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Abstract 

Background It is not clear if conventional liver fat cutoff of 5.56% weight which has been used for identifying fatty 
liver in western populations is also applicable for Asians. In Asian women of reproductive age, we evaluate the opti-
mum metabolic syndrome (MetS)-linked liver fat cutoff, the specific metabolomic alterations apparent at this cutoff, 
as well as prospective associations of preconception liver fat levels with gestational dysglycemia.

Methods Liver fat (measured by magnetic resonance spectroscopy), MetS, and nuclear magnetic resonance (NMR)-
based plasma metabolomic profiles were assessed in 382 Asian women, who were planning to conceive. Ninety-eight 
women went on to become pregnant and received an oral glucose tolerance test at week 26 of gestation.

Results The optimum liver fat cutoff for diagnosing MetS was 2.07%weight. Preconception liver fat was categorized 
into Low (liver fat < 2.07%), Moderate (2.07% ≤ liver fat < 5.56%), and High (liver fat ≥ 5.56%) groups. Individual MetS 
traits showed worsening trends, going from Low to Moderate to High groups. Multiple plasma metabolomic altera-
tions, previously linked to incident type 2 diabetes (T2D), were already evident in the Moderate group (adjusted 
for ethnicity, age, parity, educational attainment, and BMI). Both a cross-sectional multi-metabolite score for incident 
T2D and mid-gestational glucose area under the curve showed increasing trends, going from Low to Moderate 
to High groups (p < 0.001 for both). Gestational diabetes incidence was 2-fold (p = 0.23) and 7-fold (p < 0.001) higher 
in the Moderate and High groups relative to the Low group.

Conclusions In Asian women of reproductive age, moderate liver fat accumulation below the conventional fatty 
liver cutoff was not metabolically benign and was linked to gestational dysglycemia. The newly derived cutoff can aid 
in screening individuals before adverse metabolic phenotypes have consolidated, which provides a longer window 
for preventive strategies.
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Background
Elevated hepatic triglyceride accumulation can have lipo-
toxic effects and increases predisposition to progressive 
liver diseases (steatohepatitis, fibrosis, and eventually 
cirrhosis). However, most of the mortality risks linked 
to elevated hepatic triglyceride accumulation are due to 
extrahepatic morbidities explained by its strong associa-
tions with type 2 diabetes (T2D), cardiovascular disease, 
and chronic kidney disease [1]. This has led to the recent 
consensus nomenclature of metabolic dysfunction-asso-
ciated steatotic liver disease (MASLD) by three inter-
national liver associations—defined as abnormal liver 
fat accumulation, in the presence of at least one cardio-
metabolic risk factor [2]. Notably, the precise cutoff for 
identifying abnormal liver fat was not determined in this 
new nomenclature, likely due to the great diversity of 
methods currently in use for assessing liver fat accumula-
tion. These include quantitative fat assessments obtained 
either invasively using biochemical triglyceride extraction 
from liver biopsies or noninvasively using magnetic reso-
nance imaging/spectroscopy (MRI/MRS), semi-quantita-
tive fat assessments based on histopathological grading 
of liver biopsies, noninvasive qualitative fat assessment 
using B-mode ultrasound, and indirect assessment using 
circulating liver enzymes (gamma-glutamyl transferase 
(GGT), aspartate aminotransferase (AST), and alanine 
aminotransferase (ALT)).

The seminal work on identifying a cutoff for “abnor-
mal” liver fat was done by LS Szczepaniak et al. [3]. Based 
on MRS-based measurement of liver fat, this work iden-
tified 55.6 mg/g or 5.56% weight as the upper limit of 
normal, based on the 95th percentile of liver fat in sub-
jects from the Dallas Heart Study, who had a low risk for 
hepatic steatosis (defined as BMI < 25 kg/m2, no T2D, and 
normal fasting glucose and alanine transaminase levels). 
This population-based cutoff has been widely used, with 
the implicit assumption that liver fat accumulation below 
this level is metabolically benign. However, this cutoff 
has been shown to represent a level at which common 
clinical metabolic phenotypes have already consolidated 
[4]. Hence, the threshold at which metabolic alterations 
emerge is likely to be lower [5] and may vary in differ-
ent populations. Identifying this threshold is important 
for prospective risk stratification, early targeted interven-
tions, and understanding the true prevalence of meta-
bolically adverse liver fat accumulation. While there 
has been prior work which found metabolic risk-based 
cutoffs for fatty liver to be lower than the conventional 

population-based cutoffs [6], there are limited studies 
in Asians, in whom metabolic risks emerge at relatively 
lower levels of BMI and central adiposity [7, 8].

The current work has three major goals. Firstly, we 
aimed to identify a metabolic-risk-linked cutoff for diag-
nosing abnormal liver fat accumulation in a multi-ethnic 
preconception cohort of reproductive age Asian women. 
Secondly, we aimed to assess if liver fat accumulation 
above this metabolic-risk-linked cutoff, but below the 
conventional cutoff, is already linked to alterations in the 
plasma metabolome. This can provide a detailed look at 
specific alterations at the level of lipoprotein metabolism, 
lipoprotein subclasses concentrations and composition, 
glycolytic metabolites, ketone bodies, renal function, 
amino acids, fatty acids, and inflammatory markers, 
beyond just the common MetS risk factors. Finally, we 
aimed to assess the prospective association of preconcep-
tion liver fat levels with gestational dysglycemia.

Methods
Study population and participant characteristics
Study subjects that had both nuclear magnetic resonance 
(NMR) metabolomics and liver MRS data at preconcep-
tion were identified from the Singapore PREconcep-
tion Study of long-Term maternal and child Outcomes 
(S-PRESTO) cohort [9]. S-PRESTO is a multi-ethnic 
(Indian, Chinese, Malay, or mixed ethnicities) Asian pro-
spective longitudinal mother–offspring cohort which 
recruited women aged 18 to 45 years between February 
2015 and October 2017 based on the following criteria: 
(1) planning to conceive within the next one year and 
(2) intention to reside in Singapore for the next 5 years. 
Detailed exclusion criteria are listed in the supplemen-
tary section (Additional File 1: SPRESTO Exclusion Cri-
teria). This research is being reported in line with the 
STROBE criteria [10].

The cohort had a total of 1032 participants, of which 
382 women had MRS-based liver fat imaging data meas-
ured at the preconception imaging visit. Of the 382 
women, 98 went on to become pregnant. Interviewer-
administered questions at enrolment were used to collect 
information on participant characteristics. The partici-
pant characteristics are shown in Table 1.

Briefly, the women were relatively young (31.5 ± 3.9 
years (mean ± SD)) and lean (56.8% underweight and nor-
mal weight). Most were university educated (59.9%), nul-
liparous (66.9%), normoglycemic (88.1%), and of Chinese 
ethnicity (68.8%). There were no statistically significant 
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differences in the characteristics of participants in the 
cohort who had liver imaging data and those who did not 
(Additional File 1: Table S1).

Liver fat measurement using magnetic resonance 
spectroscopy
At the preconception imaging visit, liver fat was meas-
ured by single voxel proton magnetic resonance spec-
troscopy (1H-MRS) from 8  cm3 voxels localized in the 
left and right lobe of the liver using a 3 T clinical MRI 
scanner. Care was taken to avoid visible blood vessels and 
the liver boundary. Localized MRS was performed using 
the point-resolved spectroscopy (PRESS) sequence (TR/
TR = 33/2000 ms), with (averages = 4) and without water 
suppression (averages = 1). Respiratory motion was han-
dled by breath-holding. Area of the water peak (4.7 ppm) 
in the water-unsuppressed spectrum and lipid peaks 
(sum of lipid peaks between 0 and 3 ppm) in the water-
suppressed spectrum were quantified using LCModel 
[11]. Visual quality control checks were performed to 
reject spectra with artifacts. Data from 382 women 
(97%) were usable after the checks. T2 correction of the 
water and lipid peaks was performed using the mean of 

water and fat T2 relaxation values reported in literature 
[12–14]. The T2 corrected water lipid peak areas were 
used to estimate liver fat percentage by weight using vali-
dated methods [3]. A correction factor of 0.914 was used 
to take into account lipid peaks that cannot be directly 
quantified as they were masked by the water peak [13]. 
Overall liver fat (%weight) was derived by averaging the 
liver fat measured from the voxels placed in the right 
and left lobes. Derivations for the conversion of liver fat 
expressed in %weight to fat fraction units (and vice versa) 
are described in the supplementary digital content.

Metabolic assessments
Weight, height, BMI, waist circumference, and blood 
pressure were measured at the pre-conception visit. Fast-
ing plasma glucose (FG) (overnight fast of 8–14 h) and 
serum triglyceride, total cholesterol, and HDL cholesterol 
were measured using a Beckman AU5800 analyzer (Beck-
man Coulter). LDL cholesterol was calculated using the 
Friedewald equation (LDL-cholesterol (mmol/L) = total 
cholesterol (mmol/L) − HDL-cholesterol (mmol/L) − tri-
glyceride (mmol/L)/2.2) [15]. Serum liver enzymes 
levels (gamma-glutamyl transferase (GGT), aspar-
tate aminotransferase (AST), alanine aminotransferase 
(ALT)) were measured by colorimetric assay (Beckman 
AU5800 analyzer). Metabolic syndrome (MetS) was 
diagnosed using the harmonized MetS criteria (elevated 
abdominal obesity (≥ 80 cm in Asian females), hyper-
triglyceridemia (≥ 1.7 mmol/L or drug treatment for 
elevated TG), reduced HDL (< 1.3 mmol/L in females 
or drug treatment for low HDL), high blood pressure 
(≥ 130/85 mmHg or antihypertensive drug treatment), 
elevated fasting glucose (≥ 100 mg/dL or drug treatment 
of elevated glucose)) [16]. At week 26 of gestation, an oral 
glucose tolerance test (OGTT) was performed in the 98 
women who became pregnant. The glucose response was 
assessed at 5 timepoints (0, 30, 60, 90, and 120 min). The 
area under the curve (AUC) of the glucose response was 
determined using the trapezoid approximation (complete 
data for AUC calculation was available in 63 women). 
Gestational diabetes mellitus (GDM) status using the 
International Association of Diabetes and Pregnancy 
Study (IADPSG) criteria [17] (data for IADPSG GDM 
classification available in 91 women).

Plasma metabolomics
From fasting blood samples collected at the precon-
ception visit, circulating maternal levels of 249 plasma 
biomarkers were profiled using the Nightingale Health’s 
proton NMR Metabolomics Platform. The NMR panel 
was also used to compute the multi-metabolite pro-
spective risk score for incident T2D [18]. Briefly, this 
multi-metabolite score comprised of three metabolites: 

Table 1 Participant characteristics

a Normoglycemic range: fasting glucose < 6.1 mmol/l and 2-h glucose < 7.8 
mmol/l
b Prediabetes range: fasting glucose: 6.1–6.9 mmol/l or 2-h glucose: 7.8–11 
mmol/l
c Diabetes range: fasting glucose > 6.9 mmol/l or 2-h glucose > 11 mmol/l

Characteristics N = 382 Mean ± SD/%

Age (years) 31.5 ± 3.9

BMI (kg/m2) 23.6 ± 5.4

 - Underweight 10.0%

 - Normal weight 46.8%

 - Overweight 15.3%

 - Obese 27.9%

Ethnicity

 - Chinese 68.8%

 - Malay 18.1%

 - Indian 10.7%

 - Mixed 2.4%

Educational status

 - Below university 40.1%

 - University 59.9%

Parity

 - Nulliparous 66.9%

 - Parous 33.1%

OGTT glucose levels (%)

 - Normoglycemic  rangea 88.1%

 - Prediabetes  rangeb 10.1%

 - Diabetes  rangec 1.9%
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phenylalanine, non-esterified cholesterol in large HDL, 
and the ratio of cholesteryl ester to total lipid in large 
VLDL. We also derived the ratio of cholesteryl ester 
(CE) to free cholesterol (FC) for each HDL subfrac-
tion as well as for the total CE/total free cholesterol as 
proxies of hepatic lecithin:cholesterol acyltransferase 
(LCAT) activity. Individual biomarker readouts were 
log10 transformed (because of skewness) and then 
z-transformed before further downstream statistical 
analysis.

Statistical analysis
Statistical analyses were performed in SPSS Statistics v26 
(IBM) and R (v 4.2.2). R packages dplyr v.1.1.0, ggpubr 
v0.6.0, ggplot2 v3.4.2, ggforestplot v0.1.0, and Epiviz 
v0.0.1 were used for data analysis and visualization.

Receiver operator curve (ROC) analysis was performed 
to assess the ability of continuous liver fat (in %weight) 
to diagnose MetS. The optimum liver fat cutoff for pre-
dicting MetS was obtained using the maximum value of 
the Youden index. Continuous liver fat was converted 
to a categorical variable (low, moderate, high) based on 
the following thresholds (< metabolic-risk based cut-
off, ≥ metabolic-risk based cutoff and < conventional cut-
off of 5.56%, ≥ conventional cutoff of 5.56%).

NMR biomarker values below the limit of quantifica-
tion were replaced by half of the minimum value [19]. 
Subsequently, all the metabolomic biomarkers were log10 
transformed and z-score standardized. Analysis of covar-
iance (ANCOVA), adjusted for BMI, age, ethnicity, edu-
cation level and parity, was used to assess the adjusted 
mean difference (AMD) in individual NMR metabolomic 
markers (outcome variable) in the Moderate and High 
liver fat categories (exposure variable) relative to the 
Low group (in SD units of the log10 transformed NMR-
metabolite). The confounders were selected based on 
known risk factors for both liver fat accumulation and 
metabolic alterations in literature. We corrected for mul-
tiple testing using the Benjamini-Hochberg (BH) method. 
Biomarkers with adjusted p-value (BH-adj p-value) < 0.05 
were considered statistically significant.

We tested for increasing/decreasing trends in clini-
cal metabolic characteristics, liver enzymes, the multi-
metabolite risk score for incident T2D, and glucose AUC 
at mid-gestation, while going from the Low to Moderate 
to High liver fat groups, using the Jonckheere-Terpstra 
test. Values of liver enzymes ALT and GGT which were 
below the limit of detection were replaced by a value 
determined by dividing the respective limit of detec-
tion by the square root of 2. Risk ratios (RR) and confi-
dence intervals for GDM incidence at mid-gestation were 
derived using modified Poisson regression [20].

Results
MetS associated liver fat cutoff
The ROC analysis revealed that continuous liver fat lev-
els had a high ability to discriminate between women, 
with and without MetS (AUC = 0.88, 95% CI 0.82–0.93, 
p < 0.001) (Fig. 1a). The optimum liver fat cutoff based on 
the highest Youden Index was 2.07% weight (20.7 mg/g 
or fat fraction% of 3.2%). The sensitivity and specific-
ity for classifying MetS using the metabolic-risk-based 
liver fat cutoff of 2.07% weight and the conventional fatty 
liver cutoff of 5.56% weight are shown in Fig.  1b and c, 
respectively.

Since these cutoffs have been variously reported in 
%weight or fat fraction%, we have reported the cutoffs in 
both units. The newly derived cutoff is 63% lower than 
the conventional population-based cutoff of 5.56% weight 
commonly used in MRS based liver fat studies and 36% 
lower than the commonly used proton density fat frac-
tion cutoff of 5% in MRI based liver fat studies. While 
the conventional liver fat cutoff of 5.56% weight had a 
high specificity (92%) for diagnosing MetS in our cohort, 
it had very low sensitivity (53%). The newly derived 
metabolic-risk-linked cutoff provided a good trade-off 
between sensitivity (89%) and specificity (80%). Based on 
the newly derived cutoff, the preconception liver fat was 
categorized into Low (liver fat < 2.07%) (n = 277), Mod-
erate (2.07% ≤ liver fat < 5.56%) (n = 54), and High (liver 
fat ≥ 5.56%) (n = 51) groups.

Only 98 women with preconception liver fat data pro-
gressed to the pregnancy stage (28.0% in the Low group, 
25.9% in the Moderate group, and 11.8% in the High 
group) as shown in the participant flow chart in Fig. 2.

Association of liver fat with clinical metabolic 
characteristics
We found increasing trends for liver enzymes (ALT, AST 
and GGT) (Fig.  1d–f) going from Low to Moderate to 
High liver fat groups. We also found increasing trends for 
waist circumference (Fig. 3a), plasma TG (Fig. 3b), fasting 
plasma glucose (Fig.  3c), systolic (Fig.  3d), and diastolic 
blood pressure (Fig. 3e) and decreasing trends for plasma 
HDL (Fig. 3f ) going from Low to Moderate to High liver 
fat groups.

Association of liver fat with plasma NMR metabolome
AMD of 141 out of the 255 metabolites/metabolite 
ratios passed the BH-adj p-value < 0.05 threshold for the 
Moderate vs Low group comparison, while 187 metab-
olites were significantly different in the High vs Low 
group comparison. There was a directional consistency 
and a graded response between the Moderate vs Low 
and High vs Low results for most of the metabolites 
(Additional File 1: Fig. S1, Additional File 1: Table  S2 
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Fig. 1 Box plots of metabolic-risk-based liver fat cutoff and liver enzymes across the different liver fat categories. a Receiver operator curve 
analysis for predicting MetS with continuous liver fat levels as the sole predictor, 95% CI indicated in brackets (n = 372). b Sensitivity of proposed 
vs conventional liver fat cutoffs. c Specificity of proposed vs conventional liver fat cutoffs. d ALT (U/L) (n = 373), e AST (U/L) (n = 373), f GGT (U/L) 
(n = 373). p for trend values represents trend of each liver enzyme with increasing liver fat

Fig. 2 Flowchart of participant numbers (unclassified GDM cases were due to missing values of either 1-h plasma glucose, 2-h plasma glucose, or both)
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and S3). Overall, the magnitude of AMD of the NMR 
biomarkers was more marked in High-Low compari-
sons than with Moderate-Low comparisons (expressed 
as SD units of log10-transformed metabolomic marker). 
More detailed descriptions of metabolome-wide asso-
ciations with liver fat groups (reference: Low liver fat) 
are provided below, particularly focusing on the altera-
tions already evident in the Moderate group. Details on 
the associations of liver fat with relative composition of 
lipoprotein subfractions can be found in Additional File 
1: Table S2 and S3 and Additional File 1: Fig. S1. Over-
all, we observed that the trends in absolute concentra-
tions of lipoprotein subcomponents were more strongly 
driven by particle concentrations than the relative com-
position of the lipoprotein subfractions.

(a) Apolipoproteins

Apolipoprotein B (ApoB) levels, reflecting total number 
of atherogenic particles (VLDL, LDL, and intermedi-
ate density lipoproteins (IDL)) was elevated only in the 
High group (AMD (95% CI): 0.44 (0.10, 0.78)). On the 
other hand, apolipoprotein A1 (APOA1), the structural 
protein in HDL particles was already lower in the Mod-
erate group (Fig. 4) (AMD: − 0.40 (− 0.74, − 0.05)).

(b) VLDL

Both VLDL mean particle size and concentration were 
already elevated in the Moderate group (AMD: 0.78 
(0.49, 1.06), AMD: 0.47 (0.18, 0.77)) compared to the 
Low group (Fig.  4). The concentrations of all VLDL 
subfractions were elevated in the High group, whereas 
in the Moderate group, all subfractions other than 
very small (XS) VLDL particles were elevated (Fig.  5). 
Total triglyceride content in VLDL (VLDL-TG) (Fig. 4) 
as well triglyceride in individual VLDL subfractions 
(Fig.  5) were elevated in both High and Moderate 
groups (VLDL-TG (AMD: 0.76 (0.48, 1.05)). In addi-
tion to the increased triglyceride load, phospholipids 
(PL), FC, and CE content of the larger (L, XL, and XXL) 
VLDL subfractions were already elevated in Moderate 
group.

(c) IDL and LDL

IDL concentrations were not elevated in both Moderate 
(AMD: − 0.11 (− 0.43, 0.22)) and High groups (Fig.  5). 
While concentrations of small and medium LDL sub-
fractions were elevated in the High group, no LDL 
subfraction concentrations were elevated in the Mod-
erate group. Triglyceride load in IDL particles (AMD: 
0.39 (0.07, 0.71)) and LDL subfractions were higher 
(Fig.  5) and mean LDL particle size (AMD: − 0.48 

Fig. 3 Box plots of metabolic traits in MetS across the different liver fat categories: a waist circumference (cm) (n = 380), b triglyceride (mmoL/L) 
(n = 373), c fasting glucose (mmoL/L) (n = 380), d systolic blood pressure (mmHg) (n = 381), e diastolic blood pressure (mmHg) (n = 381), f HDL 
(mmoL/L) (n = 373)
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(− 0.83, − 0.14)) was lower in the Moderate group 
(Fig. 4).

(d) HDL-related markers

Marked changes in HDL particles were evident in the 
Moderate group—these included lower particle concen-
trations (all subfractions except small HDL) (Fig. 5), mean 

particle size (AMD: − 0.67 (− 0.93, − 0.40)) (Fig.  4), cho-
lesterol ester and free cholesterol (in medium and large 
HDL), and higher triglycerides (in small and medium 
HDL). We also found the ratio of CE/FC to be reduced in 
all HDL subfractions, even in the Moderate group.

(e) Fatty acids

Fig. 4 Associations between the plasma lipoprotein and lipid levels and liver fat accumulation. Point estimates represent the beta coefficients 
for 1-SD change (95% CI) (n = 372) in the log10 transformed NMR-metabolite in the liver fat category, with respect to Low liver fat category (liver 
fat < 2.07%). Model adjusted for ethnicity, age, parity, education level, and BMI at pre-conception. Hollow/filled circles were/were not statistically 
significant with BH-adj p-values < 0.05, as determined by the Benjamini-Hochberg (BH) method
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Absolute concentrations of monounsaturated fatty acid 
(MUFA), polyunsaturated fatty acid (PUFA) and satu-
rated fatty acid (SFA) were all higher in the High group, 
whereas only MUFA was higher in the Moderate group 
(AMD: 0.48 (0.19, 0.78)) (Fig.  6). Relative levels of total 
polyunsaturated fatty acid (PUFA%) (AMD: − 0.60 
(− 0.90, − 0.30)), total omega-6 fatty acid (Omega-6%) 
(AMD: − 0.55 (− 0.86, − 0.23)), and the omega-3 fatty 

acid% (AMD: − 0.26 (− 0.57, 0.05)), docosahexaenoic 
acid% (AMD: − 0.42 (− 0.72, − 0.12)) were lower in the 
Moderate group.

(f ) Inflammatory marker and amino acids

The inflammatory marker glycoprotein acetyl (GlycA) 
was higher (AMD: 0.49 (0.23, 0.74)) in the Moderate 

Fig. 5 Associations between the liver fat accumulation and plasma lipoprotein composition and concentration. Point estimates represent the beta 
coefficients for 1-SD change (95% CI) (n = 372) in the log10 transformed NMR-metabolite in the liver fat category, with respect to Low liver fat 
category (liver fat < 2.07%). Model adjusted for ethnicity, age, parity, education level, and BMI at pre-conception. Hollow/filled circles were/were 
not statistically significant with BH-adj p-values < 0.05, as determined by the Benjamini-Hochberg (BH) method
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group. We also observed marked alterations in the 
amino acid profiles even in the Moderate group; 
these included higher levels of alanine (AMD: 0.71 
(0.42, 1.00)), tyrosine (AMD: 0.42 (0.14, 0.71)), and 
branched chain amino acids (isoleucine, leucine, 
and valine) and lower levels of glycine (AMD: − 0.36 
(− 0.67, − 0.04)) (Fig. 6).

Association of liver fat with incident T2D risk score 
and glucose AUC and GDM incidence at mid‑gestation
The prospective multi-metabolite risk score (derived 
from phenylalanine, non-esterified cholesterol in large 
HDL and the ratio of cholesteryl ester to total lipid in 
large VLDL) for incident T2D showed an increasing 
trend from Low to Moderate to High liver fat groups 

Fig. 6 Associations between the liver fat accumulation and plasma fatty acids and polar metabolites. Point estimates represent the beta 
coefficients for 1-SD change (95% CI) (fatty acids: n = 371, polar metabolites (except valine): n = 372, valine: n = 369) in the log10 transformed 
NMR-metabolite in the liver fat category, with respect to Low liver fat category (liver fat < 2.07%). Model adjusted for ethnicity, age, parity, 
education level, and BMI at pre-conception. Hollow/filled circles were/were not statistically significant with BH-adj p-values < 0.05, as determined 
by the Benjamini-Hochberg (BH) method
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(Fig.  7a). Since phenylalanine was not associated with 
the liver fat groups, the above trend was likely driven by 
lipid composition of large HDL and VLDL particles. The 
mid-gestational glucose AUC showed an increasing trend 
from Low to Moderate to High liver fat groups (Fig. 7b). 
GDM incidence was 2.03-fold (RR = 2.03 (95% CI 0.64 to 
6.44, p = 0.23)) and 6.76-fold (RR = 6.76 (3.33 to 13.73), 
p < 0.001) higher in Moderate and High groups respec-
tively as compared to Low group (Fig. 7c).

Discussion
We found 2.07% weight to be the optimum metabolic-
risk-linked cutoff for diagnosing abnormal liver fat accu-
mulation in reproductive age Asian women. Notably, this 
cutoff is nearly 60% lower than the conventional popu-
lation-based cutoff of 5.56% weight commonly used in 
MRS based liver fat studies and about a third lower than 
the commonly used proton density fat fraction cutoff 

of 5% in MRI-based liver fat studies. The newly derived 
metabolic-risk-linked cutoff also provided much better 
trade-offs between sensitivity and specificity for diagnos-
ing MetS. A comparison of the newly derived metabolic-
risk-based liver fat cutoff with MRI/MRS based cutoffs 
for abnormal liver fat accumulation identified in prior lit-
erature is shown in (Table 2).

Nasr et al. [21] and Park et al. [23] found that optimum 
MRI based liver fat fraction cutoffs based on the abil-
ity to identify histological steatosis were 3% (in Swedish 
adults with mean age of 53.3) and 3.5% (in White adults 
with mean age of 50.8 years), respectively (correspond-
ing to a liver fat %weight of 1.94% and 2.27%, respec-
tively). Similar to the current work, Rehm et al. [6] also 
derived a metabolic-risk based cutoff based on the abil-
ity to diagnose MetS in a cohort of young healthy females 
(11–22 years of age, predominantly African-American 
and White) and found the optimum fat fraction cutoff 

Fig. 7 Associations between the liver fat accumulation and metabolic outcomes. a Box plot of multi-metabolite score for incident T2D 
across the different liver fat categories (n = 375). b Box plot of glucose AUC at mid-gestation across the different liver fat categories. c Percentage 
of GDM cases at mid-gestation across the different liver fat categories (n = 91). p for trend values represents trend of T2D score and Glucose AUC 
in the study with increasing liver fat

Table 2  Comparison of newly derived metabolic-risk-linked fatty liver cutoff with MRS/MRI-based abnormal liver fat cutoffs identified 
in prior literature

a Fat -fraction% estimated from liver fat % weight
b Liver fat % weight estimated from fat -fraction %

No Abnormal liver fat cutoff Basis for cutoff Reference

% weight Fat fraction % 

1 2.07% 3.2a% Optimum threshold for predicting MetS Current work

2 5.56% 8.42a% 95th percentile of liver fat in subjects at low risk of hepatic steatosis LS Szczepaniak et al. [3]

3 1.94b% 3.00% Sensitivity of hepatic steatosis detection by histology P Nasr et al. [21]

4 3.26b% 5% Threshold for mild steatosis—expert opinion J Starekova et al.[22]

5 2.41b% 3.71% Optimum threshold for steatosis detection by histology CC Park et al. [23]

6 4.19b% 6.4% Optimum threshold for steatosis detection by histology A Tang et al. [24]

7 2.27b% 3.50% Optimum threshold for predicting MetS JL Rehm et al. [6]

8 2.27b% 3.50% Sensitivity of hepatic steatosis detection by histology S Park et al. [25]

9 0.96b% 1.50% Emergence of hepatic insulin resistance F Bril et al. [4]
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to be 3.5% (~ 2.27%weight). Thus, our finding of a lower 
cutoff for abnormal liver fat accumulation in Asian 
women of reproductive age, relative to the conventional 
population-based cutoff, is consistent with earlier stud-
ies which derived risk-based cutoffs in other cohorts 
with different ethnic/racial profiles. Based on the liver fat 
cutoff of 2.07%, the prevalence of “abnormal” liver fat in 
our cohort (27.5%) was more than double the prevalence 
(13.4%) identified using the conventional 5.56% weight, 
indicating a much larger at-risk population.

We studied the specific metabolic perturbations 
that emerged even at moderate levels of liver fat below 
conventional liver fat cutoffs. We found statistically 
significant trends for worsening MetS-linked traits (dys-
glycemia, dyslipidemia, central obesity, and increased 
blood pressure), going from Low to Moderate to High 
levels of liver fat. We also found statistically significant 
increasing trends for liver enzymes AST, ALT, and GGT, 
which are suggestive of subclinical disease processes of 
liver injury and oxidative stress, even at moderate levels 
of liver fat [26].

We found an unfavorable VLDL profile in both groups, 
characterized by larger VLDL particles, higher VLDL 
concentration, and a higher VLDL triglyceride load. 
There was also a concomitant reduction in the mean 
diameter of both LDL and HDL particles. We found 
ApoB, the main structural lipoprotein in VLDL, IDL, and 
LDL to be elevated in the High liver fat group, but not 
in the Moderate group. The VLDL-TG secretion rate has 
been previously reported to be elevated in nonalcoholic 
fatty liver disease (NAFLD) [27]. Thus, moderate liver 
fat accumulation below conventional cutoffs may repre-
sent an early stage of steatosis, when the net increase in 
intrahepatic fatty acids has not yet stimulated increased 
production of ApoB, which requires more TG to be 
packaged within the VLDL particles and more TG to be 
stored within the liver.

In addition to increased TG in VLDL, we also found 
enriched levels of LDL-TG and HDL-TG in the respective 
lipoprotein subfractions even in the Moderate liver fat 
group. CE levels were increased in the larger-sized VLDL 
subfractions (XXL, XL, L) with concomitant decrease in 
CE load in all HDL subfractions (except S-HDL) in the 
Moderate group. These findings are suggestive of higher 
plasma cholesteryl ester transfer protein (CETP) activ-
ity even at moderate liver fat levels, which results in a 
high net transfer of TGs from VLDL to HDL and LDL 
and of CEs from HDL to VLDL[28]. These trends have 
been observed earlier in NAFLD [28]. Elevated levels of 
plasma CETP are one of the drivers of the atherogenic 
lipid profile in NAFLD. Hence, the observed changes may 
reflect the onset of an atherogenic profile.

This specific pattern of larger VLDL particles and 
smaller HDL and LDL particles has also been linked 
to incident T2D in women [29]. The Moderate liver fat 
group also had lower concentrations of larger-sized HDL 
subfractions and of HDL cholesterol. These patterns are 
suggestive of reduced capacity for reverse cholesterol 
transport. We found further supporting evidence for 
this in our analysis of the total CE/FC ratio and within 
individual HDL subfractions. LCAT activity, assessed by 
plasma total-CE/Total-FC as well as the CE/FC in the 
largest HDL particles (XL-HDL), was lower in both Mod-
erate and High groups. LCAT is an important player in 
the metabolism of lipoprotein in plasma and triglycerides 
in the liver [30]. There have been mixed reports regard-
ing the association of LCAT with NAFLD, with reports 
of either positive [31, 32] or no significant associations 
[33, 34]. These differing results could be due to the differ-
ent ways in which NAFLD was assessed in these studies 
(fatty liver index-based [31, 32], liver biopsy-based [35], 
ultrasonography-based [36]).

The Nightingale NMR panel provides a readout of the 
inflammatory marker, GlycA. This is a composite bio-
marker that simultaneously captures the glycosylation 
states of several acute-phase proteins [37] and is more 
stable than C-reactive protein (CRP) [38]. The inflam-
matory marker, GlycA, was elevated in both Moder-
ate and High groups. Prior studies have established the 
link between systemic inflammation and NAFLD [39] 
as well as hepatic steatosis [40]. Positive associations of 
GlycA levels with higher levels of liver fat have also been 
reported [41].

Higher plasma levels of BCAAs—leucine, isoleu-
cine, and valine—were linked to moderate levels of liver 
fat, as were higher levels of alanine and tyrosine. These 
amino acid dysregulations have been previously reported 
with higher levels of liver fat [41–43]. Cross-sectionally, 
elevated BCAAs are positively associated with NAFLD 
[44]. Furthermore, the association of NAFLD with T2D 
development has been reported to be partially mediated 
by BCAAs [44]. We found lower glycine levels even in 
the Moderate group. Impaired glycine metabolism has 
been previously hypothesized to be a causative factor for 
NAFLD [45].

In terms of circulating fatty acids, higher absolute lev-
els of MUFA were seen in the Moderate liver fat group, 
while higher absolute levels of MUFA, PUFA, and SFA 
were seen in the High group. Relative to total fatty acids, 
lower levels of omega-3 and omega-6 fatty acids (primar-
ily reflecting dietary PUFA intake) were already evident 
in the Moderate group. These patterns are concordant 
with earlier reports [41].

Overall, the NMR metabolomics analysis showed 
directionally similar patterns in both Moderate and 
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High groups for most of the metabolomics markers. The 
metabolite patterns observed even at moderate levels 
of liver fat had multiple indicators of a predisposition 
towards an atherogenic state and early-stage steatosis.

Interestingly, the alterations observed in the Moder-
ate group in lipoprotein profiles, amino acids, fatty acids, 
glucose, and inflammatory markers are consistent with 
metabolic profiles previously linked to incident T2D 
[18, 46]. Furthermore, we found an increasing trend for 
the prospective multi-metabolite score for incident T2D, 
while going from Low to Moderate to High groups in 
our cohort. Thus, moderate liver fat accumulation below 
conventional cutoffs does not seem to be metabolically 
benign. Rather, it may be a sensitive barometer of early 
pathophysiological metabolic perturbations.

Since the SPRESTO participants were planning to con-
ceive, subclinical metabolic alterations at preconception 
could lead to a more detrimental health status due to the 
physiological challenge of pregnancy. Although not the 
primary focus of the current study, it was noteworthy 
that far fewer women in the High group progressed to 
the pregnancy stage (11.8% in the High group vs 28.0% in 
Low group and 25.9% in Moderate group) within 1 year 
after recruitment, suggesting that higher preconception 
liver fat levels might a risk factor for lower fecundabil-
ity. These trends are concordant with earlier work in the 
same cohort linking preconception obesity and unhealthy 
lifestyle factors to lower fecundability [47]. We also 
observed a 2-fold higher incidence of GDM in the Mod-
erate group and 6.76-fold higher incidence in the High 
group as compared to the Low group. The RR associated 
with this 2-fold increase in GDM incidence was not sig-
nificant, likely due to the low number of GDM cases in 
this group (3 GDM cases out of the 14 successful preg-
nancies in the Moderate group). Interestingly, the con-
tinuous gestational glucose AUC was found to increase 
going from the Low to Moderate to High groups. Gesta-
tional glucose AUC has been linked to adverse pregnancy 
outcomes irrespective of GDM status [48]. Our find-
ings suggest that even moderate accumulation of liver 
fat below conventional fatty liver cutoffs at the precon-
ception stage can have adverse metabolic effects during 
pregnancy. Higher GDM incidence can lead to maternal 
health complications during pregnancy and postpartum 
[49, 50] as well as long-term adverse health consequences 
in the offspring [51].

A key implication of our finding is that the use of con-
ventional MRS-based liver fat cutoffs or fatty liver assess-
ments insensitive to low levels of liver fat may result in 
underestimation of the true prevalence of pathological 
liver fat accumulation and its associated disease bur-
den. The main limitation of this study is that the meta-
bolic risk-linked liver fat cutoffs were derived in a cohort 

that included only reproductive age women of Chinese, 
Indian, and Malay ethnicities. Hence, replication in larger 
and more diverse cohorts that include both sexes and 
wider age ranges is warranted, to evaluate the generaliz-
ability of the findings. However, concordant reports of 
lower metabolic risk-based liver cutoffs in other popula-
tions suggest that our finding may not just be an Asian-
specific phenomenon. Another limitation of our study is 
that due to the prospective design starting from precon-
ception, only a quarter of the women went on to become 
pregnant, with a small number of incident GDM cases. 
This limited the sample size for evaluating gestational 
outcomes. However, we have also shown a significant 
trend of increasing mid-gestational continuous glucose 
AUC values from Low to Moderate to High liver fat 
groups. Increase in glucose AUC values has also been 
linked to maternal health adversities during pregnancy 
independent of GDM status.

The strengths of our study include the deployment of 
the MRS technique, which is sensitive to very low lev-
els liver fat (unlike more common imaging modalities 
like B-mode ultrasound or proxy assessments like liver 
enzymes) in a cohort of relatively healthy (predominantly 
normoglycemic with low MetS prevalence) reproductive 
age women. This allowed us to identify the optimum liver 
fat cutoffs for diagnosing MetS. The use of NMR metab-
olomic profiles allowed us to characterize in detail the 
specific metabolic perturbations that are already appar-
ent at the derived cutoff. The prospective preconception 
design of the study allowed us to probe the links between 
moderate preconception liver fat levels and gestational 
dysglycemia.

Conclusions
The metabolic risk-linked cutoff in our cohort of repro-
ductive age Asian women was much lower than con-
ventional fatty liver cutoffs. Our findings suggest that 
the at-risk population with abnormal liver fat accumu-
lation may be underestimated with the conventional 
cutoff. Using the newly derived cutoff may allow for 
early screening of individuals in whom metabolic dys-
regulation is still emerging, enabling early preventive 
approaches. Our findings also highlight preconception 
liver fat as an intervention target to mitigate the adverse 
pregnancy outcomes linked to gestational dysglycemia. 
Given the prohibitive cost of MRS-based liver fat assess-
ments, development of more scalable approaches that 
are sensitive to low levels of liver fat will be important 
for translating the findings for the wider population. The 
use of NMR biomarkers seems promising for developing 
such approaches, given the range of metabolomic altera-
tions that were already apparent even at moderate liver 
fat levels.
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1H-MRS  Proton magnetic resonance spectroscopy
ALT  Alanine aminotransferase
AMD  Adjusted mean difference
ApoA1  Apolipoprotein A1
ApoB  Apolipoprotein B
AST  Aspartate aminotransferase
BCAA   Branched-chain amino acid
C  Cholesterol
CE  Cholesteryl ester
CETP  Cholesteryl ester transfer protein
CRP  C-reactive protein
CSE-MRI  Chemical shift-encoded MRI
FC  Free cholesterol
FG  Fasting plasma glucose
GDM  Gestational diabetes mellitus
GGT   Gamma-glutamyl transferase
GlycA  Glycoprotein acetyls
HDL-C  HDL cholesterol
HDL-P  HDL particle concentration
HDL-TG  Triglyceride in HDL
IDL  Intermediate-density lipoprotein
IDL-TG  Triglyceride in IDL
LCAT   Lecithin::cholesterol acyltransferase
LDL-TG  Triglyceride in LDL
MAFLD  Metabolic-associated fatty liver disease
MetS  Metabolic syndrome
MRS  Magnetic resonance spectroscopy
MUFA  Monounsaturated fatty acid
NAFLD  Non-alcoholic fatty liver disease
NASH  Non-alcoholic steatohepatitis
PL  Phospholipid
PLTP  Phospholipid transfer protein
PRESS  Point-resolved spectroscopy
PUFA  Polyunsaturated fatty acid
RR  Risk ratio
ROC  Receiver operator curve
SFA  Saturated fatty acid
T2D  Type 2 diabetes
VLDL-TG  Triglyceride in VLDL
XL  Very large
XXL  Extremely large
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