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Abstract
Motivation: Repeat elements, such as transposable elements (TE), are highly repetitive DNA sequences that compose around 50% of the 
genome. TEs such as Alu, SVA, HERV, and L1 elements can cause disease through disrupting genes, causing frameshift mutations or altering 
splicing patters. These are elements challenging to characterize using short-read genome sequencing, due to its read length and TEs repetitive 
nature. Long-read genome sequencing (lrGS) enables bridging of TEs, allowing increased resolution across repetitive DNA sequences. lrGS 
therefore present an opportunity for improved TE detection and analysis not only from a research perspective but also for future clinical 
detection. When choosing an lrGS TE caller, parameters such as runtime, CPU hours, sensitivity, precision, and compatibility with inclusion into 
pipelines are crucial for efficient detection.
Results: We therefore developed sTELLeR, (s) Transposable ELement in Long (e) Read, for accurate, fast, and effective TE detection. 
Particularly, sTELLeR exhibit higher precision and sensitivity for calling of Alu elements than similar tools. The caller is 5–48× as fast and uses 
<2% of the CPU hours compared to competitive callers. The caller is haplotype aware and output results in a variant call format (VCF) file, en
abling compatibility with other variant callers and downstream analysis.
Availability and implementation: sTELLeR is a python-based tool and is available at https://github.com/kristinebilgrav/sTELLeR. Altogether, 
we show that sTELLeR is a fast, sensitive, and precise caller for detection of TE elements, and can easily be implemented into variant 
calling workflows.

1 Introduction
Transposable elements (TEs) are repetitive genomic sequences 
capable of changing their genomic location. There are two 
subtypes of TEs, DNA transposons and retrotransposons 
(RTs). DNA transposons move through a cut-and-paste mech
anism, make up around 2% of the genome (Chenais 2022) 
and are not active in human genomes (Solyom and Kazazian 
2012). RTs change their location through a copy–paste mecha
nism involving an RNA intermediate and make up around 
50% of the genome. There are different families of RTs, where 
the most common ones are elements L1, Alu, SVA, and 
HERV. Some of these remain active, and the transposition 
rates for Alus range from 1:29–40 births to 1:63–117 births 
for L1 (Feusier et al. 2019, Borges-Monroy et al. 2021).

There are several examples where TEs have been disease 
causing, such as an SVA causing exon-trapping in MFSD8 
(MIM# 610951) (Kim et al. 2019), and Alu insertions dis
rupting exons in NF1 and USH2A (Bilgrav Saether et al. 
2023). Additionally, HERVs have been connected to cancer 
as well as autoimmunity (Alcazer et al. 2020). Detection of 
TEs is therefore clinically important, and understanding their 
mechanisms and characteristics is useful for determining their 
genomic consequences.

Long-read whole genome sequencing (lrGS) enables base- 
pair resolution of >10 kb stretches of continuous DNA. This 
facilitates characterization and resolution of complex and 
dynamic genomic regions (Logsdon et al. 2020). lrGS 
enabling full-length base-pair resolution of TEs is a signifi
cant improvement from short-read genome sequencing (srGS) 
where read lengths of 150 bp limit the discovery of genomic 
variation across repeat regions such as tandem repeats, 
segmental duplications, and TEs (Logsdon et al. 2020). Due 
to the previous complexity of analyzing these regions, they 
remain largely understudied.

Although the reference genome contains plenty of TEs, the 
majority of them differ across the population and are not rep
resented in the reference genome (Ewing and Kazazian 2010, 
Sudmant et al. 2015, Bilgrav Saether et al. 2023). We have 
previously implemented an srGS nonreference TE insertion 
(TEI) detection workflow into our clinical analysis pipeline 
(Bilgrav Saether et al. 2023). However, as previously dis
cussed, srGS provides limited resolution of TEs. With lrGS 
becoming more accessible and clinically applicable, an accu
rate, robust, and time-efficient lrGS TE caller is necessary in 
order to identify TEI. We here present a novel (s) 
Transposable ELement Long (e) Read (sTELLeR) caller, 
which is fast, sensitive, and precise at identifying 
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nonreference TEI. We apply sTELLeR on simulated data as 
well as on a genome in a bottle (GIAB) trio and samples from 
the Human Pangenome Reference Consortium (HPRC).

2 Materials and methods
2.1 sTELLeR algorithm
The sTELLeR algorithm entails five steps (Fig. 1). sTELLeR 
takes a bam or a cram file as input (1) and (2) extracts posi
tions of split reads and insertions. The positions are (3) clus
tered using the density-based spatial clustering of 
applications with noise (DBSCAN) clustering algorithm. 
DBSCAN will cluster positions based on proximity to each 
other, where ε determines maximum distance between neigh
bors and a minimum number of positions is set to consider it 
a cluster. Once clusters are obtained, (4) the sequence of the 
insertions and split reads spanning the cluster is extracted 
and aligned to TEs which are provided in a fasta file using 
minimap2. Finally, (5) the aligned sequences are refined to a 
consensus nucleotide position and filtered to only include 
clusters where a minimum number of reads (user-defined, de
fault 3) match a TE, and the length of the match needs to be 
at least 10% of the original insertion or split read. Lastly, 
results are provided as a VCF output.

2.2 sTELLeR benchmarking
sTELLeR was compared to multiple state-of-the-art lrGS TE 
callers, including xTEA, PALMER, TELR, and TLDR 
(Ewing et al. 2020, Shahid and Slotkin 2020, Chu et al. 
2021, McDonald et al. 2021). The callers were compared 
based on sensitivity, precision, and runtime. Callers that did 
not complete within 48 h were excluded from the benchmark. 
Callers also need to be stable and compatible with inclusion 
into pipelines in, e.g. Snakemake (M€older et al. 2021) or 
Nextflow (Di Tommaso et al. 2017). All analyses were run 
on the high-performance cluster Uppsala Multidisciplinary 
Center for Advanced Computational Science (UPPMAX). 
Chosen callers were ran on data obtained from GIAB and the 
HPRC (Zook et al. 2016, Liao et al. 2023) as well as on sim
ulated data.

The simulated data were created by inserting TE sequences 
from Alu, L1, HERV, and SVA at random in a masked refer
ence file (GCF_000001405.26) (Supplementary File S1). The 
Alu, L1, and SVA sequences were obtained by extracting TE 
sequences from a GRCh38 reference file (GCF_000001405.26) 
using positions indicated by RepeatMasker. The HERV se
quence was obtained from NCBI (AF020092) (Sayers et al. 
2022). The exact positions were determined using the random 

positions. The fasta file containing TEs was used to create a sim
ulated dataset using PBSIM3 (Ono et al. 2022). This resulted in 
a simulated BAM file with 20× coverage and where the reads 
have a similar error rate to those generated using the PacBio RS 
II. There were a total of 886 Alu, 888 L1, 444 SVA, and 452 
HERV insertions in the dataset. Commands and scripts are 
given in Supplementary File S1.

An additional assembly-based callset was generated using 
the HPRC de novo assembly of the samples HG002 and 
HG01071. SVIM-asm (Heller and Vingron 2021) was uti
lized to call insertions on the assembly, and RepeatMasker 
(Smit et al. 2013) was used to determine the presence of Alu, 
L1, HERV, and SVA elements. Elements with a percent diver
gence >15% and under a certain consecutive length (SVA: 
300, HERV: 1500, L1: 200, Alu: 100) were excluded. This 
resulted in 2193 Alu, 492 L1, 14 HERV, and 205 SVA ele
ments in HG002 and 2262 Alu, 439 L1, 11 HERV, and 202 
SVA elements in HG01071. sTELLeR, TLDR, and xTEA 
were subsequently ran on the PacBio samples downloaded 
from the same source and realigned to the GRCh38 reference 
(GCF_000001405.26) (Supplementary File S1).

For comparison of runtimes, PacBio BAM files for GIAB 
samples HG002, HG003, and HG004 were obtained from 
GIAB (Zook et al. 2016) and converted back to fastq files for 
alignment. ONT fastq files for the same samples were 
obtained from GIAB (Zook et al. 2016, Shafin et al. 2020). 
All fastq files were aligned to reference genome GRCh38 us
ing minimap2 (Li 2018).

Commands for running the tools are listed in Supplementary 
File S1. The TE fasta sequences, used to run TLDR and 
sTELLeR, were downloaded from NCBI (Sayers et al. 2022) or 
extracted from the reference genome. These sequences are avail
able through https://github.com/kristinebilgrav/sTELLeR_sup 
plementary/, along with the scripts used to generate the 
assembly-based and simulated callset.

2.3 TE analysis in srGS
HG004 srGS bam file was downloaded from GIAB (Zook 
et al. 2016) and realigned to GRCh38 using bwa-mem (Li 
and Durbin 2009) and downsampled to 30× coverage. TE 
calling in the srGS data was performed using RetroSeq 
(Keane et al. 2013) and MELT2 (Gardner et al. 2017). The 
srGS TE caller RetroSeq is a caller shown to have high sensi
tivity in previous studies (Keane et al. 2013, Rishishwar et al. 
2017, Vendrell-Mir et al. 2019). MELT2 is a popular TE cal
ler which has been utilized to generate the GnomAD SV call
set (Gardner et al. 2017, Collins et al. 2020). The commands 
used are given in Supplementary File S1.

Figure 1. sTELLeR algorithm overview. (1) BAM or CRAM file can be provided as input. (2) sTELLeR identifies split reads and insertions. (3) The split 
reads and insertions are clustered using DBSCAN. (4) Sequences of clustered split reads and insertions are aligned to TE sequences provided. 
(5) Resulting matches are provided in a variant call format (VCF) file. Image adapted from (https://github.com/kristinebilgrav/sTELLeR).
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3 Results
We downloaded and tested multiple callers such as xTEA 
(Chu et al. 2021), PALMER (McDonald et al. 2021), TELR 
(Han et al. 2022), and TLDR (Ewing et al. 2020). However, 
due to many of our mentioned demands from a caller, some 
fail to meet our requirements. PALMER was tested, but its 
runtime exceeded our runtime limits where it could not iden
tify TEs on GS within 48 h. TELR (v1.1) was easy to install; 
however, a bug known to the developer, but not resolved, 
rendered it to be unstable on our data. A comprehensive table 
of runtimes for the excluded callers is found in 
Supplementary Table S1. The callers tested which were com
petitive to sTELLeR were TLDR and xTEA.

Runtime, CPU hours, and memory usage of sTELLeR, 
TLDR, and xTEA were assessed by running the tools on the 
GIAB Ashkenazim trio using the PacBio and ONT data 
(Table 1). Runtimes were faster for sTELLeR across all sam
ple types and techniques.

sTELLeR, TLDR, and xTEA were further tested on simu
lated data produced and run as described in Section 2. The 
simulated dataset contained 886 Alu, 888 L1, 452 HERV, 
and 444 SVA insertions. sTELLeR was able to identify 863 
Alu, 859 L1, 443 HERV, and 435 SVA elements; TLDR 883 
Alu, 52 L1, 186 HERV, and 14 SVA elements; and xTEA 
866 Alu, no L1 or HERV, and 430 SVA elements (Table 2). 
This results in a sensitivity of 0.97 for Alu detection with 
sTELLeR, 0.99 using TLDR and 0.97 using xTEA. The preci
sion was 1 for both sTELLeR and xTEA, and 0.97 for TLDR 
(Table 2). For L1 detection, the sensitivity was 0.96 for 
sTELLeR and 0.05 for TLDR and the precision 1 for 
sTELLeR and 0.82 for TLDR. For HERV, sTELLeR had a 
sensitivity of 0.98 and a precision of 1, while TLDR 0.41 and 
1, respectively. For SVA, sTELLeR had a precision of 1, 
xTEA 0.99, while TLDR 0.82. The sensitivity was 0.97 for 
sTELLeR, 0.98 for xTEA, and 0.03 for TLDR.

Furthermore, the callers were run on PacBio data from 
samples HG002 and HG01071. Resulting TEs were com
pared to SVIM-asm (Heller and Vingron 2021) insertion calls 
determined to be Alu, L1, HERV, or SVA elements by 
RepeatMasker (Smit et al. 2013). For HG002 (TEI¼2904), 
sTELLeR was able to call 1885 true positive TEI, TLDR 
1741, and xTEA 1543. For HG01071 (TEI¼2914), 

sTELLeR identified 1914, TLDR 1808, and xTEA 1645 true 
positive TEI (Table 3).

By binning the number of Alu elements across HG002 and 
HG01071 identified using the two most competitive callers 
(sTELLeR, TLDR) along with the assembly-based callset, one 
can observe clusters of Alu elements across the genome 
(Fig. 2a). The three methods have a similar distribution, 
where notably the acrocentric p-arms have low amount of 
Alu elements, while a region on the p-arm of X has high 
amounts. sTELLeR and TLDR share similar patterns of Alu 
detection and with a few exceptions is similar to the 
assembly-based callset. To further assess sTELLeR and 
TLDR, along with TE detection in lrGS, we called TEs Alu 
and L1 in sample HG004 using both srGS and lrGS. We ran 
sTELLeR and TLDR on the PacBio lrGS data and RetroSeq 
and MELT2 on the srGS data (Fig. 2b). We found the overlap 
of all callers to be 642. The total number of TEs undetected 
by the lrGS callers were 1280, while sTELLeR and TLDR 
agreed upon 1302 TEI.

4 Discussion
lrGS has come forth as a technique valuable for bridging 
repeats and regions previously challenging to resolve (Shahid 
and Slotkin 2020, Bilgrav Saether et al. 2023). Analysis of 
TEs have previously suffered from short-read lengths in srGS, 

Table 1. sTELLeR, TLDR, and xTEA runtimes and memory usage for 
GIAB samples.

Dataset Coverage Caller Walltime (min) CPU time (walltime×CPU) Memory (GB)

HG002 PacBio 52× sTELLeR 21 21 6
TLDR 111 1110 23
xTEA 1020 8161 12

HG002 ONT 43× sTELLeR 83 83 2
TLDR 231 2310 69
xTEA 2136 17 083 12

HG003 PacBio 61× sTELLeR 27 27 8
TLDR 127 1265 25
xTEA 1112 8893 13

HG003 ONT 78× sTELLeR 149 149 3
TLDR 468 7481 105
xTEA 2328 18 621 12

HG004 PacBio 60× sTELLeR 22 22 14
TLDR 135 1346 20
xTEA 1108 8866 12

HG004 ONT 78× sTELLeR 160 160 3
TLDR 471 7537 100
xTEA 2435 19 480 14

Table 2. Simulated metrics for the callers sTELLeR, TLDR, and xTEA ran 
on a simulated dataset (Alu¼ 886, L1¼ 888, HERV¼ 452, SVA¼ 444).

sTELLeR TLDR xTEA

True positives Alu 863 883 866
L1 859 52 NA
HERV 443 186 NA
SVA 435 14 429

Sensitivity Alu 0.97 0.99 0.97
L1 0.96 0.05 NA
HERV 0.98 0.41 NA
SVA 0.97 0.03 0.98

Precision Alu 1.0 0.97 1.0
L1 1.0 0.82 NA
HERV 1.0 1.0 NA
SVA 1.0 0.82 0.99

NA: Not applicable.
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as the length of repeats can be longer than a read. Thus, lrGS 
open for in-depth studies and characterization of TEs within 
the genome which was previously challenging. TEs implica
tion in disease (Solyom and Kazazian 2012, Chenais 2022) 
makes them an important candidate in genome analysis, 
which have been underrepresented in clinical analysis work
flows (Bilgrav Saether et al. 2023). In lrGS, a nonreference 
TE will be represented as insertions and split reads when 
aligned to a reference genome. The split reads or insertions 
will contain the sequence of the inserted element. This also 
applies to most other larger structural variants (SVs), and it is 
therefore necessary to be able to differentiate between TEIs 
and other SVs. With this, we wanted a TE caller for applica
tion on lrGS which can assist in both characterization and re
search of TEs as well as being compatible with future 
implementation of lrGS analysis workflows.

Implementation into research as well as diagnostic work
flows require a fast, sensitive, and reproducible TE caller. A 
program should be easy to install and run, as well as be com
patible with running in a pipeline environment. It should not 
be too computationally demanding. Ideally it should output a 
VCF in order to be compatible with outputs from other vari
ant callers such as single-nucleotide variant, SV and copy- 
number variant callers. Many available callers today are of
ten collected in a pipeline format, demanding extensive con
figuration. This makes further addition into in-house 
pipelines a complicated and inefficient step. Additionally, 
some callers explored had compilation errors or a runtime ex
ceeding >48 h, which we deem too long for our analysis. The 
tested callers fit for our use were TLDR and xTEA. TLDR 
has been shown to achieve a sensitivity similar to srGS TE 
callers while assembling and annotating the insertions. 
However, the caller output results in a table format, and is 
not haplotype aware. xTEA display high sensitivity for Alu 
detection in both PacBio and ONT data (Chu et al. 2021); 
however, runtimes range from 22 to 46 h and output results 
in a text file format. Thus, in order to fulfill our require
ments, we developed sTELLeR.sTELLeR is a python-based 
caller designed to identify nonreference insertions across the 
genome. Detection of reference TE polymorphisms, i.e. TEs 
present in the reference, but missing from the individuals, is 
not possible. The sTELLeR algorithm involves detecting split 
reads and insertions, upon which their positions are clustered 
using DBSCAN. DBSCAN clusters positions based on their 
distance to each other. The distance and number of positions 

needed to form a cluster can be altered (–sr) and optimized 
for intended use. This enables the sensitivity adaptable, pro
viding flexibility and tailoring of the caller to the user’s needs. 
The user-input fasta file of TEs allows flexibility, making it 
possible to detect any type of nonreference insertion. 
sTELLeR is haplotype aware and can run on genome assem
blies. Additionally, the output is provided in VCF output and 
any bam file can be submitted, meaning the tool can be ap
plied to any species and nonreference insertion.

In research as well as clinical analysis, time, sensitivity, pre
cision, and compatibility are important aspects. We show 
sTELLeR to be all the above, with easy installation through 
git or container, a runtime <30 min for a 60× PacBio genome 
(Table 2). Compared to similar tools such as TLDR and 
xTEA (Ewing et al. 2020, Chu et al. 2021), sTELLeR is 5– 
48× as fast and uses <2% of the CPU time.sTELLeR, TLDR, 
and xTEA were tested on a simulated dataset containing 886 
Alu, 888 L1, 452 HERV, and 444 SVA insertions, as well as 
on samples HG002 and HG01071 from the HPRC (Wang 
et al. 2022). For the simulated dataset, sTELLeR has higher 
(TLDR) or similar (xTEA) precision and similar (xTEA) or 
slightly lower (TLDR) sensitivity for analysis of Alu elements 
than xTEA and TLDR (Table 2). For analysis of L1 elements, 
sTELLeR has higher sensitivity and precision than TLDR. 
Across both HERV and SVA elements, sTELLeR outper
forms TLDR in both sensitivity and precision. xTEA is com
petitive at detecting SVA insertions. In the simulated dataset, 
xTEA was not able to identify any L1 or HERV elements, 
which could be due to the internal TE dataset not being com
patible with the sequence of the elements used in the simula
tion, although retrieved from either the reference genome 
(GCF_000001405.26) or NCBI (AF020092).

In results from HG002 and HG01071, sTELLeR is more 
sensitive than both xTEA and TLDR for Alu and L1 element 
detection and more precise at Alu detection (Table 3). For 
SVA detection, sTELLeR has a precision >0.75 and sensitiv
ity >0.42, while TLDRs sensitivity vary from 0.44 to 0.81 
with a precision around 0.45. xTEA was not able to identify 
any SVA in sample HG01071 and for sample HG002 the sen
sitivity was very low (0.02), although the calls made were ac
curate (precision of 0.94). Furthermore, no HERV elements 
were detected by xTEA. HERV detection can be challenging 
as these elements are large, polymorphic and often not full 
length in the human population (Belshaw et al. 2005, Garcia- 
Montojo et al. 2018, Xue et al. 2020). This is reflected in the 

Table 3. Metrics for the callers sTELLeR, TLDR, and xTEA on samples HG002 (Alu¼2193, L1¼492, HERV¼14, SVA¼205) and HG01071 (Alu¼2262, 
L1¼439, HERV¼11, SVA¼ 202).

sTELLeR TLDR xTEA

HG002 HG01071 HG002 HG01071 HG002 HG01071

True positives Alu 1572 1592 1494 1556 1357 1408
L1 213 232 152 164 186 186

HERV 4 5 4 5 0 0
SVA 96 85 91 83 0 51

Sensitivity Alu 0.71 0.70 0.68 0.68 0.61 0.62
L1 0.43 0.52 0.30 0.37 0.37 0.33

HERV 0.28 0.45 0.03 0.45 0 0
SVA 0.46 0.42 0.44 0.81 0 0.02

Precision Alu 0.87 0.92 0.86 0.88 0.86 0.87
L1 0.54 0.36 0.63 0.61 0.84 0.73

HERV 0.36 0.17 0.05 0.07 0 0
SVA 0.75 0.77 0.45 0.94 0 0.94
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absence of true positive calls by xTEA and the low precision 
rate of both TLDR (<0.07) and sTELLeR (<0.36) on sam
ples HG002 and HG01071 (Table 3). Overall, sTELLeR is 
able to identify a larger number of true positives across all TE 
types. Potential false positives can later be filtered using pop
ulation databases. These results along with the low CPU us
age show sTELLeR to be an efficient, precise, and sensitive 
TE caller.

In conclusion, we have developed a sensitive and precise 
caller which is fast and highly compatible with implementa
tion into in-house workflows for research as well as clini
cal analysis.
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