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Abstract 

Background  Rheumatoid Arthritis (RA) is a chronic inflammatory disease that is primarily diagnosed and managed 
by rheumatologists; however, it is often primary care providers who first encounter RA-related symptoms. This study 
developed and validated a case definition for RA using national surveillance data in primary care settings.

Methods  This cross-sectional validation study used structured electronic medical record (EMR) data from the Cana-
dian Primary Care Sentinel Surveillance Network (CPCSSN). Based on the reference set generated by EMR reviews 
by five experts, three machine learning steps: ‘bag-of-words’ approach to feature generation, feature reduction using 
a feature importance measure coupled with recursive feature elimination and clustering, and classification using 
tree-based methods (Decision Tree, Random Forest, and Extreme Gradient Boosting). The three tree-based algorithms 
were compared to identify the procedure that generated the optimal evaluation metrics. Nested cross-validation 
was used to allow evaluation and comparison and tuning of models simultaneously.

Results  Of 1.3 million patients from seven Canadian provinces, 5,600 people aged 19 + were randomly selected. 
The optimal algorithm for selecting RA cases was generated by the XGBoost classification method. Based on feature 
importance scores for features in the XGBoost output, a human-readable case definition was created, where RA cases 
are identified when there are at least 2 occurrences of text “rheumatoid” in any billing, encounter diagnosis, or health 
condition table of the patient chart. The final case definition had sensitivity of 81.6% (95% CI, 75.6–86.4), specific-
ity of 98.0% (95% CI, 97.4–98.5), positive predicted value of 76.3% (95% CI, 70.1–81.5), and negative predicted value 
of 98.6% (95% CI, 98.0-98.6).

Conclusion  A case definition for RA in using primary care EMR data was developed based off the XGBoost algorithm. 
With high validity metrics, this case definition is expected to be a reliable tool for future epidemiological research 
and surveillance investigating the management of RA in CPCSSN dataset.
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Introduction
Rheumatoid arthritis (RA) is an inflammatory condition, 
which affects approximately 1% of the general population 
[1]. Although an RA diagnosis requires specialist assess-
ment, the involvement of family physicians (FPs) is key 
to its recognition and management. In general, FPs are a 
person’s first point of contact within the healthcare sys-
tem, they may also provide long-term management of 
symptoms while the patient waits specialist consultation, 
and are central to the management of RA in the context 
of related comorbid conditions [2]. Although most evi-
dence has examined the management of RA by special-
ists, there is a need to examine the services provided for 
RA in primary care [3].

The Canadian Primary Care Sentinel Surveillance Net-
work (CPCSSN) database provides a unique opportunity 
to study RA in Canadian community patient popula-
tions. It extracts and standardizes electronic medical 
record (EMR) data from 12 primary care research net-
works across Canada and restructures it for health ser-
vices research and epidemiology. CPCSSN provides an 
ideal data infrastructure to develop a case definition for 
RA relevant to the context of primary care [4]. Prior to 
the use of RA data from CPCSSN, a case definition is 
needed to identify cases. The aim of this paper is to use 
machine learning (ML) methods applied to many vari-
ables to develop a case definition to accurately distin-
guish RA cases and non-cases in the CPCSSN dataset. 
The cohort of people with RA managed in primary care 
settings identified by the case definition may then be 
used for future studies of the disease’s epidemiology and 
management.

Methods
Data source
The CPCSSN is a pan-Canadian collaboration of prac-
tice-based research and surveillance networks that col-
lects, formats, and merges patient-level primary care 
EMR data [5]. As of December 31, 2020, CPCSSN con-
tained data from two million de-identified primary care 
patients (including over 1.3 million adults aged 19+) and 
more than 1,300 primary care physicians’ practices across 
eight provinces. The database includes patient demo-
graphics, diagnoses (using the International Classifica-
tion of Diseases, Ninth Revision, Clinical Modification 
(ICD-9-CM) for recording diagnoses), prescribed medi-
cations, physical measurements (e.g., blood pressure, 
height, weight, BMI), physician billing claims, behavioral 
risk factors (e.g., smoking, alcohol use, physical activity), 
laboratory test results, referrals to specialists, and medi-
cal procedures. However, imaging data and clinical notes 
are excluded for confidentiality reasons.

The data for this study was sourced from patients’ 
EMR, capturing all available health data from their first 
visit up until 2020. While most of the data spans from 
2008 to 2020, it can include records dating back as far as 
1990, depending on the patient’s history.

Prescribed medications in the CPCSSN database 
include those prescribed by both primary care physicians 
and specialists, such as rheumatologists, as long as the 
prescriptions were documented in the patient’s chart by 
the primary care provider.

To date, CPCSSN has developed and validated case defi-
nitions for 28 diseases and health conditions with validation 
metrics for sensitivity, specificity, positive predictive value 
and negative predictive values all greater than 70% [6]. 
Increasingly, ML is being used to develop case definitions.

Study sample
Given that RA is a low prevalence condition, we expect 
very few true cases in our sample, which most seriously 
affected our sample size. Hence, to identify the number 
of charts required for the validation set of our sample, we 
used the Wald 95% Confidence Interval for sensitivity [7].

where Sn is the expected sensitivity of the case defini-
tion, c is the full width of the confidence interval for the 
validation metrics, and p is the expected prevalence of 
the disease within the sample.

A preliminary search for RA in the dataset using an 
ICD-9-CM code for RA (714*) yielded a prevalence esti-
mate of 0.8%. Using the formula above, to achieve vali-
dation metrics of at least 80% sensitivity while limiting 
the widest range of the 95% confidence interval to 10%, 
the minimum number of charts needed for the validation 
was estimated to be more than 300,000 charts, which was 
not practical. A practical option was to use a seeded sam-
ple with charts of patients judged highly likely to be RA 
cases (i.e., charts with at least two ICD-9 codes of 714) 
to create an artificial sample prevalence of approximately 
10% [8]. With this adjustment, the minimum number 
of charts needed was reduced to a more feasible num-
ber − 2,459. The same number of charts was used for 
algorithm training and testing. In total 5,100 CPCSSN 
records were selected at random, supplemented by 500 
‘probably positive’ CPCSSN records. The total sample 
was representative of the entire CPCSSN dataset with 
regards to sex, age groups, and the ratio of rural-to-urban 
dwellers. There was no limitation was placed to exclude 
patients with ‘referral to specialists’ from the cohort.

Number of charts required = 1.962
Sn(1− Sn)

c
2

2
p
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Reference set development
An expert panel consisting of 5 reviewers with experi-
ence of CPCSSN data, including a physiotherapist, reg-
istered nurse, physician, epidemiologist, and health care 
researcher, reviewed the 5,600 CPCSSN records in order 
to create a reference standard of labelled RA cases and 
non-cases.

Data were uploaded to a secured platform, so that 
reviewers could review the records assigned to them 
securely and independently. A manual (Supplementary 
1) to support the reviewers was developed by a practic-
ing rheumatologist (CB) prior to the review activity with 
modifications and additional explanations based on ques-
tions raised during the training sessions. All reviewers 
attended three training sessions led by CB. The initial two 
training sessions each consisted of 30 records that were 
reviewed as a group. The third training session included 
120 records that were reviewed independently. Review-
ers did not know if a chart was a “probable RA” case or 
not, and they were instructed not to attempt to make a 
diagnosis but rather to recognize cases that had already 
been diagnosed and documented by the family physi-
cians. Results from the third training session were used 
to calculate Cohen’s Kappa score to estimate interrater 
reliability and ensure that reviewers were consistent in 
their assessments of RA cases and non-cases [9].

Machine learning application
Case definition development and validation were com-
pleted using ML methods. The pipeline and nested 
cross-validation steps to train ML algorithms (Fig. 1) are 
described in more detail in our previous case definition 
development [10].

The ML consisted of the following procedures.

1.	 Preparation for algorithm validation : To ensure that 
algorithms used information only from the train-
ing dataset and to avoid data leakage, we randomly 
divided the reference set into two independent data 
subsets before applying any data manipulation meth-
ods [11]. The first subset (n = 2,778) used labelled 
data to train and test algorithms to recognize RA 
cases. The accuracy of the final case definition was 
then validated by studying its classification using the 
second labelled subset (n = 2,777).

The final case definition was validated using 
the validation dataset that was set aside from 
the start of this analysis. To validate the final 
case definition, we compared the agreement 

between the reference set and the simplified 
case definition and reported its sensitivity, 
specificity, PPV, and NPV.

2.	 Data pre-processing: We extracted many features for 
ML consideration including all possible single digit 
and combinations of texts and codes from different 
fields independently for the train/test set and the 
validation set. All features were derived from patient 
records within the training / testing set. Categorical 
features were selected from either the International 
Classification of Diseases, 9th Revision (ICD-9) for 
diagnoses and billing data, Anatomical Therapeutic 
Classification (ATC) for medications, Logical Obser-
vation Identifiers Names and Codes (LOINC) for 
laboratory test data, and Systematized Nomenclature 
of Medicine - Clinical Terms (SNOMED-CT) for 
referral codes. Free-text was extracted using a ‘bag-
of-words’ model and presented each word or each 
pair of words (bi-gram) as binary variables (0 and 1 
to indicate absence/presence of an attribute) as a fea-
ture to train ML algorithms.

To increase accuracy of the case definition, we per-
mitted features that indicated one occurrence of the 
single feature at any time, two occurrences at any time, 
two occurrences within 12 months, and two occur-
rences within 24 months. In total, 183,476 features 
were generated.

To select the most relevant features from this large 
list, we calculated the difference between the number 
of true positive cases and false positive cases, divided 
by the total number of positive cases. This determined 
each feature’s ability to identify true positive cases 
while minimizing false positives (i.e., the greater this 
value, the more useful the feature). The features were 
ranked and the most common 200 features were used 
to train our models.

3.	 Optimization of algorithms: We optimized our algo-
rithms using the nested cross-validation method. It 
contained two layers, a 10-fold cross-validation in 
an inner layer to tune hyper-parameters and select 
a model with the best performance, and another 
10-fold cross-validation in an outer layer to estimate 
the quality of models trained by the inner layer.

In the inner layer, we chose to maximize either 
F1-score or Matthews’ correlation coefficient 
(MCC) when tuning to balance the trade-off 
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between sensitivity-specificity and positive predic-
tive value (PPV) – negative predictive value (NPV) 
[12, 13]. The formula of F1-score and MCC were as 
follow [14]:

F1− score = 2 x
Precision x Recall

Precision+ Recall
=

2

2+ FP+FN
TP

Fig. 1  Steps used to train and optimize ML algorithms
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F1-score gave equal weight to sensitivity and PPV, 
hence optimizing the F1-score to maximize both sensi-
tivity and PPV. Because true negatives were not included 
in F1-score, a risk of reducing specificity and NPV while 
maximizing sensitivity and PPV was possible. MCC, on 
the other hand, took into account all four metrics: sensi-
tivity, specificity, PPV, and NPV; maximizing MCC could 
help to balance the trade-off between sensitivity-PPV and 
specificity-NPV but it could lead to lower sensitivity and 
PPV [15]. We selected both F1-score and MCC to com-
pare algorithms’ performance.

Machine learning pipeline
To train and optimize performance of ML algorithms, the 
inner layer was a pipeline which contained a sequence of 
three steps – feature selection, model training and opti-
mizing (supervised classification), and evaluation.

Step 1. Feature selection
Starting with the most common 200 features, we fur-
ther reduced the number of features using k-best feature 
selection (kBF) method [16]. The kBF computed a sta-
tistical test (i.e., chi-square test) with the outcome (i.e., 
RA case or not) for each feature to find features with the 
highest statistical scores (i.e., closely dependent on the 
outcome) and included them in the ML algorithm. We 
also used Recursive Feature Elimination (RFE), a method 
of backward selection to limit the number of features 
included in ML training; like other backward selection 
methods, RFE started with all features in a fitting model 
to predict cases or non-cases with the least useful feature 
being eliminated at each calculation; a new model was 
then fitted and the process continued until the best sub-
set of features was created [17].

Step 2. Model training and optimizing
After generating a list of the most relevant features using 
kBF and RFE approach in step 1, tree-based methods 
(i.e., Decision Tree, Random Forest, and XGBoost algo-
rithms) were chosen to classify the outcome given their 
interpretability. The three methods shared the same logic 
of learning, in which a hierarchy of if/else questions are 
applied; a Decision Tree produced a straightforward tree 
with sets of rules to identify cases [18], a Random Forest 
produced multiple independent trees with parallel sets of 
rules [19], while Extreme Gradient Boosting (XGBoost) 
was the most complex method which produced one tree 
at a time and used that tree’s results to build the next tree 
[20].

MCC =
TP x TN − FP x FN

√
(TP + FP)x (TP + FN )x (TN + FP)x (TN + FN )

Step 3. Internal evaluation
Using the training and testing dataset, we evaluated our 
models by comparing the agreement between classifi-
cation from the chart reviewers and the classification 
identified by each model. The algorithm with the highest 
sensitivity, specificity, PPV, and NPV was selected to be 
the final case definition.

The outer layer included features and hyperparam-
eters those were determined as the most effective from 
the inner layer. These values were used to train the mod-
els. Evaluation metrics (sensitivity, specificity, PPV, and 
NPV) obtained from the outer layer were used to identify 
the best algorithms.

Python 3.10.7 was used for all steps of this analysis. 
Ethics was secured from the University of Alberta Heath 
Research Board (PRO00107346).

Results
There were 5,600 CPCSSN patient charts that formed 
the reference set for the machine learning training, test-
ing, and validating. Of these, 45 records that had no clini-
cal data were excluded, leaving the remaining of 5,555 
records. Among 120 charts used for the third reviewer 
training, 30 were ‘probably positive’ RA charts. A Cohen’s 
Kappa score of 0.75 was calculated, which indicated sat-
isfactory agreement among reviewers [9]. The remaining 
5,405 CPCSSN records were reviewed independently by 
the reviewers; however, 112 records did not have an out-
come and were labelled ‘uncertain’. The rheumatologist 
(CB) re-reviewed these records. The team identified 414 
RA cases (Fig. 2).

The reference set was based on 5,555 CPCSNN records, 
with 414 RA patients corresponding to a pre-test preva-
lence of 7.5%. The patient cohort, expectedly, was slightly 
older, included more females, more urban residents, and 
more people with multiple comorbidities than the full 
CPCSSN 2020 dataset (Table 1).

We found that maximizing MCC produced good sen-
sitivity and PPV with narrower 95%CI than maximizing 
F1-score. The XGBoost gave the highest PPV of 69.9% 
and a good sensitivity of 93% (Table 2). The rules that the 
XGBoost used for making decisions were complicated 
which was built on 130 trees and a maximum of 12 levels 
of branches for each tree. Hence, we extracted 10 features 
with highest importance scores from the tree to produce 
a human-readable case definition. The top 10 features are 
displayed in Table 3. We then created a total of 100 case 
definitions, including case definitions for each feature (10 
total), and from each pair of features (45 combinations of 
two features using AND and 45 combinations of two fea-
tures using OR).

Of these combinations, the RA case definition with 
the highest evaluation metrics is given by: At least 2 
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occurrences of text “rheumatoid” in any billing, encoun-
ter diagnosis, or health condition table. For validation 
purposes, we trained the XGBoost algorithm on the 
entire train/test data set, then validated it on the valida-
tion set. The simplified case definition was also validated 
using the validation set. The validation metrics are dis-
played in Table 4.

Discussion
The diagnosis of RA is complex and typically requires a 
rheumatologist to diagnosis it; however, patients with 
RA are typically first seen by the FP. Identifying RA 
cases in primary care datasets can be challenging yet 

necessary to describe health services received in the 
community. Through rigorous approaches in the CPC-
SSN data, the optimal approach to identify RA cases in 
CPCSSN data was the XGBoost with maximized MCC, 
simplified by using importance scores. Although we 
expected to obtain a prevalence of 10% in the sample 
by selecting extra charts with at least two ICD-9 codes 
for RA (ICD 714 and its sub-codes), the prevalence of 
RA sample was only 7.5% (414/5,555). This supports 
our concern that using one single diagnosis code may 
lead to over-estimation of RA prevalence. The lower 
prevalence also led to wider 95% confidence intervals 
for sensitivity and PPV than the expected 10%; how-
ever, our developed case definition detected RA cases 

Fig. 2  Flowchart for charts in the reference set
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recorded with good validity with all metrics larger than 
70% [21]. Using this case definition, a prevalence of 
0.9% for RA was reported (12,083/1,365,121) in CPC-
SSN 2020 data for adults aged 19 and older, which 
aligns with Canadian national and provincial preva-
lence for RA [22, 23].

Previous attempts to develop an RA case definition in 
primary care by comparing cases identified by case cri-
teria set by an expert panel have been published in the 
UK’s Clinical Practice Research Datalink [24], yet the val-
idation metrics were not reported. Results from this UK 
study might be biased as the case definition mostly over-
lapped with the selection rules used to develop the refer-
ence set. Other approaches that used ML methods such 
as decision trees as the sole method [25] based on hos-
pital diagnosis codes and medication codes yielded very 
good sensitivity (86.2%) and PPV (85.6%), with excellent 
specificity (94.6%).

In our study, the simplified case definition had lower 
sensitivity and PPV than metrics produced by using the 
ML algorithm. Transparency and readability of case defi-
nition rules produced by ML methods may not be ideal, 
because even ‘explainable’ rules from ML methods like 
logistic regression or simple tree-based models might 
still include so many variables that it makes answering 
the question ‘why is a case a case?’ not straightforward. 
Our hybrid method took advantage of ML methods to 
optimize a classification model, then extracted features 
that were deemed to most significantly contribute to 

Table 1  Baseline demographic characteristics of the sample

a The number of chronic conditions included those identified in CPCSSN 2020, 
including: Chronic obstructive pulmonary disease, Dementia, Depression, 
Diabetes Mellitus, Dyslipidemia, Epilepsy, Hypertension, Osteoarthritis, and 
Parkinsonism

Baseline 
characteristics

Record review cohort CPCSSN 2020 dataset

N 5,555 1,363,552

Age, mean (SD) 52.9 (19.5) 51.9 (20)

Sex (Females), n (%) 3,204 (57.8) 759,635 (55.7)

Rural residence, n (%) 882 (15.9) 208,126 (16.3)

Number of chronic conditionsa, n (%)

  0 1,911 (34.4) 586,853 (43.0)

  1 1,357 (24.4) 330,288 (24.2)

  2 1,017 (18.3) 204,673 (15.0)

  3+ 1,270 (22.9) 241,738 (17.8)

Table 2  Evaluation metrics for ML algorithms created by the pipelines

a MCC Matthew’s Correlation Coefficient, PPV Positive predictive values, NPV Negative predictive value, XGBoost Extreme Gradient Boosting

Sensitivity
% (95% CI)

Specificity
% (95% CI)

PPVa

% (95% CI)
NPVa

% (95% CI)

MCC
  Decision tree 95.8 (90.6–100.0) 96.3 (95.0–98.0) 68.5 (60.1–79.3) 99.6 (99.2–100.0)

  Random forest 95.8 (90.6–100.0) 96.3 (95.0–98.3) 68.8 (60.1–81.9) 99.6 (99.2–100.0)

  XGBoost 94.8 (90.5–100.0) 96.5 (95.3–98.0) 69.4 (61.8–79.3) 99.6 (99.2–100.0)

F1-score
  Decision tree 93.0 (76.7–100.0) 96.6 (95.3–98.3) 69.9 (61.8–81.9) 99.4 (8.0–100.0)

  Random forest 94.8 (90.5–100.0) 96.4 (95.0–98.0) 69.2 (60.3–79.3) 99.6 (99.2–100.0)

  XGBoost 94.0 (76.7–100.0) 96.4 (95.0–98.3) 69.0 (60.1–81.9) 99.5 (98.0–100.0)

Table 3  Top ten features with the highest important scores of the best performance XGBoost case definition

“Or any sub-codes” means all codes starting with the same characters (e.g., B03 (or any sub-codes) includes B03A, B03B, B03BB, etc.)

ATC​ Anatomical Therapeutic Chemical (ATC) Classification, ICD-9 International Classification of Diseases, Ninth Revision

Feature Code Description Data type Importance score

One occurrence of text “rheumatoid arthritis” Billing, encounter diagnosis or problem list 0.2395

One occurrence of text “rheumatoid” Billing, encounter diagnosis or problem list 0.1461

Two occurrences of text “rheumatoid” Billing, encounter diagnosis or problem list 0.0562

Two occurrences of text “arthritis” Billing, encounter diagnosis or problem list 0.0297

Two occurrences of text “rheumatoid” in 24 months Billing, encounter diagnosis or problem list 0.0295

Two occurrences of text “other inflammatory” Billing, encounter diagnosis or problem list 0.0228

One ATC code P01BA02 Hydroxychloroquine Medication 0.0225

Two occurrences of text “arthritis” Problem list 0.0224

One ATC code B03BB01 Folic acid Medication 0.0197

Two occurrences of text “rheumatoid arthritis” in 24 months Billing, encounter diagnosis or problem list 0.0189
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the classification to generate a final case definition. This 
approach avoided expert bias for both the training / test-
ing and validation sets and provides an algorithm that 
other users may apply to CPCSSN data.

In light of these findings, limitations that should be 
considered centred primarily on secondary uses of clini-
cal data. Misclassification of RA may be related to a few 
possibilities. Firstly, the data used did not include all of 
the available data in the EMR such as clinical notes, refer-
ral letters, and imaging data, which might limit the ability 
of reviewers in recognizing RA cases. Secondly, the refer-
ence standard was created by an expert panel with most 
charts reviewed by only one reviewer. Although high 
inter-rater reliability was computed, the reference con-
tained some false positives and false negatives. Lastly, the 
case definition was derived from standardized CPCSSN 
data, instead of the raw EMR data. This may have limited 
the accuracy of the chart review process and case defi-
nitions created, as the raw text may contain more details 
than the standardized text provides.

Conclusion
A validated case definition was derived for RA cases in 
CPCSSN electronic medical record data with very good 
validation metrics. RA cases are identified when there are 
at least two occurrences of “rheumatoid arthritis” in any 
diagnosis fields within 24 months or at least one occur-
rence of “rheumatoid arthritis” in the problem list of the 
patient chart. This case definition had sensitivity of 81.6% 
(95% CI, 75.6–86.4), specificity of 98.0% (95% CI, 97.4–
98.5), PPV of 76.3% (95% CI, 70.1–81.5), and NPV of 
98.6% (95% CI, 98.0–98.6). Future studies on people with 
RA identified by this case definition will inform under-
standing of the epidemiology, management, and burden 
of disease at a national level. There are other opportuni-
ties for ongoing community surveillance and practice 
quality improvement.
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