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ABSTRACT: This Perspective explores the integration of machine learning potentials (MLPs)
in the research of heterogeneous catalysis, focusing on their role in identifying in situ active sites
and enhancing the understanding of catalytic processes. MLPs utilize extensive databases from
high-throughput density functional theory (DFT) calculations to train models that predict
atomic configurations, energies, and forces with near-DFT accuracy. These capabilities allow
MLPs to handle significantly larger systems and extend simulation times beyond the limitations
of traditional ab initio methods. Coupled with global optimization algorithms, MLPs enable
systematic investigations across vast structural spaces, making substantial contributions to the
modeling of catalyst surface structures under reactive conditions. The review aims to provide a
broad introduction to recent advancements and practical guidance on employing MLPs and
also showcases several exemplary cases of MLP-driven discoveries related to surface structure
changes under reactive conditions and the nature of active sites in heterogeneous catalysis. The
prevailing challenges faced by this approach are also discussed.
KEYWORDS: heterogeneous catalysis, machine learning potential, global optimizations, active sites, structure prediction

1. INTRODUCTION
Heterogeneous catalysis plays a significant role in the modern
chemical industry, serving as a critical facilitator for a wide
range of chemical reactions essential for producing fuels,
plastics, pharmaceuticals, and other chemicals.1,2 With the
growing demand for renewable energy sources and carbon
neutrality, there is an urgent need for novel heterogeneous
catalysts that exhibit robust performance, stability, activity, and
selectivity for various chemical processes. Advancements in
catalyst development and research require a comprehensive
understanding of active-sites, a challenge compounded by the
dynamic nature of catalytic reaction systems and often
disordered or amorphous catalyst surface structures.3

For heterogeneous catalysts, it is well-known that not the
entire surface of the nanoparticle participates in catalytic
reactions, but rather, certain active sites do.4 These active sites,
as pointed out by Sabatier’s principle, should neither bind too
strongly nor too weakly to adsorbates and must bind the
transition state more tightly than the substrate. This delicate
balance lies at the heart of catalysis at the active site. Given the
extraordinary complexity of active sites in heterogeneous
catalysis, theorists have to simplify these systems, make
predictions based on these simplifications, and, where possible,
validate them under experimental conditions. Quantum
mechanical (QM) methods, such as Density Functional
Theory (DFT), are frequently used for probing catalytic
processes at the atomic scale, predicting material behavior, and
guiding experimental efforts.5 Although DFT offers a favorable

balance between computational efficiency and accuracy, its
application is generally constrained by the computational
demand, particularly for large systems or extensive simulation
time.6 While theoretical surface science studies have
significantly advanced our understanding of active sites, the
necessary simplifications regarding time, temperature, pressure,
and structural complexity fall short of capturing the full reality
of catalytic processes and the nature of active sites.
Recent advancements in machine learning-based atomic

simulations6−13 offer promising enhancements to this
challenge. One of the most promising applications of ML in
heterogeneous catalyst research is the emergence of machine
learning potentials (MLPs).14−20 This is attributed to the
development of well-defined materials structure databases,21

the rapid innovations of machine learning models, and iterative
learning algorithms. As shown in Figure 1, the construction of
MLPs through algorithms that learn the relationship between
atomic configurations and their potential energies based on
QM calculations, thereby enabling the efficient and accurate
prediction of energies and forces for new configurations.22,23

Various types of MLPs training models have been developed
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and widely applied. For example, the Behler-Parinello Neural
Networks (BPNN) is one of the pioneering neural network
approaches for potential energy surfaces.24 BPNN uses a high-
dimensional neural network to represent the potential energy
surface and employs symmetry functions to describe the local
environment of the atoms. The deep learning potentials,
including various architectures like Convolutional Neural
Networks (CNNs), Graph Neural Networks (GNNs), and
Recurrent Neural Networks (RNNs),25 can model complex
potential energy surfaces. For instance, DeePMD utilizes deep
learning techniques to predict atomic forces.26 There are also
other types of MLPs, including Gaussian Approximation
Potentials (GAP),27−30 which uses Gaussian process regression
to interpolate between known atomic configurations; Spectral
Neighbor Analysis Potential (SNAP),31 which uses bispectrum
components of neighbor atoms to create a descriptor that is
input into a linear or nonlinear model; and Many-Body Tensor
Representation (MBTR), which uses many-body tensor
representations to describe the local chemical environment
of atoms etc.32−38

By using MLPs, it is now possible to perform global
optimizations that reliably produce a putative global minimum
structure at given conditions, providing a speed-up of 4 orders
of magnitude compared to DFT calculations. This efficiency
enables us to perform large-scale global optimization
algorithms like Stochastic Surface Walking (SSW),39 Genetic
Algorithms (GA),40 and Grand Canonical Monte Carlo
(GCMC)41 across thousands of compositions, tracking the
structural evolution of major low-energy surfaces, the structure
search process flowchart is illustrated in Figure 1. The resulting
surface structures, paired with DFT calculations, AIMD, and
microkinetic modeling, enable the evaluation of catalytic
performance and locate the in situ active sites, as shown in
the catalytic performance block in Figure 1.
This review presents an overview of recent achievements

using MLP-based methodologies for structural search and
active site determination in heterogeneous catalysis. We start
with an introduction to the underlying principles and training

of MLPs, followed by a review of different global optimization
algorithms for structural search. We also highlight several
prominent case studies in which MLP-driven methodologies
have discovered active sites in various heterogeneous catalysis
reaction systems. Current challenges and future perspectives
on the development of MLPs and their application to
heterogeneous catalysis are also presented.

2. MACHINE LEARNING POTENTIALS
The initial attempt to use ML methods to construct potential
energy surface can be traced back to the early 1990s.42

Sumpter et al. pioneered the use of an artificial neural network
model to predict anharmonic vibrational parameters for a
polymer’s PES in 1992.43 Three years later, Doren and co-
workers utilized a feed-forward neural network to model global
properties of potential PES in low-dimensional systems
depending on the positions of a few atoms.44 Their initial
tests of the neural network method to construct the H2/
Si(100)-2 × 1 potential achieved a mean absolute deviation
(MAD) of 1.7 kcal/mol. This result indicates that the method
is capable of making chemically accurate predictions of the
potential energy for systems with multiple degrees of freedom.
Although significant progress has been made in developing
machine learning potentials during this period, the iteration
and optimization of MLPs did not achieve rapid development
as expected in the following ten years. This progress was
hindered by bottlenecks in computing resources, insufficient
training data sets, and limitations in neural networks and
theoretical methods at that time. At the beginning of the 21st
century, Hinton et al. proposed deep belief nets (DBNs) to
overcome the traditional neural network’s limitation on the
number of layers, marking the arrival of the deep learning
era.45 The advent of continuously improved machine learning
techniques, along with the advancement of GPUs and the
emergence of distributed computing, has accelerated the
prosperity of contemporary MLPs.46−50

Figure 1. Schematic representation of the construction of machine learning potentials and its application in catalytic research.
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2.1. Behler-Parrinello Framework-Based MLPs
The Behler-Parinello Neural Networks (BPNN) introduced by
Jörg Behler and Michele Parrinello in 2007 utilized a feed-
forward neural network architecture to fit a two-dimensional
PES, employs symmetry functions to transform the raw atomic
positions into a set of descriptors that are invariant to rotation,
translation, and permutation of identical atoms.24 The
structure of the BPNN neural network is shown in Figure
2a. This network contains an input layer to generalize system
coordinates and an output layer to yield associated energy, and
the atomic energies depend on the local chemical environment
within a cutoff radius. Between the input and output layers,
there are one or more hidden layers; the simple neural network
denoted as Si has been used as a subnet. For high-dimensional
potential energy surfaces, radial symmetry G1 function and
angular symmetry function G2 are applied to construct the total
energy E of the system as a sum of atomic energies Ei, and the
expression is as follows:
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This model was used to perform molecular dynamics (MD)
simulations on the radial distribution function (RDF) of a
silicon melt at 3000 K. The performance of the BPNN model
only has a small difference when compared with DFT results,
while other empirical potentials show significant deviations, as
illustrated in Figure 2b. The accuracy and broad applicability of
this model have been validated through numerous subsequent
applications across various systems.51,52 However, there are
major limitations of BPNN schemes. First, BPNN needs to be
enhanced in terms of dimensionality.53 The recent advance-
ments in High-Dimensional Neural Network Potentials
(HDNNPs) compared to BPNNs include more refined
descriptors of the atomic environment and optimized network
architectures.54,55 These advancements make use of many-
body atom-centered symmetry functions (ACSFs) to describe
the atomic environments and a set of atomic neural networks
to connect the descriptor vectors to energies.56 This enables a
better capture of the interactions between atoms, ultimately
improving the accuracy of the model.14 Second, the BPNN
symmetry functions are specific to each system, and the atomic
energies of atoms from different elements are calculated by
using different NNs. To address this limitation, SingleNet is
proposed as a modified version of BPNN.57 SingleNet shares
weights for the nonlinear layers among different elements. The
weighted symmetry functions evolved from eqs 2-3. As shown
in Figure 2c, its network is designed to facilitate the transfer of
knowledge between atoms. This approach can notably
accelerate the training process, decrease the necessary amount
of training data, and still maintain moderate accuracy
compensation. Liu et al. utilized a high-dimensional neural

Figure 2. (a) The schematic of standard HDNNPs. (b) Radial distribution function (RDF) of a silicon melt at 3000 K was obtained using a cubic
64-atom cell from BPN, other neural network (NN) potentials, and density-functional theory (DFT) (Left). The difference between the energies
predicted by the BPNN and the recalculated energies obtained from density-functional theory (DFT) for the initial and final structures in each step
of a metadynamics simulation of bulk silicon (Right). Reproduced from ref 24. Copyright 2007 American Physical Society. (c) The schematic of
SingleNet. Reproduced from ref 57. Copyright 2020 American Chemical Society. (d) Scheme for LASP implementation of the Behler-Parinello-
type NN. Reproduced from ref 59. Copyright 2017 The Royal Society of Chemistry.
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network (HDNN) in their stochastic surface walking (SSW)
method to provide an efficient and predictive platform for
large-scale computational material screening.58 The neural
network architecture is shown in Figure 2d. They incorporated
the stress tensor into the performance function during neural
network training, allowing for the simultaneous fitting of
energy, forces, and the stress tensor. This approach can help
avoid overfitting, produce more accurate forces, and ultimately
improve predictive ability.59 So far, BPNNs have undergone
various optimizations to enhance their performance, accuracy,
and applicability.60,61

2.2. Deep Learning Potentials

The Behler-Parinello neural networks were a significant
advancement in utilizing machine learning for predicting the
potential energy. However, they were built on relatively
“shallow” neural networks instead of deep architectures. The
first widely recognized potential of deep learning is arguably
the Deep Potential (DP) model in the Deep Potential
Molecular Dynamics (DeePMD) method, developed by
Wang et al.62 Introduced around 2017, the DP model utilized
deep neural networks to learn the potential energy and forces
of atoms in a system directly from ab initio data. The deep
learning architecture enables the model to capture complex,
high-dimensional relationships in the data, making it a
powerful tool for molecular dynamics simulations. DeePMD
overcomes the limitations associated with auxiliary quantities
such as symmetry functions or the Coulomb matrix. Instead of
handcrafted symmetry functions, DeePMD uses a different
approach to describe the local environment of atoms by
employing a more flexible and general representation learned
by the neural network itself.63 The descriptors in DeePMD are
learned features that are automatically extracted from the raw
coordinates of the atoms during the training process. This is
achieved through the use of embedding networks that map the
local atomic environments to a high-dimensional feature space.
The learned descriptors are optimized to capture the relevant
information for predicting energies and forces, which can
enhance generalization and transferability.
As mentioned above, the DeePMD method is trained end-

to-end, meaning that the input features (atomic positions) are
directly mapped to the output quantities (energies and forces)
without the need for handcrafted intermediate descrip-
tors.26,64−66 DeePMD uses a local environment representation
for each atom, which allows the model to capture the physics
of interactions within the cutoff radius Rc. This locality ensures
that the model scales well with system size. The potential
energy of each atomic configuration is represented in eq 1,
where Eiis determined by the local environment of atom i
within a cutoff radius Rc. The local coordinate information Dij

is represented as 1/Rij, and serves as input of a deep neural
network, which return Ei in output, as illustrated in Figure 3a.
The neural network as shown in Figure 3b is also designed to
be invariant to translation, rotation, and permutation of
identical atoms, which are fundamental symmetries in physics,
as mentioned before. This invariance is crucial for the model to
make physically consistent predictions. DeePMD represents a
true deep learning approach, leveraging the advances in deep
neural networks that have been successful in other domains
such as image and speech recognition. It has set the stage for
subsequent developments in deep learning potentials and has
been applied to a variety of systems, from simple molecules to
complex materials.
2.3. Embedded Atom Neural Network Potentials

An embedded atom neural network (EANN) was proposed by
Zhang et al.67 The EANN utilizes a symmetry-invariant
embedded density descriptor inspired by the empirical
embedded atom method (EAM) model as the atomic
representation. It employs a deep neural network as a
regressor, which can implicitly contain the three-body
information without requiring an explicit sum of the conven-
tional costly angular descriptor, making it highly efficient. This
model has been demonstrated to achieve better efficiency in
accelerating MD and spectroscopic simulations at the ab initio
level of accuracy.
In the EAM framework, the embedding energy can be

approximated as a function of the scalar local electron density
and an electrostatic interaction. Therefore, the total energy of
an N system can be expressed as
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where Fi is the embedding function, Øij represent the
electrostatic interaction between atoms. In EANN, to improve
the representation of the embedded density and the function F,
the distance r between the central atom and its neighbor can
be described by the same type of Gaussian-type functions
(GTOs) as
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where α and r are parameters that determine radial distribution
while lx + ly + lz = L captures the angular distribution similar
to atomic orbitals. The complete atomic representation
denoted as embedded atomic density is calculated by taking
the square of the linear combination of ϕ from neighbor atoms
as

Figure 3. (a) Schematic plot of the neural network input for the environment of atom i, taking water as an example. (b) Schematic plot of the
DeePMD model. The frame in the box is the zoom-in of a DNN. Reproduced from ref 62. Copyright 2018 American Physical Society.
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where cj is equivalently an element-dependent coefficient. This
representation only requires α, rs, and L as hyperparameters, as
a cosine type cutoff function is applied to each orbitals making
the interaction decay to zero and approaching rc smoothly.
Replacing the F with an atomic NN, eq 1 can be rewritten as
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where ρi represents a set of local atomic density descriptors.
The density-like descriptors rely solely on Cartesian
coordinates, eliminating the need to classify two-body and
three-body terms, which makes it efficient for programming.
The architecture of the EANN is illustrated in Figure 4a.
In order to incorporate complete many-body correlations in

the EANN model, Zhang et al. proposed a Recursively
Embedded Atom Neural Networks (REANN) that integrates
the message-passing concept into a well-defined three-body
descriptor to incorporate some nonlocal interactions beyond
the cutoff radius without explicitly computing high-order
terms.68,69 Take CH4 as example, Figure 4a shows how the
density descriptor is recursively embedded. The orbital
expansion coefficient cj should vary with the molecular
configuration, to cast this physical concept into the descriptor
one way is to make cj itself a function of the jth atom’s
neighbor environment. The orbital coefficient is recursively
embedded as

= [ ]c g c r( , )j
t

j
t

j
t

j
t

j
t1 1 1 1

(8)

where cjt − 1 and rjt − 1 are the collections of orbital coefficients
and atomic positions in the neighborhood of the central atom j
in the (t-1)th iteration. As orbital coefficients are expanded, the
number of three-body functions doubles in each iteration until
the last environment-independent ones, as illustrated in Figure
4b. Then, the higher-order correlations are incorporated in this
recursion by implementing cji into the embedded density

descriptor. It is worth noting that REANN can be easily
adapted to enhance other complex many-body descriptors
without changing their basic structures. For instance, this can
be achieved by adjusting the atomic weights of the weighted
atom-centered symmetry functions based on their local
environment or by incorporating learnable coefficients into
the DeepMD descriptors.70

3. ACTIVE LEARNING IN MLPS TRAINING
In this section, we introduce the popular training protocols of
MLP, active learning. Active learning, a machine learning
strategy in the realm of supervised learning, is designed to
automatically sample, select and label new data with the goal of
efficiently generating a diverse and relevant data set to train a
more robust ML model.71 The core idea of active learning is
that the model can actively identify and request the labels of
the data points that are most helpful for improving its
performance. Thus, active learning is particularly suitable for
situations where the training data set is difficult and expensive
to obtain. In materials science and molecular simulation. MLPs
typically perform poorly in extrapolation due to a limited data
distribution. If the training data do not cover all areas of the
PES of interest, the MLP will struggle to make predictions in
regions not represented in the training set because the model
has not learned the characteristics and patterns of those areas.
When applying MLP to optimize an extrapolative config-
uration, it could result in structures and energies that are not
physically realistic.72 One solution to address this issue is to
iteratively update the MLP during the structure search in an
on-the-fly manner by continuously incorporating extrapolative
configurations into the training set. This approach not only
accelerates the structure search but also helps in the
construction of a highly accurate and transferable MLP.
So far, active learning is widely applied to efficiently generate

training data, avoiding the need for large, expensive first-
principle calculations to obtain high-performance MLPs.73−77

Xu developed an efficient active learning pipeline named
Generating Deep Potential with Python (GDPy), which aims
to automate the structure exploration and the model training
for MLPs.78 The workflow is shown in Figure 5a. The iterative

Figure 4. (a) Schematic plot of the EANN neural network input for the environment of atom i, taking water as an example. Reproduced from ref
130. Copyright 2019 American Chemical Society. (b) Schematic plot of the REANN model. The frame in the box is the zoom-in of a DNN.
Reproduced from ref 68. Copyright 2021 American Physical Society.
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active learning procedure is embedded with various exploration
algorithms, model uncertainty estimation, and descriptor-based
selection procedures to construct an efficient active learning
pipeline. Jinnouchi et al. summarized the on-the-fly generation
of interatomic potentials for large-scale atomistic simulations
using active learning schemes. As illustrated in Figure 5b, a

MLP is generated on the fly during an MD simulation.79 The
core of this workflow is to utilize the current MLP for
predicting energy, forces, stress tensor components, and
uncertainty. The predicted uncertainty is estimated to
determine whether to perform a first-principles calculation or
not. If the model decides not to carry out the first-principles

Figure 5. (a) Schematic of the workflow of GDPy. Reproduced from ref 126. (b) Schematic of machine-learning force field generation by active
learning on the fly during an MD simulation. Reproduced from ref 79. Copyright 2020 American Chemical Society. (c) Schematic plot of one
iteration of the DP-GEN scheme, taking the Al−Mg system as an example. Iterative steps of exploration with DPMD, labeling, and training are also
illustrated. Reproduced from ref 80. Copyright 2019 American Physical Society.
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calculation, the predicted energy, forces, and stress tensor
components are used to update the atomic positions and
velocities. Otherwise, the first-principal calculation is carried
out, and the resulting structural data set is added to the
reference data sets. DeepMD also has a built-in active learning
framework known as Deep Potential Generator (DP-
GEN)63,80 to automate the creation of training data sets for
molecular dynamics simulations. Illustrated in Figure 5c, it
initiated with a basic model of the MLP, DP-GEN performs
molecular dynamics simulations to explore atomic config-
urations, identifying areas where the model’s predictions are
uncertain due to insufficient learning. These configurations are
then subject to DFT calculations to generate accurate data
labels for retraining the model, with iterating this process to
enhance model accuracy and transferability.

4. ALGORITHM AND METHOD IN CATALYST
STRUCTURE PREDICTION

In heterogeneous catalysis, the composition, size, and
morphology of the catalyst surface may change during reaction
conditions, leading to the emergence of various electronic and
geometric structures that determine the intrinsic activity and
selectivity of catalysts.81−84 For example, catalysts with
different crystal phases have varying symmetries and could
expose very different facets with distinct electronic and
geometrical properties.85−87 These differences can significantly
influence the activity, selectivity of the active sites, and the site
density.88 Experimental techniques and molecular modeling
methods using electronic structure methods can model the
equilibrium structures of catalysts with acceptable accuracy.89

However, it remains a significant challenge to determine
structures directly under extreme conditions.90 Therefore, in
designing new catalysts, research on catalytic mechanisms and
catalyst screening under reaction conditions utilizing crystal
structure prediction (CSP) methods has been extensively
explored.91−97

4.1. Stochastic Surface Walking Method

The emergence of software packages like LASP (Large-scale
Atomistic Simulation with neural network potentials) is driven
by the increasing overlap between ML and computational
chemistry.98 The LASP software project initiated by Liu et al.
in early 2018 aims to develop a single package for improved
usability by merging two major simulation tools: the global
PES exploration-based stochastic surface walking (SSW)
method and the fast PES evaluation using global neural
network (G-NN) potential developed by their group.59

The SSW method was designed as a promising solution to
explore the complex potential energy surface (PES) of
materials for the automatic prediction of unknown material
structures without relying on any experimental knowledge. The
SSW method is based on the concept of bias-potential-driven
dynamics99 and Metropolis Monte Carlo targeting for rapid
exploration of the PES. The bias-potential-driven dynamics
originate from the bias-potential-driven constrained Broyden
dimer (BP-CBD) method used for TS searching in complex
catalytic systems by applying a bias potential in a constrained
manner.100 The SSW algorithm utilized a small step-size in
structure displacement to explore both minima and saddle
points on the PES in an unbiased manner. The climbing
mechanism incorporates bias potentials as shown in eqs 9 and
10 to overcome the barrier between minima, enabling the
smooth structural configuration to move on PES from a local
minimum to a high-energy configuration along one random
mode direction and drive the system toward saddle points, as
illustrated in Figure 6a.101 The Metropolis Monte Carlo
scheme in the structure selection module is used to accept or
reject the new minimum at the end of each SSW step.
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Figure 6. (a) Scheme of the SSW-NN. (b) Self-learning procedure of the global NN potential. Reproduced from ref 101. Copyright 2019 AIP
Publishing. (c) Architecture and modular map of LASP code. Reproduced from ref 98. Copyright 2019 Wiley Periodicals, Inc.

Precision Chemistry pubs.acs.org/PrecisionChem Review

https://doi.org/10.1021/prechem.4c00051
Precis. Chem. 2024, 2, 570−586

576

https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig6&ref=pdf
pubs.acs.org/PrecisionChem?ref=pdf
https://doi.org/10.1021/prechem.4c00051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Another key simulation tool in LASP software is the SSW-
NN method, which generates G-NN potentials for performing
DFT-level accuracy calculations. In essence, the G-NN
potentials are trained by learning from the first-principles
data set of the global PES generated from SSW global
optimization. A self-learning procedure is established for
obtaining G-NN potentials, as shown in Figure 6b. It begins
by training a neural network potential from a small collection
of training data sets obtained by short-time SSW sampling for
small systems based on DFT calculations, followed by
recalculation with a high-accuracy DFT setup. Next, neural
network potential is trained to carry out extensive SSW global
optimization for a variety of complex systems. Then, a small
data set with diverse structures on PES from previous SSW
optimization was screened out, and high-accuracy setup DFT
was used to recalculate the data set, and then it was added to
the training data set for a new iteration of NN potential
update. Hundreds of iterations are needed to obtain a
transferable G-NN potential with acceptable accuracy, in
terms of energy and forces.
The combination of the SSW with G-NN potential has

solved many challenging problems, ranging from structure
determination to reaction pathway prediction, due to its
strengths in sampling unbiasedly and globally in multidimen-
sional PES for complex materials.102,103 Although the SSW-NN
method has proven to be a key feature that distinguishes LASP
from other packages, LASP is now evolving toward a platform-
based software to provide solutions for an even wider range of
simulation purposes. The overview of LASP architecture is
shown in Figure 6c. A large set of powerful simulation
techniques has been integrated into the LASP platform. For
the energy and force evaluation, interfaces for first-principles
and force field packages are incorporated in addition to the G-
NN potential. In terms of the PES exploration, LASP has
implemented various local/global geometry optimization and
transition state search methods as well as incorporated
molecular dynamics (MD) functionalities.
4.2. Genetic Algorithm

The Global Optimization (GO) algorithm is a crucial
component of the structure prediction workflow.104 It is
utilized to explore a vast number of energy minima on a high-
dimensional energy surface, aiming to find potential crystal
structures with the lowest global energy under given chemical
compositions and external conditions. The number of potential
energy minima increases exponentially with the system size.
Therefore, structure prediction involves finding the global
minimum in a vast search space. So far, many optimization
methods, such as random sampling,105 basin-hopping,106

minima hopping,107 simulated annealing,108 metadynamics,109

and evolutionary algorithms,110 have been applied. Among
them, genetic algorithms (GAs) are metaheuristic optimization
algorithms inspired by biological evolution, such as natural
selection, mutation, and reproduction.40,111−116 The basic
steps of a GA begin by initializing a population. A set of crystal
structures is randomly generated or seeded with specific
structures. Symmetry constraints can be added to ensure
diversity. The energy of each crystal structure is evaluated
using first-principles calculations or other accurate computa-
tional methods, and this energy serves as the fitness of the
structure. Then, select the structures with higher fitness to be
the parents for the next generation, which allows the genetic
information on the fittest structures to be passed on to future

generations. New crystal structures are generated by simulating
the crossover and mutation processes of biological genetics.
Crossover involves combining features of two “parent”
structures to create “offspring” structures, while mutation
involves randomly altering certain features within a structure,
as illustrated in Figure 7. The newly generated structures, along

with the selected parent structures, form the new generation.
The above process was iterated to perform an extensive local
search until it reached the convergence criterion. This process
can be highly parallelized because the energy calculation for
each crystal structure is independent. The application of
genetic algorithms in crystal structure prediction has proven to
be very effective, especially in cases where the structures are
highly complex or the potential structure space is vast.
In the past decades, many GAs have been released that can

be used for crystal structure prediction. The Universal
Structure Predictor: Evolutionary Xtallography (USPEX) is
probably the most widely applied method, gaining widespread
recognition and application in the field of materials science and
catalyst research.117 The USPEX code enables the prediction
of crystal structures under arbitrary pressure−temperature
conditions based solely on the chemical composition of the
material.118 It can also identify stable chemical compositions
and their crystal structures by using only the element names.
Beyond predicting stable structures, USPEX can find a wide
range of metastable structures and perform simulations with
different levels of prior knowledge, making it useful for
discovering low-energy metastable phases and surface
reconstructions for catalytic systems. Therefore, USPEX has
proven to be a powerful tool for predicting crystal structures in
cases where experimental data may be lacking or for conditions
that are difficult to achieve experimentally.119

4.3. Grand Canonical Based Method
Grand Canonical Genetic Algorithm. The Grand

Canonical Genetic Algorithm (GCGA) is an extension of the
traditional genetic algorithm specifically designed to handle
variable-composition problems. Unlike traditional GAs that
work with a fixed number of atoms, GCGA can dynamically
add or remove particles during the optimization process. This
flexibility enables GCGA to explore a wider range of crystal
structure compositions. That is achieved through the grand
canonical ensemble, which is a statistical ensemble that governs
the exchange of particles with a reservoir. This enables the
algorithm to simulate realistic conditions where the system can
experience gains or losses of particles, and where volume and
temperature can vary under specific conditions, leading to the
identification of stable structures.120 In addition, GCGA is
designed to optimize the free energy of a system, which is a

Figure 7. Schematic illustration of genetic algorithm crystal structure
prediction method in a 2D PES. Reproduced from ref 110. Copyright
2020 American Chemical Society.
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more general thermodynamic potential than a potential energy.
This is particularly important for systems in which the number
of particles can change, such as in chemical reactions or phase
transitions.
GCGA consists of several components, some of which are

similar to conventional GA as described in the above section,
while others are modified for the current grand canonical
(GC) approaches. For example, the mutation operation in GA
is typically carried out using various methods to alter the
positions of the atoms. These methods include random
displacement and reflection with a mirror symmetry. Two
additional operations are introduced in the current GCGA
method. They add and remove adsorbates to the system.
Taking the hydrogen-covered Pt cluster system as an example,
the “adding” operation is completed by inserting an additional
hydrogen atom in the vicinity of a randomly selected Pt atom
while ensuring it does not overlap with other atoms within
specified parameters.121 The “removing” operation is carried
out by randomly deleting a hydrogen atom from the system.
GCGA can be utilized to predict the stable and metastable

surface structures of catalysts under various environmental
conditions, such as varying temperatures and pressures, which
are common in catalytic processes.122 By allowing the number
of atoms to vary, GCGA can help to determine the optimal
composition of a catalyst that maximizes its activity, selectivity,
or stability. The GCGA provides a versatile and powerful
computational tool for designing and optimizing heteroge-
neous catalysts. It offers insights that can guide experimental
research and accelerate the development of more efficient
catalytic systems.

Grand Canonical Monte Carlo. Grand Canonical Monte
Carlo (GCMC) simulation is one of the methods with
reasonable computational cost for conducting large-scale
simulations. It allows the exploration of a variety of
configurations of catalyst surfaces to gain insights into surface
changes under real conditions.123,124 The off-lattice GCMC
has no constraints on the surface lattice, enabling consideration
of interactions between adsorbates and the surface lattice. This
is essential for studying amorphous surface systems through
simulation methods. The grand canonical ensemble is a
statistical mechanics framework used to describe the behavior
of a system that is in thermal and chemical equilibrium with a
much larger system, known as a reservoir.120 This ensemble is
particularly useful for describing systems that can exchange
both energy and particles with the reservoir. Therefore, the
GCMC allows the number of particles in the system to
exchange with the environment during the simulation, making
it particularly suitable for studying catalytic activities such as
adsorption, desorption, and phase equilibria. This ensemble is
characterized by three fixed parameters: temperature (T),
volume (V), and chemical potential (μ). In each step of a
GCMC simulation, the system interacts with an external
reservoir through two actions: the move action and the
exchange action. The probability of accepting an attempted
“move” step is

=P emin(1, )move
U k T/ B (11)

The exchange step can be further divided into insertion and
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The conventional GCMC simulation can be time-consum-
ing due to a large number of attempts that generate high-
energy configurations with extremely low acceptance proba-
bilities.125 Therefore, realistic modeling requires comprehen-
sive exploration of the PES at DFT-level accuracy. To address
the complexity among all of these distinct systems, MLPs are
promising methods due to their near-DFT accuracy and low
computational cost. Recent studies have highlighted the
successful application of MLPs in conducting large-scale
grand-canonical Monte Carlo (GCMC) simulations. Examples
include the EANN potential accelerated GCMC using the
open-source package GDPy126 and the GCMC/SSW-NN
simulation conducted by Li et al.41,127

5. APPLICATIONS OF MLPS FOR HETEROGENEOUS
CATALYSIS

The recent advancements in combining MLPs with crystal
structure prediction methods have been extensively applied for
high-throughput screening of catalytically active phases and
sites.128 Taking the theoretical study of the Eley−Rideal
recombination of hydrogen atoms on the Cu(111) catalyst
surface as an example, the reaction between incident H/D
atoms and precovered D/H atoms on Cu(111) is the research
focus of this catalytic system.129 The detailed experimental
data of the final state-resolved for this reaction have long been
accessible. However, theoretical simulation has been hindered
by the high cost of computational resources required to
conduct extensive AIMD and the limitations of the theoretical
models. The highly efficient EANN is utilized to train MLP
that consider all molecular and surface degrees of freedom.130

It enables a comprehensive analysis of the reaction dynamics
through extensive quasiclassical molecular dynamics simula-
tions, incorporating the excitation of low-lying electron−hole
pairs (EHPs). The results demonstrate a good agreement with
experimental data. This level of detail extends beyond what
was previously possible with other theoretical approaches,
enabling quantitative comparisons with the experimental data.
In addition, the EANN MLP was used to study the
equilibration dynamics of hot oxygen atoms following the
dissociation of O2 on Pd(100) and Pd(111) surfaces, as
reported by Lin et al.131 The EANN provides a comprehensive
and scalable description that can simulate the interactions
between O2 and O within different Pd supercells more
efficiently. It allows MD simulations to be as accurate as AIMD
but orders of magnitude faster, providing detailed insight for
understanding experimental findings and equilibration dynam-
ics at a microscopic level. The results indicate that the
previously recognized ballistic movement of hot O atoms on
Pd(100) was an accidental outcome of an ideal initial
molecular orientation and surface configuration. This study
has also shown that the MLP can accurately describe a variety
of supercell sizes with first-principles accuracy, making it
suitable for future studies of dynamic processes on different
surfaces and under various initial conditions. The comparison
of minimum energy paths for O2 dissociation on Pd(100) and
Pd(111) obtained by EANN PES and DFT is shown in Figure
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8a. This work represents a significant advancement in
modeling the dynamics of surface reactions using MLPs,
providing a more comprehensive insight into the equilibration
process of reactive species on metal surfaces to enhance
theory-experiment agreement. Similarly, the investigation of
the postdecomposition dynamics of formate (HCO2) on
catalyst surfaces of Cu demonstrated the application of EANN
MLP in classical trajectory calculations.132 The simulation
results agree with available experimental measurements,
revealing the key role of the transition state in the energy
disposal of the products in this surface reaction. The accuracy
of MLP is comparable to DFT within 10 meV, the minimum
energy paths of HCO2 decomposition are shown in Figure 8b.
This research contributed to a fundamental understanding of

the mechanisms of catalytic reactions catalyzed by copper and
highlights the importance of considering the structural aspects
of catalyst surfaces in the design and optimization of catalytic
processes.
Furthermore, the scheme of MLPs accelerated structure

search using optimization algorithms such as genetic
algorithms (GA), followed by DFT validation, has emerged
as an effective method for screening thermodynamically
favored catalyst surface structures under reaction conditions.72

For example, Han et al. utilized EANN MLPs paired with an
active learning procedure in an iterative process to accelerate
GA-based global optimization. This was done to identify the
most stable surface configurations of ZnO with various
concentrations of oxygen vacancies (OVs).133 Observed from

Figure 8. (a) Minimum energy paths of O2 dissociation on Pd(100) and Pd(111) obtained from the EANN MLP and DFT. Reproduced from ref
131. Copyright 2023 American Chemical Society. (b) Minimum energy paths of HCO2 decomposition on relaxed Cu(111), Cu(100), and
Cu(110) surfaces optimized with DFT and EANN MLP. Reproduced from ref 132. Copyright 2023 American Chemical Society.

Figure 9. (a) Pt catalyst surface structure studied utilize Large-Scale machine learning potential-based GCMC. Reproduced from ref 78. Copyright
2022 American Chemical Society. (b) Changes of Ea on the structure with increasing CCr and COV based on the on-grid (left) and off-grid (right)
strategy. (c) The optimized TSs of C−O bond dissociation on the ZnO surface with Cr4.2%OV0.33 and Cr4.2%OV0.67. Reproduced from ref 134.
Copyright 2023 American Chemical Society.

Precision Chemistry pubs.acs.org/PrecisionChem Review

https://doi.org/10.1021/prechem.4c00051
Precis. Chem. 2024, 2, 570−586

579

https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/prechem.4c00051?fig=fig9&ref=pdf
pubs.acs.org/PrecisionChem?ref=pdf
https://doi.org/10.1021/prechem.4c00051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the simulation results, the surface structure transitions from the
wurtzite to body-centered-tetragonal phases in the presence of
OVs. It was found that the ZnO(101̅0) surface with 0.33 ML
monolayer (ML) OVs is the most stable phase with a
formation energy of −0.30 eV under the experimental
conditions. The results show that the catalytic activity of
intrinsic sites is almost constant, while the activity of the OV
sites is strongly dependent on the concentration of OVs. This
comprehensive study provides new insights into the role of
oxygen vacancies in the catalytic processes of ZnO surfaces and
demonstrates the potential of combining ML techniques with
first-principles simulations to accelerate the discovery and
optimization of catalytic materials.
Further advancement was made by Xu et al.; his work

focused on the oxidation of large-scale flat and stepped PtOx
surfaces during the catalysis process in real conditions. The
EANN MLP is utilized to conduct GCMC simulations because
off-lattice GCMC has no limits on the surface lattice and is
more suitable for investigating the oxidation process. The
surface structure of oxidized Pd catalyst is shown in Figure 9a.
This approach is typically not feasible with expensive
traditional ab initio calculations and is hindered by technical
limitations in experiments, as most experimental studies have

examined the surface oxidation under ultrahigh vacuum
conditions, which may differ significantly from real con-
ditions.78 The observations in this work not only consist of
existing experimental observations and DFT calculations on
several key PdOx intermediates, such as Pt2O6 strips and
PtO4 square planar, but also reveal the formation mechanism
of surface oxide formation on Pt without the need to manually
construct a surface model. It provides insight into oxidation on
other metal surfaces and demonstrates the capabilities of MLPs
in large-scale simulations, making it a powerful tool to
investigate realistic structures and the formation mechanisms
of complex systems. This methodology has also been applied
to search for ZnO and Cr-doped ZnO catalytic systems under
reactive conditions.134 The complexity of their structures poses
significant challenges for traditional approaches, both exper-
imental and theoretical. This study successfully investigates Cr-
doped ZnO (101̅0) under different ratios of Cr and oxygen
vacancies. The overall performance reached a Root Mean
Square Error (RMSE) in the energy of 0.02 eV/atom. The
activation energy for CO is calculated using DFT on different
Cr-doped ZnO (101̅0) surfaces to investigate the influence of
metal dopants and oxygen vacancies on syngas conversion over
metal oxides. The results in Figure 9b, c show that the CO

Figure 10. (a) Ternary phase diagram of Zn−Cr−O. The spinel ZnCrO phases in the red dashed triangle are thermodynamically allowed. (b)
Formation energy of ZnCrO phases in the red dashed area of (a). Reproduced from ref 138. Copyright 2019 Springer Nature Limited. (c)
Structure after 2 ns MD simulation at 673 and 1073 K. (d) The energy variations against the MD simulation time at different temperature for O-
defective Zn3Cr3O8 (0001) surface with the initial OV concentrations of 0.25 ML. (e) Variations of the surface Cr concentration. Reproduced from
ref 139. Copyright 2023 Elsevier Inc.
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activation energy decreases significantly with an increasing
number of oxygen vacancies, which can be attributed to the
geometry of the reaction site. This study demonstrates the
effectiveness of the state-of-the-art method and provides
deeper insights into the concentration and distribution of
oxygen vacancies for syngas conversion.
Similar to the GCMC, the GCGA method also operates

within the grand canonical ensemble framework. However,
GCMC is a sampling method aimed at calculating the
equilibrium properties of a system, whereas GCGA is an
optimization technique focused on finding the most stable
configurations. Sun et al. innovatively applied GCGA
combined with DFT calculations to explore the ensemble of
low free energy structures of hydrogenated Pt8 clusters on two
surfaces: α-Al2O3(0001) and γ-Al2O3(100), under different
hydrogen chemical potentials.121 Determination of the
structure of the PtnHx cluster under specific conditions is
challenging because the hydrogen coverage of the small Pt
cluster varies strongly with temperature and hydrogen
pressure. The standard approach, which explores each coverage
independently and then evaluates the phase diagram based on
the optimal geometry at different compositions, has limitations.
The limitations may lead to phases that are far from realistic
and may require simulations to use significant computational
resources. Therefore, the various reconstructions of Pt8Hx on
each support have been simulated using the GCGA method.
The results show that the different supports do not
significantly change the optimal hydrogen coverage on the
cluster but induce different morphological transitions. This
provides insights into the origin and strength of alumina
support-Pt cluster interactions and their impact on the
structure and coverage of small Pt clusters under hydrogen
pressure. This method has also been applied to study the
hydrogen-induced restructuring of Cu(100) and Cu(111)
under electrocatalytic reduction conditions and achieved
excellent performance.135

The SSW-NN method, as implemented in the LASP code,
has been successfully applied in numerous heterogeneous
catalysis systems to investigate the surface status of catalysts
under reaction conditions, in situ active site searching, and
reaction rate studies since it was first proposed in 2018. The
zinc−chromium oxide (ZnCrO) catalyst for the conversion of
syngas has been extensively studied using the MLPs-based
method.136 Previous studies have shown that even small
changes in the composition of Zn:Cr in ZnxCryOz can lead to
dramatically different catalytic properties.137 To investigate the
mechanism of catalytic syngas conversion over ternary ZnCrO
catalysts at different Zn:Cr ratios, Ma et al. employed the SSW-
NN approach to resolve complex ZnCrO structures, including
bulk, layer, and cluster compositions. They then calculated the
bulk phase diagram, the Ov phase diagram, and the formation
energy of thermodynamically allowed ZnCrO phases, as shown
in Figure 10 a,b.138 A planar [CrO4] site available at Zn:Cr in a
ratio above 1:2 is identified as the active center for methanol
production. This finding also provides a deeper understanding
of metal oxide alloy catalysts for hydrogenation reactions by
revealing the atomic structures, which were previously
unknown, even though its high catalyst activity has been
experimentally verified. The study conducted by Ma et al.
utilized state-of-the-art GNN potential and SSW algorithm to
perform long-time MD simulations investigating the deactiva-
tion of zinc−chromium oxide (ZnCryOz) catalysts. Their
findings indicate that deactivation is caused by the formation of

subsurface Ov and migration of neighboring Zn/Cr cations.
This process leads to the disappearance of the [CrO4] active
site for methanol synthesis, resulting in a decrease in reaction
activity, the structure and MD results are shown in Figures
10c, d, and e.139

Another example is the study of Fischer−Tropsch Synthesis
(FTS) on a FeCx catalyst system. Liu et al. utilized the SSW-
NN global structure search method to identify the composition
and structure of thermodynamically favorable reconstructed
FeCx surfaces under different C coverages.140 They also
studied the mechanism of FTS, considering the reaction-
induced surface reconstruction powered by the machine-
learning-based transition state exploration (ML-TS) they
developed to efficiently expedite the exploration of the
extensive FT hydrocarbon reaction network on a series of
FeCx surfaces. Similar applications of SSW-NN methods have
also been reported in studies conducted on PdAg and Au/ZnO
catalyst systems.141,142

Moreover, to further enhance the efficiency, accuracy, and
scalability of MLPs in heterogeneous catalysis research, more
efforts have been made to combine the application of MLPs
with various optimization algorithms. A microkinetic-guided
machine learning pathway search (MMLPs) approach is
developed based on the G-NN SSW reaction sampling method
to resolve complex catalytic networks with many likely
intermediates at different surface coverages in an automated
way. A showcase of this method is the study of the
hydrogenation of the CO2/CO mixture on a Cu−Zn catalyst
surface. Their findings agree with previous isotope experi-
ments, indicating that the CO2 hydrogenation dominates
methanol synthesis instead of CO hydrogenation. CO plays a
role in helping to form the CuZn surface alloy, which occurs
preferentially at the step-edge site on Cu(211). On Cu(111),
CO can reduce the cationic Zn to form [−Zn−OH−Zn−],
exposing metal sites for methanol synthesis. The thermody-
namically favorable active phase of CuZn alloy and the
kinetically favorable pathway for CO2 hydrogenation are also
determined.143 A recent study by Chen et al. aimed to clarify
the active site of Ag-catalyzed ethene epoxidation, which has
remained unknown due to the lack of tools to probe this under
high-temperature and high-pressure conditions.144 They
demonstrated a machine learning-based automated search for
the Optimal Surface Phases (ASOP) method, which is a grand
canonical global optimization approach. The ASOP method is
implemented based on stochastic surface walking global
optimization using a global neural network potential. This
method can help identify the surface phase on Ag surfaces
under industrial reaction conditions. They found that a unique
O5 surface oxide phase grown on Ag (100) stands out from
more than three million structural candidates as the only phase
selectively producing ethylene oxide (EO). The O5 phase
contains a square-pyramidal subsurface oxygen and strongly
adsorbed ethene, which can selectively convert ethene to EO,
thereby offering high catalytic activity and selectivity.
The deep potential (DP) along with its accompanying

software suite, the DeePMD-kit, is predominantly utilized for
conducting molecular dynamics simulations and exploring the
properties of materials.145,146 In the realm of heterogeneous
catalysis research, the DP potential serves as a machine-
learning-driven alternative to conventional AIMD simulations,
offering a powerful tool for the precise and efficient
investigation of catalytic processes at the atomic level. Liu et
al. conducted deep potential molecular dynamics using
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DeePMD-kit interfaced with LAMMPS to capture the atomic-
scale dynamics of the metal-oxide interface of the Au/CeO2
and Au/SiO2 catalysts.

147 This study was conducted because
Au nanoparticles (NPs) on oxides were found to play an
important role in improving the catalytic performance for CO
oxidation. In this work, the researchers compared the
interaction behavior of Au nanoparticles with CeO2 and
SiO2. The results indicate that the metal affinity of active and
inert supports is the key descriptor relevant to the sintering
and deactivation of heterogeneous catalysts. This is consistent
with the experimental observations and the Sabatier principle
of the metal−support interaction for the design of sintering-
resistant metal nanocatalysts established recently. In the study
of CO oxidation on Pd(111), the DeePMD-kit is used to train
a neural network (NN) potential for the global optimization of
a genetic algorithm.148 They developed a self-adaptive
simulation workflow driven by first-principles microkinetic
modeling and genetic-algorithm-based global structural search
accelerated by MLPs. This workflow allows the identification
of the Pd(111) active phases at the kinetically steady state in
CO/O2 reaction mixtures, uncovering the structural and
compositional evolution of Pd(111) under reaction conditions,
which is a classic open problem. Their results demonstrate a
more realistic catalytic CO oxidation process that initiates with
the Pd(111) metal catalyst and concludes with a dynamically
stable PdO0.44 surface oxide. This oxide exhibits higher
catalytic activity for CO oxidation compared to Pd(111) and
overoxidized PdO catalysts. This work provides atomic-scale
insight into the transformation of catalysts and how their
activity can be altered accordingly.

6. SUMMARY AND PERSPECTIVES
In summary, this review provides an introduction to the basic
principles of MLPs, including theory, training protocols,
implementation, and their application in structure prediction
with a focus of recent research progress to search for the in situ
active sites in heterogeneous catalysis. MLPs, offering nearly 4
orders of magnitude faster computations than DFT, while
maintaining comparable accuracy, significantly broaden the
scope of systems that can be effectively analyzed. Coupled with
global optimization algorithms, MLPs enable systematic
exploration of realistic systems across vast structural spaces,
accommodating thousands of atoms. This review briefly
touches on recent research advancements, which by no
means represents an exhaustive list of all possible examples.
The application of MLPs has markedly advanced our
understanding of catalyst surface structure changes under
reactive conditions, and the nature of active sites and
elementary reaction steps.
However, several challenges remain. MLPs are highly

dependent on extensive, high-quality data sets for effective
training, which can be challenging to obtain, especially for
complex or less-studied systems. While crystal structure
databases like the Materials Project can provide initial
structures for MLP training, extensive sampling is still
necessary to build a robust training set. More recently,
specialized databases such as OC20/22 have emerged, tailored
to facilitate the development of machine learning models
capable of predicting catalyst properties.149−151 Additionally,
many MLPs, particularly those based on deep learning, operate
as “black boxes,″ which makes it challenging to comprehend
the physical principles they capture, leading to a lack of
interpretability Hence, there is advocacy for developing

physics-informed models, like SISSO, which initiate from
fundamental physical quantities.152 Furthermore, MLPs often
struggle with transferability, limiting their ability to generalize
beyond the chemical space covered by their training data,
which restricts their applicability to new systems or conditions.
To address this issue, strategies such as transfer learning and
delta learning are employed to enhance the generalizability of
MLPs.153 Additionally, more effective sampling methods, such
as SSW, which are discussed in this paper, are utilized to
achieve better coverage of the chemical space for better
robustness. Moreover, while MLPs are generally much faster
than ab initio methods, the training phase can be computa-
tionally intensive, and the efficiency of the models can vary.
Therefore, it is predictable that these existing challenges will
stimulate further development of methodology, training, and
implantation to expand the capabilities of MLPs, and pave the
way for even more accurate and broadly applicable models.
Looking ahead, the future of MLPs in heterogeneous

catalysis is poised for significant growth and innovation.
From a broader perspective, currently, two distinct integration
pathways exist for machine learning in catalysis: one involves
training entirely on experimental data, while the other relies on
calculated data. Each pathway presents unique challenges:
experimental data are often costly and biased toward successful
trials, whereas calculated data, though more abundant and
covering a broader chemical space, can be overwhelming in
volume and often involves too much simplification. With the
rapid development of new models, databases, and training
strategies, it is expected to yield more accurate and efficient
simulations of catalytic processes under realistic conditions,
effectively bridging the gap between microscopic under-
standing and experimental observations. Thus, we can envision
a hybrid farmwork wherein MLPs are used as pretrained
models, subsequently fine-tuned with experimental data to
accelerated discovery of novel catalysts with optimized activity
and selectivity, foreseeing a new era of catalyst design driven by
advanced computational insights.
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(37) Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Müller, K. R.;
Tkatchenko, A. Quantum-Chemical Insights from Deep Tensor
Neural Networks. Nat. Commun. 2017, 8 (1), 13890.
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Learned Interatomic Potentials by Active Learning: Amorphous and
Liquid Hafnium Dioxide. Npj Comput. Mater. 2020, 6 (1), 104.
(74) Vandermause, J.; Xie, Y.; Lim, J. S.; Owen, C. J.; Kozinsky, B.
Active Learning of Reactive Bayesian Force Fields Applied to
Heterogeneous Catalysis Dynamics of H/Pt. Nat. Commun. 2022,
13 (1), 5183.
(75) Yang, X.; Bhowmik, A.; Vegge, T.; Hansen, H. A. Neural
Network Potentials for Accelerated Metadynamics of Oxygen
Reduction Kinetics at Au−Water Interfaces. Chem. Sci. 2023, 14
(14), 3913−3922.
(76) Podryabinkin, E. V.; Shapeev, A. V. Active Learning of Linearly
Parametrized Interatomic Potentials. Comput. Mater. Sci. 2017, 140,
171−180.
(77) Vandermause, J.; Torrisi, S. B.; Batzner, S.; Xie, Y.; Sun, L.;
Kolpak, A. M.; Kozinsky, B. On-the-Fly Active Learning of
Interpretable Bayesian Force Fields for Atomistic Rare Events. Npj
Comput. Mater. 2020, 6 (1), 20.

Precision Chemistry pubs.acs.org/PrecisionChem Review

https://doi.org/10.1021/prechem.4c00051
Precis. Chem. 2024, 2, 570−586

584

https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1038/s41524-023-01007-6
https://doi.org/10.1038/s41524-023-01007-6
https://doi.org/10.1103/PhysRevB.42.9458
https://doi.org/10.1103/PhysRevB.42.9458
https://doi.org/10.1016/0009-2614(92)85498-Y
https://doi.org/10.1016/0009-2614(92)85498-Y
https://doi.org/10.1063/1.469597
https://doi.org/10.1063/1.469597
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1063/1.4961886
https://doi.org/10.1063/1.4961886
https://doi.org/10.1063/1.4961886
https://doi.org/10.1038/s42256-023-00716-3
https://doi.org/10.1038/s42256-023-00716-3
https://doi.org/10.1103/PhysRevB.92.045131
https://doi.org/10.1103/PhysRevB.92.045131
https://doi.org/10.1038/s41524-024-01278-7
https://doi.org/10.1038/s41524-024-01278-7
https://doi.org/10.1038/s41524-024-01278-7?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/sciadv.aav6490
https://doi.org/10.1126/sciadv.aav6490
https://doi.org/10.1126/sciadv.aav6490
https://doi.org/10.1016/j.commatsci.2015.07.046
https://doi.org/10.1016/j.commatsci.2015.07.046
https://doi.org/10.1016/j.commatsci.2015.07.046
https://doi.org/10.1039/C6CP05711J
https://doi.org/10.1039/C6CP05711J
https://doi.org/10.1039/C6CP05711J
https://doi.org/10.1002/pssb.200844219
https://doi.org/10.1002/pssb.200844219
https://doi.org/10.1002/pssb.200844219
https://doi.org/10.1021/acs.jctc.4c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-020-20427-2
https://doi.org/10.1038/s41467-020-20427-2
https://doi.org/10.1038/s41467-020-20427-2
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
https://doi.org/10.1021/acs.jpcc.0c04225?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04225?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c04225?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C8SC03427C
https://doi.org/10.1039/C8SC03427C
https://doi.org/10.1039/C8SC03427C
https://doi.org/10.1039/C7SC01459G
https://doi.org/10.1039/C7SC01459G
https://doi.org/10.1039/C7SC01459G
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1088/2632-2153/abfd96
https://doi.org/10.1088/2632-2153/abfd96
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.48550/arXiv.1805.09003
https://doi.org/10.48550/arXiv.1805.09003
https://doi.org/10.48550/arXiv.1805.09003
https://doi.org/10.48550/arXiv.1805.09003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/advs.202301020
https://doi.org/10.1063/5.0083669
https://doi.org/10.1063/5.0083669
https://doi.org/10.1063/5.0155600
https://doi.org/10.1063/5.0155600
https://doi.org/10.1038/s41467-023-42148-y
https://doi.org/10.1038/s41467-023-42148-y
https://doi.org/10.1103/PhysRevLett.127.156002
https://doi.org/10.1103/PhysRevLett.127.156002
https://doi.org/10.1103/PhysRevLett.127.156002
https://doi.org/10.1063/5.0080766
https://doi.org/10.1063/5.0080766
https://doi.org/10.1063/5.0080766
https://doi.org/10.1063/1.5019667
https://doi.org/10.1063/1.5019667
https://doi.org/10.1007/BF00993277
https://doi.org/10.1007/BF00993277
https://doi.org/10.1021/acs.jpclett.0c02357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c02357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41524-020-00367-7
https://doi.org/10.1038/s41524-020-00367-7
https://doi.org/10.1038/s41524-020-00367-7
https://doi.org/10.1038/s41467-022-32294-0
https://doi.org/10.1038/s41467-022-32294-0
https://doi.org/10.1039/D2SC06696C
https://doi.org/10.1039/D2SC06696C
https://doi.org/10.1039/D2SC06696C
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1038/s41524-020-0283-z
pubs.acs.org/PrecisionChem?ref=pdf
https://doi.org/10.1021/prechem.4c00051?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(78) Xu, J.; Xie, W.; Han, Y.; Hu, P. Atomistic Insights into the
Oxidation of Flat and Stepped Platinum Surfaces Using Large-Scale
Machine Learning Potential-Based Grand-Canonical Monte Carlo.
ACS Catal. 2022, 12 (24), 14812−14824.
(79) Jinnouchi, R.; Miwa, K.; Karsai, F.; Kresse, G.; Asahi, R. On-
the-Fly Active Learning of Interatomic Potentials for Large-Scale
Atomistic Simulations. J. Phys. Chem. Lett. 2020, 11 (17), 6946−6955.
(80) Zhang, L.; Lin, D.-Y.; Wang, H.; Car, R.; E, W. Active Learning
of Uniformly Accurate Interatomic Potentials for Materials Simu-
lation. Phys. Rev. Mater. 2019, 3 (2), 023804.
(81) Bunting, R. J.; Cheng, X.; Thompson, J.; Hu, P. Amorphous
Surface PdO X and Its Activity toward Methane Combustion. ACS
Catal. 2019, 9 (11), 10317−10323.
(82) Sumaria, V.; Nguyen, L.; Tao, F. F.; Sautet, P. Atomic-Scale
Mechanism of Platinum Catalyst Restructuring under a Pressure of
Reactant Gas. J. Am. Chem. Soc. 2023, 145 (1), 392−401.
(83) Artrith, N.; Kolpak, A. M. Understanding the Composition and
Activity of Electrocatalytic Nanoalloys in Aqueous Solvents: A
Combination of DFT and Accurate Neural Network Potentials.
Nano Lett. 2014, 14 (5), 2670−2676.
(84) Li, H.; Jiao, Y.; Davey, K.; Qiao, S. Data-Driven Machine
Learning for Understanding Surface Structures of Heterogeneous
Catalysts. Angew. Chem. 2023, 135 (9), e202216383.
(85) Sumaria, V.; Sautet, P. CO Organization at Ambient Pressure
on Stepped Pt Surfaces: First Principles Modeling Accelerated by
Neural Networks. Chem. Sci. 2021, 12 (47), 15543−15555.
(86) Cheng, X.; Wang, Z.; Mao, Y.; Hu, P. Evidence of the O−Pd−
O and Pd−O 4 Structure Units as Oxide Seeds and Their Origin on
Pd(211): Revealing the Mechanism of Surface Oxide Formation.
Phys. Chem. Chem. Phys. 2019, 21 (12), 6499−6505.
(87) Owen, C. J.; Xie, Y.; Johansson, A.; Sun, L.; Kozinsky, B.
Stability, Mechanisms and Kinetics of Emergence of Au Surface
Reconstructions Using Bayesian Force Fields. arXiv 2023, 07311
DOI: 10.48550/arXiv.2308.07311.
(88) Xie, W.; Xu, J.; Chen, J.; Wang, H.; Hu, P. Achieving Theory−
Experiment Parity for Activity and Selectivity in Heterogeneous
Catalysis Using Microkinetic Modeling. Acc. Chem. Res. 2022, 55 (9),
1237−1248.
(89) Chen, S.; Sun, J.; Chen, W.; Ren, Y.; Wang, J.; Yang, Y.
Molecular Dynamics Simulation of In Situ Polymerization: Chain
Conformation Transition. Macromolecules 2024, 57, 3c02577.
(90) Shi, X.; Lin, X.; Luo, R.; Wu, S.; Li, L.; Zhao, Z.-J.; Gong, J.
Dynamics of Heterogeneous Catalytic Processes at Operando
Conditions. JACS Au 2021, 1 (12), 2100−2120.
(91) Cheng, G.; Gong, X.-G.; Yin, W.-J. Crystal Structure Prediction
by Combining Graph Network and Optimization Algorithm. Nat.
Commun. 2022, 13 (1), 1492.
(92) Kim, S.; Noh, J.; Gu, G. H.; Aspuru-Guzik, A.; Jung, Y.
Generative Adversarial Networks for Crystal Structure Prediction.
ACS Cent. Sci. 2020, 6 (8), 1412−1420.
(93) Oganov, A. R.; Pickard, C. J.; Zhu, Q.; Needs, R. J. Structure
Prediction Drives Materials Discovery. Nat. Rev. Mater. 2019, 4 (5),
331−348.
(94) Wei, L.; Li, Q.; Omee, S. S.; Hu, J. Towards Quantitative
Evaluation of Crystal Structure Prediction Performance. Comput.
Mater. Sci. 2024, 235, 112802.
(95) Woodley, S. M.; Catlow, R. Crystal Structure Prediction from
First Principles. Nat. Mater. 2008, 7 (12), 937−946.
(96) Yang, F.; Cheng, G.; Yin, W.-J. Comparative Study of Crystal
Structure Prediction Approaches Based on a Graph Network and an
Optimization Algorithm. Sci. China Mater. 2024, 67 (4), 1273−1281.
(97) Musa, E.; Doherty, F.; Goldsmith, B. R. Accelerating the
Structure Search of Catalysts with Machine Learning. Curr. Opin.
Chem. Eng. 2022, 35, 100771.
(98) Huang, S.; Shang, C.; Kang, P.; Zhang, X.; Liu, Z. LASP: Fast
Global Potential Energy Surface Exploration.WIREs Comput. Mol. Sci.
2019, 9 (6), e1415.

(99) Shang, C.; Liu, Z.-P. Stochastic Surface Walking Method for
Structure Prediction and Pathway Searching. J. Chem. Theory Comput.
2013, 9 (3), 1838−1845.
(100) Shang, C.; Liu, Z.-P. Constrained Broyden Dimer Method
with Bias Potential for Exploring Potential Energy Surface of
Multistep Reaction Process. J. Chem. Theory Comput. 2012, 8 (7),
2215−2222.
(101) Ma, S.; Shang, C.; Liu, Z.-P. Heterogeneous Catalysis from
Structure to Activity via SSW-NN Method. J. Chem. Phys. 2019, 151
(5), 050901.
(102) Kang, P.-L.; Shi, Y.-F.; Shang, C.; Liu, Z.-P. Artificial
Intelligence Pathway Search to Resolve Catalytic Glycerol Hydro-
genolysis Selectivity. Chem. Sci. 2022, 13 (27), 8148−8160.
(103) Zhang, X.-J.; Shang, C.; Liu, Z.-P. From Atoms to Fullerene:
Stochastic Surface Walking Solution for Automated Structure
Prediction of Complex Material. J. Chem. Theory Comput. 2013, 9
(7), 3252−3260.
(104) Kolsbjerg, E. L.; Peterson, A. A.; Hammer, B. Neural-
Network-Enhanced Evolutionary Algorithm Applied to Supported
Metal Nanoparticles. Phys. Rev. B 2018, 97 (19), 195424.
(105) Wang, Y.; Lv, J.; Gao, P.; Ma, Y. Crystal Structure Prediction
via Efficient Sampling of the Potential Energy Surface. Acc. Chem. Res.
2022, 55 (15), 2068−2076.
(106) Ouyang, R.; Xie, Y.; Jiang, D. Global Minimization of Gold
Clusters by Combining Neural Network Potentials and the Basin-
Hopping Method. Nanoscale 2015, 7 (36), 14817−14821.
(107) Amsler, M.; Goedecker, S. Crystal Structure Prediction Using
the Minima Hopping Method. J. Chem. Phys. 2010, 133 (22), 224104.
(108) Doll, K.; Schön, J. C.; Jansen, M. Structure Prediction Based
on Ab Initio Simulated Annealing for Boron Nitride. Phys. Rev. B
2008, 78 (14), 144110.
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