grey line), mean (black cross), and minimum/maximum (grey whiskers) accuracy. All models have been benchmarked on a large-
scale simulated benchmarking dataset, containing 10 sets of data each for the Small and Large (Table S3, Supporting Information) datasets, and results
are normalized to AE-Ensemble for improved accessibility. Figure 1a is created using Biorender.
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Figure 2. G-MEAs enable simultaneous imaging and electrophysiology. a) Neuronal spike shapes recorded by G-MEAs. The bold line indicates the
average spike shape. N = 200. b) Filtered recording acquired by a single electrode. Enlarged regions illustrate different patterns of hippocampal neuronal
activity, i.e., burst (left) and single spike firing events (right). The horizontal, magenta line indicates the threshold for spike detection. c) Calcium imaging
of mature hippocampal neurons on G-MEAs with the respective positions of electrodes indicated in the lower left corner. Bottom: Change in amplitude
over basal fluorescence intensity (ΔF/F) over time for the three neurons (DIV 24) labeled as 1–3 (top). Scale bar: 50 μm. Images were acquired by 10 ms
exposure time with a laser emitting at a wavelength of 488 nm, 40x magnification with a lens length extender. d) G-MEAs enable simultaneous acquisition
of both local electrophysiological and calcium recordings as illustrated by the co-occurring spiking events. Simultaneously acquired electrophysiological
recordings (grey, left y-axis) including detected spikes (black dots) are manually aligned with the respective calcium signals (magenta, right y-axis) of a
neuron. The imaged neuron was located close to the corresponding electrode.

a single neuron at a specific electrode with its corresponding
calcium spike, as demonstrated in Figure 2d, further providing
the capability to identify defects, including in neuronal substruc-
tures, that may impact either the neuron’s ability to fire an action
potential or its ability to release neurotransmitters. For example,
correlated recordings obtained from different locations (Figure
S2, Supporting Information) can expose significant variations in
behavior, such as reduced matching accuracy between the two
signal domains or varying firing rates, which may be indicative
of early disease. Further, local correlation can be of relevance for
future applications, such as for optogenetic- or electric-localized
stimulation and the investigation of signal transmission across
neuronal networks. Additionally, this correlation is relevant for
the testing of various neuronal drugs, where it is crucial to deter-
mine the pathway a drug affects. For instance, calcium channel
blockers, some of which are currently undergoing clinical trials

for treating neurodegenerative diseases and other brain-related
disorders, such as stroke,[46] exert their effects by solely influenc-
ing intracellular calcium influx, thereby blocking neurotransmit-
ter release. However, certain drugs may exclusively modulate the
neuron’s capacity to fire an action potential. Hence, understand-
ing these distinctions is vital for optimizing long-term treatment
strategies for patients with neurodegenerative diseases.

2.2. Quantitative Analysis of the Cellular Niemann-Pick Disease
Type C Phenotype Reveals a Loss of Synchronicity in Neuronal
Firing Patterns and Structural Impairments of Primary
Hippocampal Neurons

After validating the G-MEA’s suitability to permit simultane-
ous electrophysiology and optical recordings and verifying the
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Figure 3. Capturing the deterioration in neuronal structures and activity in a Niemann-Pick disease type C model from a population to a sub-neuronal
level. a) The effects of U18666A on the electrophysiological (upper row) and calcium imaging activity (lower row) of primary hippocampal neurons over
four days, normalized by the activity on day 1 (control in light purple; U18666A in dark purple). Shown is a relative change for the spike rate (left column)
and spike synchronicity (measured as mutual information,[49] right column). Error bars indicate the standard error of means. b) Calcium imaging of
the neuronal population across the whole FOV (top panel) and a single FOV (middle panel) in both control (left group) and U18666A-treated samples
(right group). Left panel: samples on day one (DIV 24) before U18666A treatment. Right panel: samples on day four (DIV 27) after U18666A treatment.
The U18666A treatment, finally, resulted in a loss of neurons. The cyan arrows highlight the neurons that have disappeared during U18666A treatment,
and the magenta arrows highlight the surviving neurons. Scale bars: 100 μm for whole FOV, 20 μm for enlarged FOV. U18: U18666A. Bottom panel:
Quantification of neuron number per FOV of device for U18666A treatment versus control. Twenty-five images per FOV of a device were acquired in each
experiment. Four independent experiments were performed. Mean ± SD. ****p < 0.0001. Statistical significance was evaluated using a one-way ANOVA
with Tukey’s multiple comparisons test. Tiled images were acquired by 100 ms exposure time with a laser emitting at a wavelength of 488 nm, 20x
magnification. Individual images were acquired by 10 ms exposure time with a laser emitting at a wavelength of 488 nm, 40x magnification with a lens
length extender. c) Neuronal structures imaged by widefield microscopy. Sub-neuronal structures highlighted in the figure are a dendrite (magenta), an
axon (green), and a soma (cyan). A neuron that disappeared after the four-day treatment is highlighted by a cyan arrow. Four independent experiments
were performed. Images were acquired by 10 ms exposure time with a laser emitting at a wavelength of 488 nm, 40x magnification with a lens length
extender. d) Changes in the amplitude of the fluorescent calcium sensor extracted from the above neuronal structures are depicted over a time window
of 250 s. y-axis: ΔF/F with a scale of −0.05 to 0.05 for all plots. The short time window (25 s) is indicated by black rectangles in the full-time window
panel on the left.

performance of our ML analysis, we determine the effect of
the intracellular cholesterol transport inhibitor U18666A, which
mimics Niemann-Pick disease type C (NPC), on primary hip-
pocampal neurons. On a global level, we observe that U18666A
treatment induces substantial neuronal degeneration over time.
To quantify disease progression, both individual and simultane-
ous readouts of neuronal signals and imaging data are captured
(Figure 3). The electrophysiological and calcium imaging data re-
veal that neurons treated with U18666A display a significant de-
cline in spike rate and synchronicity after four days when com-
pared to control conditions (Figure 3a), suggesting that U18666A
strongly affects neuronal networks. Interestingly, while the elec-
trophysiological activity starts to decline shortly after treatment,
the calcium spike rate in the U18666A condition first exhibits
an increase before declining on the subsequent days, suggest-
ing that U18666A treatment first impacts calcium homeostasis
as shown recently for models of NPC.[47] Furthermore, the de-
tected loss in activity for U18666A treated cells across the differ-
ent signal types, as presented in Figure 3a, is further accompa-

nied, and potentially enhanced, by a decrease in the overall cell
density (Figure 3b), similarly to what has been observed for NPC
patient-specific induced pluripotent stem cells (iPSCs).[48]

To investigate the potential cellular mechanisms causing the
above-observed defects in further detail, individual sub-neuronal
structures, namely somas, axons, and dendrites, are investi-
gated using widefield microscopy. The corresponding analysis
reveals substantial changes in the amplitude of the calcium ac-
tivity over time (Figure 3c,d). Specifically, the four-day treat-
ment with U18666A leads a loss of neuronal structures, such
as shown in Figure 3c, which is accompanied by the depletion
of calcium activity in these structures (Figure 3d). In contrast,
control neurons display clear and regular calcium spikes that
are consistently present throughout the whole recording (Figure
S3, Supporting Information). Observations in cells treated with
U18666A are in alignment with earlier in vivo and in vitro ex-
periments that have consistently identified synaptic plasticity de-
fects in NPC models, such as arising from either mutation in the
NPC1 gene or inhibition of NPC1 by U18666A. Reported defects
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manifest themselves as increased synaptic cholesterol levels,[50]

impaired Long-Term Potentiation (LTP),[51] the formation of ax-
onal spheroids,[52] reduced dendritic spine density,[53] and ulti-
mately, neuronal loss[47,54] — the latter two of which are also ob-
served in our model system (Figure 3b–d). Nevertheless, the dis-
tinct advantage of our study lies in its capability to not only unveil
defects in neuronal activity but to further allow for the precise
and simultaneous identification of the corresponding degenerat-
ing neuronal structures.

2.3. SIM Imaging Reveals that Sub-Neuronal Structures
Dynamically Alter their Shape During Calcium Signaling

Leveraging the superior transparency of G-MEAs, our MEAs
are combined with high-resolution microscopy, more specifically
structured illumination microscopy (SIM), to investigate the un-
derlying mechanisms of sub-neuronal structural changes in fur-
ther detail. When compared to widefield microscopy,[55] SIM
imaging offers a twofold gain in resolution, providing highly re-
solved sub-neuronal structures that can be quantitatively ana-
lyzed to obtain information about morphology, size, and activity.
Accordingly, this approach enables us to observe the dynamic na-
ture of these sub-neuronal structures, tracing intricate morpho-
logical changes over time as well as to correlate them with the
underlying calcium activity (Figure 4). We, therefore, capture a
time-lapse sequence of 3D sub-neuronal structures (Figure 4a)
on DIV 27, i.e., 23 days after transduction with the calcium
marker GCaMP7b, before reconstructing the images to obtain
a 4D stack containing spatial-temporal information of calcium
activity at sub-neuronal levels (Figure 4b; Movie S1, Supporting
Information). As shown in the projection view of the 4D stack
in Figure 4b, the neuronal ultrastructures can be captured and
analyzed in the reconstructed data, which demonstrates a signif-
icant improvement in revealing the structural details of live neu-
rons compared to the widefield microscopy counterpart denoted
as WF.

Using 4D SIM imaging data, we then analyze how the synaptic
structure changes during neuronal activity. Figure 4c presents an
enlarged view of a neuronal ultrastructure highlighted by a yellow
arrow in Figure 4b, with the calcium intensity data extracted from
the imaging data being shown in Figure 4d. The graph showcases
the temporal relationship between structural modifications and
calcium activity or intensity, with the local calcium fluorescence
analysis (Figure 4d) exposing three calcium peaks in a time win-
dow of 40 s which coincide with a reformation of the synapse.
Transient enlargements of neuronal ultrastructures, such as den-
dritic spines and synaptic boutons during neuronal activity have
been observed previously in hippocampal neurons, which might
be caused by the underlying morphological changes we observe
during calcium spike events.[56] However, whether they are trig-
gered by calcium influx or not needs to be further investigated.

Next, we apply SIM to elucidate the details of the complex net-
work formed by hippocampal neurons, as depicted in Figure 4e
and Movie S2 (Supporting Information), with a specific focus
on neuronal ultrastructures. The axons and dendrites intricately
interweave, forming a dense mesh that signifies a high degree
of interconnectivity crucial for efficient signal transmission and
neural plasticity. This interconnected network plays a pivotal role

in supporting spontaneous activity in hippocampal neurons as
also demonstrated by the distinct multi-layered axonal and den-
dritic projections revealed in the sectional images, with dendritic
spines and synaptic boutons being resolved at different focal
planes.

Finally, we apply 4D SIM to investigate the sub-neuronal struc-
tural changes following treatment with U18666A (Movies S3 and
S4, Supporting Information). Figure 4f shows representative re-
constructed images of both conditions, with neuronal ultrastruc-
tures highlighted using cyan arrows. Quantitative analysis of
synaptic boutons after U18666A treatment reveals a significant
increase in the size after U18666A treatment (Figure 4g). Con-
sequently, the neuronal defects at the network level (Figure 3)
can likely be attributed to the presence of dysfunctional synapses,
characterized by activity loss, enlarged structures, and even the
loss of synapses themselves (Figure 4f,g). While these observa-
tions of neuronal deteriorations are in agreement with previous
studies reporting on the progression of NPC,[57] thus far, inves-
tigations into structural defects at the sub-neuronal level, partic-
ularly at individual synapses, i.e., the primary loci of structural
plasticity, have remained largely unexplored. Hence, in our in-
vestigations, we advance the field by employing 4D SIM to per-
mit the spontaneous examination of individual neuronal ultra-
structures and their correlated structural changes for the first
time. Further, the observed increase in synaptic bouton size, in-
dicative of synaptic dysfunction, aligns with the synaptic theory
of neurodegeneration,[58] which postulates that synaptic deficits
precede neuronal cell death and are pivotal drivers of disease pro-
gression.

As presented here, the 4D SIM data recorded on our G-MEAs
are capable of providing direct insights into how sub-neuronal
structures change during neuronal activity, shedding light on the
intricacies of structural plasticity at the individual synapse level.
This offers a more profound understanding of how neurodegen-
eration and synaptic loss may unfold, and impact calcium home-
ostasis but also other organelles.[53] Indeed, in a recent study, we
have demonstrated that U18666A significantly impairs the tubu-
lar endoplasmic reticulum (ER) in COS-7 cells using SIM.[59,60]

Such impairment in the tubular ER can be particularly detrimen-
tal if observed in neuronal cells, as the axon primarily consists of
tubular ER. Additionally, given that synapses receive crucial com-
ponents such as proteins, lipids, and calcium via the tubular ER,
damage to the tubular ER in the axon may significantly impact
synaptic function. Therefore, future work may aim to combine
electrophysiology with a SIM analysis of the ER to experimen-
tally test this hypothesis.

3. Conclusion

The simultaneous use of orthogonal investigation techniques is
essential to further our understanding of complex molecular pro-
cesses, such as those involved in the progression of neurodegen-
erative diseases. Here, we build on the unique properties offered
by graphene, namely its conductivity and transparency, to per-
mit the optical as well as electrophysiological study of neuronal
cells across scales. By pairing the device with machine learning-
centred analysis algorithms, we evaluate its suitability for the
image-based recording of calcium spikes. We further investigate
the effects of U18666A, mimicking Niemann-Pick’s disease type
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Figure 4. 4D SIM reveals that neuronal ultrastructures can dynamically alter their shape during calcium signaling and due to stress induced by U18666A.
a) A representative neuronal structure is imaged using sectioning SIM in a time-lapse sequence. b) A projection view of the 4D data reconstructed from
the entire series of images to illustrate changes in structure and calcium activity over time. A 4D widefield (WF) version of the reconstructed images
is displayed as a comparison. The yellow arrow points to a neuronal ultrastructure that undergoes significant structural changes over a timeframe of
40 s (Movie S1, Supporting Information and, enlarged, in (c)). Scale bar: 5 μm. c) The enlarged view of the neuronal ultrastructure highlighted in (b)
shows the structural change during calcium activity. The yellow arrows indicate the local enlargement of the neuronal ultrastructure. The time in seconds
is indicated in the top right corner. Scale bar: 0.5 μm. d) The calcium intensity data extracted from the image sequence of the neuronal ultrastructure
is shown in (c). The spikes are labeled with the corresponding time stamps. e) A complex neuronal network was captured using sectioning SIM in a
time-lapse sequence. Scale bar: 5 μm. f) Representative SIM images showing control neurons and neurons treated with U18666A. Top panel: whole FOV
from SIM images. Bottom panel: enlarged view from the yellow boxed regions above. Neuronal ultrastructures are highlighted with cyan arrows. Scale
bars: 5 μm. g) Quantitative analysis of the diameter of synaptic boutons reveals a significant increase following U18666A treatment. N = 50. Mean ±
SD. ****p < 0.0001. Statistical significance was evaluated using the two-sided Student’s t-test of six independent experimental repeats. All SIM images
were acquired by 10 ms exposure time with a laser emitting at a wavelength of 488 nm at 20 W cm−2, 60x magnification.
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C, where a loss of network synchronicity, as well as individual
neurons, are detected, before analyzing the sub-neuronal fea-
tures in greater detail through SIM, revealing changes in the
morphology of synapses in treated neurons. Our methodology,
which integrates an improved ML spike analysis with simultane-
ous electrophysiology and fluorescence imaging-based calcium
activity measurements, will not only be highly beneficial for the
study of synaptic dysfunction/loss/increase in models of neu-
rodegenerative diseases but also in models of schizophrenia and
epilepsy, respectively.

4. Experimental Section
Device Fabrication and Characterization—Design: The electrodes were

designed for a 48 by 48 square mm (mm2) borosilicate glass substrate
(Diamond Coatings Ltd.) with a thickness of 170 𝜇m (Figure 5a). The de-
vice geometry matched the standard head stage of a Multichannel Sys-
tem MEA-2100 Mini Amplifier. The devices consisted of arrays of graphene
electrodes placed at the center of the glass. To connect the electrodes to
test instrumentation, gold (Au) leads were fabricated on the same sub-
strate. The Au leads were 15800 𝜇m in length, with 60 Au electrode pads
making up the frame of the G-MEA. Each electrode pad was 2200 𝜇m in
length and width. The triangular Au feature extending from one of the elec-
trode pads was the counter electrode used for impedance measurements
and grounding (see Final Device in Figure 5a). It was fabricated using Au
and had a length of 14400 𝜇m. The triangular feature was 6100 𝜇m in
length and 3300 𝜇m in width. There was a 100 𝜇m overlap between the
graphene electrodes and Au leads and a 200 𝜇m spacing between each
graphene electrode. In the middle of each graphene electrode pad in the
center of the glass, there was a 30 𝜇m diameter hole opening in the SU-8
passivation layer.

Device Fabrication and Characterization—Fabrication: The glass sub-
strate was initially baked for 20 min at 200 °C on a hot plate to remove
any water molecules on the surface and covered in AZ 5214E photore-
sist (Merck Performance Materials GmbH) via spin coating. The Au leads
were patterned by direct laser writing using a 405 nm gallium nitride diode
laser writer (LW-405B+ Microtech Srl). To avoid unwanted resist exposure
caused by light penetrating the glass substrate and getting reflected by the
sample holder, the substrate was attached to a silicon substrate covered
with BlackTak Light Masking Foil throughout the lithography process. After
exposure, the photoresist was developed using an AZ 351B developer (Mi-
croChemicals GmBH) for 51 s. Before the metal deposition, the samples
were exposed to oxygen plasma (10 W for 60 s) via a Vision 320 Reactive
Ion Etcher (Advanced Vacuum AB, Plasma–Therm). Subsequently, 5 nm
of chromium was deposited at a rate of 0.5 Å s−1, followed by 50 nm of Au
at a rate of 0.5 Å s−1 until it reached five nm, where the rate was increased
to 1 Å s−1 using an electron-beam evaporator (LEV-PVD 200 Pro, Kurt J.
Lesker). The chromium was used as an adhesion layer between the Au
and the glass substrate. The photoresist was removed via lift-off, leaving
the sample vertically in 99.9% analytical-grade acetone (Sigma–Aldrich)
for 15 min.

Single-layer graphene was produced via chemical vapor deposition
(CVD) on copper foils.[61] After growth and cooling, poly(methyl methacry-
late) 950 A4 (A-Gas Electronic Materials Ltd (Rugby), Kayaku Advanced
Materials) was spin–coated onto the graphene on the copper foil, but not
baked. The Cu foil was dissolved in a Cu etchant solution (Sigma–Aldrich),
leaving the PMMA+graphene stack floating on the solution. The graphene
was cleaned by transferring the stack on a solution of 18.2 MΩ cm−1 ul-
trapure water and hydrochloric acid in a 1:10 ratio and further cleaned
in new batches of ultrapure water. The PMMA+graphene stack was then
transferred onto the Au electrode prefabricated on the glass substrate and
left to dry overnight. Subsequently, the samples were submerged in ace-
tone for another night to remove the PMMA layer, releasing the graphene
onto the Au leads. Afterward, the graphene was patterned into the desired
electrode shapes using direct laser lithography following the same proce-
dure as described above. The uncovered part of the graphene was etched

by oxygen plasma in a reactive ion etcher (Vision 320, Advanced Vacuum
AB, Plasma-Therm, 10 W for 3 min). The photoresist was then removed
by an additional overnight acetone bath. Finally, the device was encapsu-
lated in an SU-8 2000.5 (Kayaku Advanced Materials) passivation layer, and
30 𝜇m hole openings were patterned in the SU-8 by direct laser lithography
(375 nm). The holes were precisely aligned with the tip of the graphene mi-
croelectrode pads to enable exposure of the graphene surface for sensing.
A final hard bake at 180 °C was carried out to remove cracks and detoxify
the SU-8,[62] before being cooled for 24 h to reduce stresses in the SU-8.
A glass ring with an inner diameter of 19 mm (Diamond Coatings Ltd)
was then attached to the G-MEA using a multipurpose silicone-elastomer
sealant (Dow Corning 732).

Device Fabrication and Characterization—Characterization: The pres-
ence of graphene microelectrodes on the glass substrate was confirmed
using a micro-Raman Spectrometer (Renishaw InVia) at 514 nanome-
tres excitation (Figure 5b). The device was electrically characterized
(Figure 5c,d) using a Cascade Summit series semi-automated probe sta-
tion connected to a 4294A precision impedance analyzer (Keysight, Agi-
lent Technologies, model). The measurements were carried out by mea-
suring the total impedance between the Au ground electrodes on the G-
MEAs and the working electrode, i.e., the graphene microelectrode di-
rectly opposite the ground electrode. This was carried out both by mea-
suring the G-MEA without filling the glass cell culture rings of the G-
MEAs and immediately after filling the glass cell culture rings with 1300 𝜇L
of Dulbecco’s phosphate-buffered saline (Thermo Fisher Scientific). The
same working electrode and reference electrode were selected for all
the G-MEAs measured, and the measurement probes were not moved
between devices and measurements. Three commercially obtained ITO
MEAs (60tMEA200/30iR-ITO-gr, Multi Channel Systems (MCS) GmbH)
were also characterized in the same manner to compare the impedance
values (Figure 5e) and to standardize the impedance measurement meth-
ods. Therefore, the geometry, distances of the probes, and solutions used
for each graphene and ITO device measurement remained exactly the
same. This allowed for a direct comparison between G-MEAs and com-
mercial ITO devices.

Cell Culture—Virus Production from HEK Cells: Day 1: Plating of
200000 HEK cells in a plate (Cat. No: 150466, Thermo Fisher Scien-
tific) with antibiotics-containing media. The complete medium for nor-
mal cell growth consisted of 90% DMEM (Sigma–Aldrich), 10% FBS
(Sigma–Aldrich), and 1% streptomycin (Thermo Fisher Scientific). Day
2: HEK cells were incubated in antibiotics-free media for 2 h before the
transduction of plasmid mixtures: prepare a combination of 70 μg of
pAAV 2.1 (Rep/Cap), 200 μg of pH GT1-ademo/dF6 helper and 70 μg of
pGP-AAV-syn-jGCaMP7b-WPRE (Plasmid Number 104489, Addgene)[63]

and mix with 18 mL OptiMEM (Thermo Fisher Scientific) and 17 mL
polyethyleneimine (PEI, Sigma–Aldrich), incubate for 20 min at room tem-
perature, and then apply dropwise to the plate. Day 3: change the HEK cell
media with antibiotics-containing media but no FBS. Day 4: collect the me-
dia from plates to 50 mL tubules (40 mL/tube). Scrape off cells, transfer
them to a new tube, and spin with cells and media at 2000 rpm for 5 min,
then transfer media from cells to media tubes. For cells, resuspend cell
pellets with AAV lysis buffer up to 1.5 mL total and store at −80 °C. Me-
dia: for every 40 μL of media add 0.93 g NaCl and 40 μL 40% polyethylene
glycol (PEG, Sigma–Aldrich), and keep at room temperature until NaCl is
dissolved. Transfer the media to ice for 2 h, then spin 10 mins at 6.6 k
rpm. Discard media without disrupting the pellets. Resuspend pellets up
to 0.5 mL total with AAV lysis buffer.

Cell Culture—Primary Neuron Dissection: Hippocampal tissues from
2 days postnatal (P2) rats (Sprague-Dawley rats from Charles River) were
dissected and collected in 2 mL Eppendorf tubes containing cold DMEM
(Sigma–Aldrich) and maintained on ice. After tissue collection, the cold
DMEM was replaced with room temperature DMEM containing 0.1%
Trypsin and 0.05% DNase (Sigma–Aldrich, UK). The tubes were then
incubated in a CO2 incubator set at 37 °C, 5% carbon dioxide, and 20%
relative humidity for 20 min. Tissues were rinsed four times with 0.05%
DNase in DMEM at room temperature and dissociated into a single-cell
suspension by trituration using a 1 mL and then a 200 μL Gilson pipette tip.
The cell suspension was centrifuged at 600 rpm for 5 min. The supernatant
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Figure 5. G-MEAs are highly transparent and display a low impedance. a) The main fabrication steps include chromium and gold deposition onto a
borosilicate glass coverslip; patterning of gold electrodes using direct laser writing; chemical vapor deposition of graphene and transfer via copper
etching before patterning graphene electrodes using direct laser writing and dry etching via oxygen plasma; and spin-coating of the SU-8 passivation
layer onto the device with 30 𝜇m holes being patterned above the graphene electrode pads. b) Comparison of the normalized Raman spectra at 514
nanometres for graphene electrodes across 24 different devices. The characteristic graphene G peaks at ≈1580 cm−1 are in the image on the left and
2D peaks at ≈2700 cm−1 are in the image on the right. The spectra were obtained to confirm the presence of graphene after the etching and cleaning
process. c) Spectra of the areas next to the graphene electrodes after etching to demonstrate the success of the etching and cleaning process across 24
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was then discarded, and the pellet was gently resuspended in DMEM con-
taining 10% FBS. Cell numbers were determined using a haemocytometer.
The luminescence MycoAlert PLUS Mycoplasma Detection Kit (Ref. LT07-
705, Lonza Bioscience) was used to test for mycoplasma contamination.

Cell Culture: G-MEAs were filled with poly-L-lysine solution (Sigma-
Aldrich) and placed under an ultraviolet lamp in a sterile laminar flow cab-
inet for 1 h. The devices were rinsed with Dulbecco’s Phosphate Buffered
Saline (DPBS) before 1300 microlitres (𝜇L) of the neurobasal medium
was introduced. Neurobasal media was used for the maintenance and
maturation of the cells by improving cell survival through the provision
of supplements. Neurobasal media contained 2% B27 and 0.25% Gluta-
max (all from Thermo Fisher Scientific). The devices were placed in an
incubator set at 37 °C, 5% carbon dioxide, and 20% relative humidity to
warm up before plating primary P2 hippocampal neurons. Rat primary
neurons were isolated as mentioned above. 255000 primary hippocampal
cells were plated directly into the middle of the device, where the graphene
microelectrodes sat. The devices were plated sequentially in order of fab-
rication, i.e., without specific allocation, and with cells from different pups
and rats to ensure genetic variation. 200 𝜇L of media was taken out and
replaced by 300 𝜇L of warmed-up neurobasal medium every other day to
maintain the cell culture in an incubator set at 37 °C, 5% carbon dioxide,
and 20% relative humidity. On DIV 4, the hippocampal neurons were trans-
fected using GCaMP7b, using an adeno-associated virus vector pGP-AAV-
syn-jGCaMP7b-WPRE (see production above). At the start of DIV 24, se-
lected neurons were imaged in each quadrant of the device and simultane-
ous electrophysiology recordings of the selected neurons were obtained.
At the end of DIV 24 (Day 1), after the baseline imaging and electrophys-
iology recordings were obtained, 10 𝜇M of the drug U18666A (662015,
Sigma–Aldrich) were introduced by triturating the drug and the device me-
dia three times gently. This was carried out every day until DIV 27 (Day 4).

Imaging and Electrophysiology—Widefield Imaging: Calcium imaging
was carried out using a custom-built automated wide-field microscope
(IX83, Olympus), with an sCMOS camera (Zyla 5.5, Andor), and a four-
wavelength high-power light emitting diode light source (LED4D067, Thor-
labs). The software Micro-Manager[64] was used to control the system.

Imaging and Electrophysiology—Simultaneous Electrophysiology and
Imaging: The MEA head stage was mounted onto the microscope imag-
ing stage. A lens extender was used to increase the height of the micro-
scope lens so that the lens could pass through the base of the head stage
and form contact with the bottom of the G-MEA. A stage-top heater (OKO-
Lab, Ottaviano, Italy) was used to ensure the temperature of the media
in the G-MEA did not fluctuate. The heater was set at 37 °C, 5% carbon
dioxide, and 20% relative humidity. On DIV 23, sequential images of the
transparent FOV were captured and stitched together. The stitched image
was overlayed with an image of the graphene electrodes, to create a dig-
ital map of the whole device. The image of the device was then split into
four quadrants. Three quadrants were used for widefield imaging while the
final quadrant was reserved for structured illumination microscopy. This
was to minimize the effects of phototoxicity on the cells. Neurons were
then selected in each quadrant and marked on this map for simultane-
ous imaging and electrophysiology over the next four days (DIV 24 – 27).
On the second (DIV 25) and fourth day (DIV 27), the neurons were im-
aged, both using widefield microscopy and super-resolution microscopy,
and electrophysiological recordings were obtained. Electrophysiology and
microscopy measurements were taken simultaneously. The neurons were
imaged over 20000 frames with a 0 ms interval, at an exposure time of
10 ms using a 3 × 3 binning, and the overall imaging window was ≈250 s.

This resulted in every graphene MEA having 30 min of electrophysiolog-
ical recordings and 15 min of calcium imaging recordings each day. The
calcium fluorescent intensity of the region of interest was extracted and
analyzed using a custom Python code. The electrophysiology traces and
calcium imaging traces were manually aligned using a Python script to
record the time difference between the initiation of the recordings for the
MEA head stage and the image acquisition, which was then used as the
time difference value for trace alignment. Based on the script initiation
times and CPU testing, there was an unaccounted delay of less than one
second, estimated to be around 0.6 s.

Tiling of images to generate the whole FOV was required due to the
high transparency (Figure 5e). Tiling was conducted using a custom-built
algorithm using MATLAB. To measure neuron density, first, the bright-
ness of all the widefield images was tuned using Fiji to make them con-
sistent in background fluorescence intensity. The frames were then bi-
narized and the fluorescence intensity in each of them was measured
using Fiji, and the extracted data on fluorescence intensity was ana-
lyzed via a custom-built algorithm and GraphPad Prism 9.5.1. All custom
designed scripts can be found at https://github.com/MariusBrockhoff/
GrapheneMEASpikeSortImaging.

Imaging and Electrophysiology—Structured Illumination Microscopy:
SIM imaging was performed using a custom-built imaging system based
on an Olympus IX71 microscope stage, as previously described.[55] Fluo-
rescence excitation of the samples was achieved using a laser emitting at a
wavelength of 488 nm (iBEAM-SMART-488, Toptica Photonics). The laser
beam was expanded to fill the display of a ferroelectric binary Spatial Light
Modulator (SLM) (SXGA-3DM, Forth Dimension Displays) to pattern the
light with a grating structure. The polarization of the light was controlled
with a Pockels cell (M350-80-01, Conoptics). A 60×/1.2 numerical aper-
ture (NA) water immersion lens (UPLSAPO 60XW, Olympus) focused the
structured illumination pattern onto the sample. The fluorescence emis-
sion from the samples was captured and projected onto an sCMOS cam-
era (C11440, Hamamatsu). The maximum laser intensity at the sample
was 20 W cm−2. Raw images were acquired with the HCImage software
(Hamamatsu) to record image data to disk and a custom LabView pro-
gram (available upon request) to synchronize the acquisition hardware.
Multicolor images were registered by characterizing channel displacement
using a matrix generated with TetraSpeck beads (Life Technologies) and
imaged in the same experiment as the cells.

Resolution-enhanced images were reconstructed from the raw SIM
data with LAG SIM, a custom plugin for Fiji/ImageJ available in the Fiji
Updater. LAG SIM provides an interface to the Java functions provided
by fairSIM.[65] LAG SIM allows users of our custom-built microscope to
quickly iterate through various algorithm input parameters to reproduce
SIM images with minimal artifacts; integration with Squirrel[66] provides
a numerical assessment of such reconstruction artifacts. The device was
split into four quadrants and the regions of interest for imaging and elec-
trophysiological recordings were selected based on the neuron’s proximity
to an electrode (where neurons clustered around an electrode).

Data Analysis and Machine Learning—Calcium Imaging: Fluorescence
calcium signals of spatial areas, e.g., single neurons, of the acquired im-
ages were extracted with ImageJ (mean intensity of ROI). Subsequently,
these traces were corrected for bleaching by subtracting a fitted polynomial
function (of order 10) from the raw calcium traces, effectively normalizing
the calcium traces to one common baseline. From the corrected traces,
fluorescence calcium spikes were identified, and the respective amplitude
and spike time were extracted by finding the local maxima of the trace. The

different devices. The image on the left shows the disappearance of the G peaks and the image on the right shows the disappearance of the 2D peaks.
d) Comparison of the impedance values across 24 different G-MEAs. The average total impedance at 1 kHz was 3.72 kΩ. e) Comparison of the average
total impedances between fabricated G-MEAs and lab-characterized commercial ITO devices (ITO-LC). ITO-LCs were characterized using the same
technique as for G-MEAs. The error bars are one standard deviation. The individual data points are demonstrated by the scatter plot. f) A comparison
of the imaging field of view between commercial MEAs and G-MEAs using both bright field and fluorescence microscopy. For the ITO/TiN sample, the
black dots indicate the TiN electrodes on top of the connecting ITO tracks. For the graphene sample, the black lines are the gold electrodes that connect
to the transparent graphene microelectrodes located inside the square-shaped imaging area (4.84 mm2). Images were acquired by 10 ms exposure time
with a laser emitting at a wavelength of 488 nm, 40x magnification with a lens length extender.
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calcium spikes were analyzed to extract parameters such as calcium spike
frequency and synchronicity[67] between single neurons in the same FOV.

Data Analysis and Machine Learning—MEA Electrophysiology: Raw
MEA recording data were first bandpass filtered (300–3000 Hz), followed
by threshold detection of spikes.[25]

Thresholding was based on an estimate of the background noise 𝜎m:

𝜎m = median
{ |x|

0.6745

}
(1)

where x is the bandpass filtered signal. The threshold condition was then
defined as:

Threshold = 5 𝜎m (2)

For each spiking event, 64 sampling points were collected (comprising
20 points before the threshold event and 44 points after). The detected
spike events were aligned based on the occurrence time of the minimum
amplitude and subsequently pre-processed. This pre-processing involved
normalizing all spikes to a min-max scale of 0 to 1 and transforming them
to their gradient, which is more suitable for signal processing. Every spike
recording xi(t) of the dataset X = {x1, x2,… , xn} , xn ∈ Rd was mapped to
a gradient representation ∇xi(t) as:

∇xi (t) =
xi (t + 1) − xi (t)

Δt
(3)

where t is the sampling time of each sampling point t ∈ (0, d − 1) and Δt
is the sampling step time (50 μs for recordings obtained at a frequency of
20 kHz). Pre-processed spikes were filtered for artifacts by applying ma-
chine learning (ML) spike sorting on all available spikes of each experi-
ment, manually deciding which spike classes (forcing, e.g., sorting into
20+ classes) represent noise or artifacts. The remaining true spikes were
analyzed to extract frequently used parameters such as spike rate and mu-
tual information between electrodes.

Data Analysis and Machine Learning—ML for Spike Sorting: The gen-
eral workflow of spike sorting usually consists of five operations: filtering,
spike detection, data pre-processing, feature extraction, and, finally, clus-
tering. While ML is applied to a multiple of those steps,[29] a combined
feature extraction and clustering algorithm is the focus of this work. Sev-
eral established deep clustering approaches were employed and translated
to the spike sorting task, namely Deep Embedding for Clustering[38] (DEC)
and Improved Deep Embedding for Clustering[39] (IDEC). DEC simultane-
ously learns feature representations and cluster assignments by learning
a mapping from the data space to a lower-dimensional feature space in
which it iteratively optimizes a clustering objective. IDEC is based on in-
tegrating the clustering loss and autoencoder’s reconstruction loss: IDEC
can jointly optimize cluster label assignment and learn features that are
suitable for clustering with local structure preservation. All methods have
been implemented in Python, based on TensorFlow[68]/Keras,[69] and can
be found alongside example data at https://github.com/MariusBrockhoff/
GrapheneMEASpikeSortImaging.

Statistical Analysis: Data were statistically analyzed using either Ori-
gin 2020b (fabrication-related data), GraphPad Prism 6 (imaging data),
or custom Python code (electrophysiology/spike data). Details on the re-
spective data presentation, sample sizes, and statistical methods used to
assess significance are provided in the corresponding figure captions.
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