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B I O C H E M I S T R Y

A general temperature-guided language model to 
design proteins of enhanced stability and activity
Fan Jiang1†, Mingchen Li2,3†, Jiajun Dong4,5†, Yuanxi Yu1†, Xinyu Sun6,7†, Banghao Wu1,8†,  
Jin Huang1,8, Liqi Kang1, Yufeng Pei7, Liang Zhang1, Shaojie Wang4, Wenxue Xu4, Jingyao Xin4, 
Wanli Ouyang2, Guisheng Fan3, Lirong Zheng1, Yang Tan2,3, Zhiqiang Hu9, Yi Xiong8, Yan Feng8, 
Guangyu Yang8,10,11, Qian Liu8, Jie Song7*, Jia Liu4*, Liang Hong1,2,12*, Pan Tan1,2*

Designing protein mutants with both high stability and activity is a critical yet challenging task in protein engineer-
ing. Here, we introduce PRIME, a deep learning model, which can suggest protein mutants with improved stability 
and activity without any prior experimental mutagenesis data for the specified protein. Leveraging temperature-
aware language modeling, PRIME demonstrated superior predictive ability compared to current state-of-the-art 
models on the public mutagenesis dataset across 283 protein assays. Furthermore, we validated PRIME’s predic-
tions on five proteins, examining the impact of the top 30 to 45 single-site mutations on various protein properties, 
including thermal stability, antigen-antibody binding affinity, and the ability to polymerize nonnatural nucleic acid 
or resilience to extreme alkaline conditions. More than 30% of PRIME-recommended mutants exhibited superior 
performance compared to their premutation counterparts across all proteins and desired properties. We developed 
an efficient and effective method based on PRIME to rapidly obtain multisite mutants with enhanced activity and 
stability. Hence, PRIME demonstrates broad applicability in protein engineering.

INTRODUCTION
Proteins are fundamental constituents of living systems, playing 
crucial roles in a vast array of biological processes, spanning from 
enzyme catalysis (1) and cellular metabolism (2) to immune re-
sponses (3), signal transduction (4), and transport (5), among oth-
ers. Beyond their biological significance, proteins are critical to 
numerous industries. In biomedicine, they serve as therapeutic 
agents and targets; in the food industry, they play roles in food pro-
cessing and preservation; in brewing, they are essential to the pro-
duction process; and in chemical engineering, they act as key 
catalysts for various reactions. In addition, proteins are the corner-
stone of in vitro diagnostic tests, instrumental in the detection and 
monitoring of numerous diseases. However, proteins extracted from 
biological organisms, known as “wild type,” often require modifica-
tions to make them suitable for industrial applications. This is pri-
marily because the physicochemical conditions (e.g., temperature) 
in which these proteins need to function in industrial settings are 

often drastically different from their native biological contexts (6, 7). 
Therefore, to meet the demands of these diverse application scenar-
ios, the proteins need to be engineered through mutations to im-
prove their physicochemical properties (8–10). These modifications 
may aim to enhance stability under extreme temperature (11) or pH 
conditions or to increase enzymatic activity and specificity. The pro-
cess of optimizing proteins for such industrial applications typically 
involves iterative cycles of mutation, screening, and selection—a 
labor-intensive and time-consuming endeavor.

As computational simulations and related technologies continue 
to advance, various software tools have emerged to enhance protein 
thermostability, including Rosetta (12), ABACUS (13), and FoldX 
(14), which use physical or statistical potential functions. While these 
computational methods often provide relatively accurate stability 
predictions, their capacity to predict protein biological activity is 
limited. Typically, modifying the biological activity of proteins re-
quires long-term (~years) meticulous experimental research into 
their working mechanisms, which is the primary method of rational 
protein design. However, mechanistic research is time consuming 
and labor intensive, and it increasingly fails to meet the modifica-
tion needs of many important industrial enzymes commonly used 
in everyday applications. In recent years, deep learning has been ex-
tensively applied in protein engineering. Large-scale protein lan-
guage models (PLMs) (15–19), such as those using self-supervised 
learning of protein sequences to understand protein sequence se-
mantics and grammar, have demonstrated appreciable predictive 
performance for protein fitness (20), even in zero-shot settings 
(19, 21, 22). A zero-shot setting here means that the model can pre-
dict the mutation sites of a protein to improve its properties without 
relying on any prior experimental mutagenesis data. However, the 
prediction of most PLMs pretrained on extensive protein sequences 
often does not achieve sufficient high accuracy for protein stability, 
which is crucial for protein engineering (23). Other supervised 
deep learning methods exhibit high accuracy in predicting pro-
tein fitness but rely on high-throughput experiments to generate 
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hundreds or even thousands of data points (24, 25). This approach is 
not practical for many proteins because of resource limitations. In 
this study, we used a comprehensive dataset comprising 96 million 
sequence-host bacterial strain optimal growth temperatures (OGTs) 
(26). The OGT of host bacterial strains has been shown to strongly 
correlate with information such as protein optimal enzymatic activ-
ity temperature and melting temperature (27). Leveraging this data-
set, we developed a deep learning–based methodology, termed 
PRIME, which stands for Protein language model for Intelligent 
Masked pretraining and Environment (temperature) prediction. 
During its pretraining process, PRIME uses a masked language 
modeling (MLM) task, inspired by the transformer-based language 
models (28). This task involves artificially modifying protein se-
quences based on the natural probability distribution of amino ac-
ids, then attempting to restore the sequences to their original state. 
This procedure enables PRIME to learn and comprehend the se-
mantic and grammatical features inherent in protein sequences. 
Alongside this, PRIME capitalizes on a multitask learning paradigm 
to capture the temperature traits associated with these sequences. 
This approach fosters an inherent predisposition in PRIME to assign 
higher scores to protein sequences exhibiting enhanced temperature 
tolerance and conforming to natural biological principles. PRIME is 
trained with the objective of predicting OGTs across a wide range of 
bacterial strains. As a result, PRIME naturally correlates higher 
scores with sequences more likely to contribute to robustness and 
survivability in varied environmental conditions, including extreme 
temperatures. Therefore, PRIME proves particularly proficient in 
the design and optimization of industrial enzymes and proteins that 
often require high-temperature tolerance and resilience for practical 
applications. Our model has demonstrated much better predictive 
performance compared to other state-of-the-art models in forecast-
ing thermostability [change of melting temperature (Tm)] and fit-
ness prediction of mutated protein sequences.

To further evaluate the efficacy of our model, we applied it to five 
distinct proteins and subjected the results to wet-lab experimental 
validation. The proteins studied included LbCas12a, T7 RNA poly-
merase, creatinase, nonnatural nucleic acid polymerase, and the vari-
able domain of the heavy chain of a nano-antibody against growth 
hormone (VHH). Without any prior experimental mutagenesis data, 
we used the PRIME model to select several top-ranking single-site 
mutants for experimental testing. Our results revealed that more than 
30% of these mutants displayed notable improvements in the physico-
chemical properties, such as thermostability, catalytic activity, antigen-
antibody binding affinity, or even the nonnatural properties, e.g., the 
ability to polymerize nonnatural nucleic acid or resilience to extreme 
alkaline conditions.

Protein engineering for various pharmaceutical and industrial 
applications is confronted by two major challenges. The first is the 
identification of beneficial single-site mutations, and the second is 
the combination of multiple single-site mutations into a deep 
mutant. The latter becomes particularly challenging as it is often 
observed that combining two positive single-site mutations often 
results in a two-site mutant with inferior performance compared 
to each single-site mutant before the combination. As shown in 
(29) in high-throughput screening of green fluorescence protein, 
the probability of observing the negative epistatic effect, where the 
fluorescence intensity of a mutant combining two single-site muta-
tions is worse than the linear addition of the fitness of the two 
before combination, is ~100 times higher than that of observing 

the positive epistatic effect. Building on the foundational frame-
work provided by PRIME, we introduce a multisite stacking strategy 
based on the PRIME model. For example, in the case of T7 RNA 
polymerase, after three rounds of AI-experiment iterations with 
fewer than 100 mutants in total, we successfully developed a mutant 
with 12-site mutations that surpasses the thermostable counter-
part offered by the leading commercial biotechnology company, 
New England Biolabs. We also conducted similar strategy on 
LbCas12a, which contains multiple domains and 1228 amino acids. 
After three rounds of AI-experiment iterations with fewer than 
100 mutants, we achieved an 8-site mutant with the best thermo-
stability to date, whose Tm is 6.5°C higher than the wild type while 
maintaining comparable or higher trans-cleavage activity at the 
desired condition.

Furthermore, in the case of T7 RNA polymerase and LbCas12a, 
we found that PRIME can automatically combine the negative 
single-site mutations from different functional domains into a 
multisite deep mutant to further improve the fitness of the latter. 
This could be a very important finding as it opens a route for protein 
engineers as they now can make use of negative mutations to im-
prove the fitness of proteins. These negative mutations, which are 
more common than positive ones, were traditionally pre-excluded 
in conventional protein engineering.

RESULTS
PRIME architecture
PRIME is a pretrained model based on the Transformer architecture 
(30), as illustrated in the Fig. 1A. PRIME consists of three main 
components. The first is the encoder module for sequence feature 
extraction, which is a Transformer encoder model to extract the la-
tent representation of the sequence. The second component is the 
MLM module, which is designed to prompt the encoder to learn the 
contextual representation of amino acids. Meanwhile, the MLM 
module can also be applied in mutant scoring. The third component 
is the OGT prediction module, which can predict the OGT of the 
organism in which the protein is located, on the basis of the latent 
representation. The model and training details of PRIME are de-
scribed in Methods.
The pretraining objectives of PRIME
There consists of three learning objectives of PRIME: the MLM ob-
jective, the OGT prediction objective, and the correlation objective. 
The details of these objectives are as follows:

Masked language modeling. MLM is often used as a pretraining 
method for sequential data representation. In this objective, noised 
protein sequences serve as the input, wherein parts of tokens are 
masked as “<mask>” or substituted with alternative tokens. The 
training objective is to reconstruct these noised tokens. This approach 
facilitates the model’s ability to capture dependencies among amino 
acids as well as contextual information along the sequence. The details 
can be found in Methods. Moreover, we can use this reconstruction 
process to score mutations.

OGT prediction. The second training objective is optimized un-
der supervised conditions. We use a dataset containing 96 million 
protein sequences annotated with OGT to train the PRIME model. 
The input of this objective is protein sequence, and the OGT module 
generates a temperature value ranging between 0° and 100°C. Nota-
bly, the OGT and MLM modules operate with a shared encoder. This 
architecture enables the model to simultaneously capture amino 
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Fig. 1. Overview of the PRIME architecture and its applications. (A) The architectural design of PRIME. PRIME incorporates a BERT-oriented Transformer encoder, aug-
mented by two domain-specific modules: one for MLM and another for OGT prediction tasks. The learning objectives comprise three distinct loss functions: MLM loss, 
quantified via cross-entropy; OGT loss, assessed through the mean squared error criterion; and correlation loss, evaluated by the inverse Pearson correlation coefficient. 
(B) The use of PRIME for temperature prediction. PRIME can predict the OGT of a protein sequence and can be further fine-tuned with other temperature datasets (e.g., melt-
ing or optimal catalysis temperature). (C) The use of PRIME for single-site mutation scoring. The wild-type sequence is reconstructed via the MLM module, generating a 
probabilistic distribution for amino acid identity at the mutation locus. The mutational impact is then quantified by the log-odds ratio between the mutated and wild-type 
amino acids. (D) The strategy for generating multisite mutants involves several steps. First, PRIME is used to assess the impact of single-site mutations, from which the top-
K mutants are selected for experimental fitness evaluation in the laboratory. Subsequently, this experimental data serves as the training set to fine-tune PRIME. The fine-
tuned model is then used to predict the fitness of multisite mutants. On the basis of these predictions, the top-K multisite mutants are selected for further experimentation.
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acid contextual information and temperature-related sequence 
characteristics (Fig. 1B).

Correlation objective. We introduce a learning objective to align 
these two metrics to facilitate feedback from the predicted OGTs 
to the MLM scores. For a group of single-site mutant sequences, 
the OGT prediction module outputs their OGTs, and the MLM 
module scores these mutants. Subsequently, we maximize the 
Pearson correlation between these mutant scores and predicted 
OGT values, serving to align the mutant OGT with their corre-
sponding mutant scores. The goal of this objective is the maxi-
mization of the Pearson correlation coefficient. We use Pearson 
correlation as our learning objective because of its differentiable 
properties (for backpropagation), in contrast to the nondifferen-
tiable of Spearman correlation.

We have conducted experiments using mean square error (MSE) 
loss to align the MLM and OGT predictions (table S1). We found 
that this approach yielded inferior results compared to using Pearson 
correlation as a loss function. The possible reason is that MSE loss 
aligns the MLM and OGT values for a single sequence, resulting in 
unstable loss for individual data, and the absolute value of the MLM 
score holds limited significance for us. In contrast, correlation loss 
is calculated for a set of mutated sequences and better reflects the 
relative magnitude of values within a set, which aligns more closely 
with our specific application scenario of protein engineering and 
evaluating a set of mutated data.
Zero-shot single-site mutation scoring
Models trained with the MLM objective can output the likelihood of 
amino acids appearing at a specific position based on the surround-
ing context. We use this to score single-site mutations. Given a mu-
tation, we treat the amino acid in the wild-type protein as a reference 
and compare its likelihood to that of the mutated amino acid. The 
mutations are then scored using the log-odds ratio at the mutated 
position. (See Fig. 1C; the details can be found in Methods.)
Augmentation of single-site mutation prediction performance 
in PRIME through fine-tuning on homologous sequences via 
the MLM learning objective
While PRIME exhibits commendable performance in zero-shot 
mutant effect prediction, we observed that additional unsupervised 
fine-tuning of the language modeling module on homologous pro-
tein sequences of target proteins yields improved results, without 
adding supervision from experimental data. Explicitly, for the fine-
tuning process, we deploy homologous sequences of the proteins of 
interest as an unsupervised dataset, optimizing both the encoder 
and MLM modules of PRIME and ESM2-650 M. Evaluation results 
substantiate that this method improves PRIME’s and ESM-2’s pre-
dictive accuracy for mutant effect prediction.

PRIME outperforms state-of-the-art methods in predicting 
fitness of mutated protein sequence
We conducted a comparison of the zero-shot prediction capacity 
on thermostability between our model, PRIME, and several cur-
rent state-of-the-art models, including deep learning models 
ESM-1v (21), ESM-2 (19), MSA-transformer (17), Tranception-
EVE (31), CARP (32), MIF-ST (33), SaProt (34), Stability Oracle 
(35), as well as the traditional computational method, GEMME 
(36), and Rosetta (12). Notably, among these methods, MIF-ST, 
SaProt, and Rosetta incorporate protein structure information, 
whereas the others rely solely on protein sequence. Our analysis 
used a dataset derived from MPTherm (37), FireProtDB (38), and 

ProThermDB (39), featuring single-site mutations in proteins with 
ΔTm, i.e., changing of melting temperature as compared to the 
wild type, collected under the same experimental pH and ensuring 
a minimum of 10 data points per protein, amassing a total of 66 
assays. Concurrently, the analysis also incorporated assays from 
deep mutational scanning (DMS), specifically those housed within 
ProteinGym (31). ProteinGym presents a meticulously construct-
ed substitution benchmark, characterized by the experimental 
delineation and assessment of ~2.5 million missense variants. 
These variants are dispersed across 217 distinct DMS assays and 
encompass a range of protein properties including, but not limited 
to, enzymatic catalysis, binding affinity, stability, and fluorescence 
intensity. Such a comprehensive assembly of missense variants 
within the substitution benchmark of ProteinGym provides a 
robust and expansive repository, thereby facilitating the nuanced 
evaluative study of the myriad documented missense variants. 
This repository thus serves as a valuable asset for the systematic 
examination and interpretation of the diverse and intricate land-
scape of protein mutations and their associated properties.

These comprehensive datasets enabled a systematic investiga-
tion of the impact of specific mutations on protein fitness and 
thermostability, supporting the development and validation of 
advanced predictive models such as PRIME. The comparison 
provides valuable insights into the relative performance of differ-
ent modeling approaches and highlights the potential of PRIME 
for predicting protein mutations in a zero-shot setting. The results 
are illustrated in Fig. 2A and table S2. As can be seen, PRIME dem-
onstrates better performance than all the other methods in pre-
dicting protein fitness and stability. In the ProteinGym benchmark, 
PRIME outperforms the second-best model, SaProt, registering a 
score of 0.486 against 0.457 (P = 1 × 10−4, Wilcoxon). In the ΔTm 
dataset, PRIME’s performance surpasses the next model, Stability 
Oracle, with scores of 0.437 and 0.412, respectively (P = 9 × 10−3, 
Wilcoxon). We also compared PRIME with other methods in the 
dataset of Stability, which refers to ProteinGym-stability, a sub-
dataset of ProteinGym. PRIME still outperform all of the other 
methods. It is crucial to note that the OGT used by PRIME is not 
a direct representation of protein Tm. Instead, a correlation exists 
between them (27). There are some enzymes from thermophiles 
that turn out to be not very thermostable (40). However, even 
when leveraging the slightly imprecise OGT as a stand-in for pro-
tein sequences’ Tm attribute, PRIME markedly outshines models 
that do not incorporate OGT. For instance, the similar-architecture 
counterpart, ESM-2, achieves only 0.330 in the ΔTm dataset. We 
posit that PRIME’s performance would witness a significant boost 
with access to a vast dataset of accurate Tm values for natural pro-
teins. These findings underscore PRIME’s potential in protein en-
gineering endeavors, particularly in crafting protein sequences 
with enhanced thermostability and other fitness attributes. Across 
the board, PRIME outclasses both traditional computational 
strategies and other deep learning models, underscoring its 
unparalleled effectiveness.

Recent efforts, such as SaProt, which integrates protein structural 
information into PLMs, show enhanced prediction capabilities on sta-
bility. However, SaProt and other structural models, including MIF-
ST or Stability Oracle, require protein structure data as input, which 
inherently carries noise and is limited by the availability of high-
precision structures either from wet-lab experimental resolution or 
predictions like those from AlphaFold. This makes their application 
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somewhat restricted. PRIME, which only requires sequence input, has 
already outperformed the current leading model SaProt when using 
the latest complete version of ProteinGym (217 datasets) as a bench-
mark. As a purely sequence-based model, PRIME not only substan-
tially improves prediction capabilities within stability datasets compared 
to other PLMs, such as ESM-2, but also achieves superior performance 

in nonstability datasets, particularly those involving activity, as shown 
in table S2.

In addition to the zero-shot assignment, we also tested the repre-
sentational capacity and transferability of PRIME. Specifically, we con-
duct supervised fine-tuning on two temperatures related downstream 
tasks with global fine-tuning (Fig. 1B). As the pretraining of PRIME 

Fig. 2. Comparison of the performance between PRIME and other methods. (A) Unsupervised model benchmarking on the ΔTm and ProteinGym datasets. PRIME 
(homologous sequences) denotes the fine-tuning of the PRIME model using the MLM loss on homologous sequences of the target proteins present in either ProteinGym 
or ΔTm datasets. (B to E) Supervised prediction of Tm (melting temperature) and Topt (optimal enzymatic activity temperature). For the supervised benchmarks, we trained 
PRIME and ESM-2 with three different random seeds, while the results for DeepET were obtained from (82). Four metrics are used to gauge the models’ accuracy and 
predictive ability: RMSE (B), Pearson correlation (C), R2 (coefficient of determination) (D), and Spearman correlation (E). The datasets and data split for Tm and Topt are ref-
erenced from (82). We obtained the wild-type protein structure from the Protein Data Bank and used Alphafold2 (87) to construct structures absent in PDB for the input 
to Rosetta and MIF-ST. The data points and the P value tests associated with Fig. 2 are shown in tables S2 and S3.
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incorporates the optimum growth temperature of the bacteria where 
the protein lives in, it is anticipated that PRIME can also perform 
better in predicting other properties of proteins associated with 
temperature. As exhibited from Fig. 2 (B to E) (table S3), PRIME 
also outperforms other supervised methods in the task of predicting 
the melting temperature (Tm) of a native protein and its optimal en-
zymatic activity temperature (Topt). Considering the importance of 
Tm and Topt in protein, PRIME’s ability to rapidly label a large vol-
ume of protein native sequences with thermal properties, using only 
sequence input, is of notable utility for native protein annotation 
engineering in practical applications.

Furthermore, we delved deeper into understanding the individu-
al contributions of the three core modules within PRIME: the OGT 
prediction module, the MLM module, and the correlation term. 
Our findings, detailed in table S1, highlight that relying solely on 
either the OGT prediction or the MLM module leads to a dip in 
PRIME’s performance. Among these, the MLM module stands out 
as having the most pronounced effect across all zero-shot bench-
marks. The OGT module plays a pivotal role in ΔTm prediction, 
with the standard PRIME achieving a score of 0.437, in contrast to 
PRIME/-OGT, which scores 0.362 (P = 3 × 10−2, Wilcoxon). Simi-
larly, the correlation term significantly influences ΔTm prediction, 
with PRIME/-correlation registering a score of 0.429 (P = 4 × 10−2, 
Wilcoxon). In the context of the ProteinGym benchmark, both the 
OGT and correlation terms continue to exert a significant influence. 
This finding highlights the significance of combining the OGT pre-
diction, MLM, and correlation modules in the PRIME model to 
achieve optimal performance. The synergistic effect of these three 
modules allows the model to better understand the complex rela-
tionships between protein sequences and their thermostability prop-
erties, ultimately resulting in improved predictive capabilities. The 
integration of all these modules in the PRIME model ensures a more 
comprehensive understanding of the protein sequence information, 
which in turn contributes to its superior performance compared to 
other state-of-the-art models.

Further, we assessed PRIME’s performance in other supervised 
protein engineering tasks. Specifically, in the Fitness Landscape Infer-
ence for Proteins (FLIP) benchmark (41), which consists of 12 tasks, 
PRIME leads in all of these tasks over ESM-1b, ESM-1v, ESM-2, and 
CARP, demonstrating its strong extrapolation capability, particularly 
in predicting high-complexity mutational effects (table S4). We note 
that, among the 12 tasks in FLIP, 2 of them (AAV and GB1) corre-
spond to predicting the fitness of the multisite deep mutants when 
knowing the fitness of the constituent single-site mutations, which is 
crucial for identifying the final product in the protein engineering. 
One plausible explanation for this capability is that during PRIME’s 
pretraining, there is an alignment between the token-level MLM and 
the sequence-level OGT attributes of mutant sequences. This align-
ment allows the model to learn the thermal properties of native se-
quences and the thermal stability ranking of mutant sequences. 
Because protein thermal stability, binding affinity, and other extremo-
philic tolerances follow similar physical principles reflecting struc-
tural stability, PRIME exhibits superior extrapolation capability in 
tasks related to native protein thermal stability (Meltome) and mutated 
protein binding affinity (AAV and GB1) within the FLIP benchmark. 
This is why PRIME demonstrates a stronger performance in these tasks 
compared to the ESM series. Moreover, in the Meltome (42) dataset 
task of FLIP, which involves predicting the Tm of human-derived 
proteins, PRIME, integrated with OGT information, consistently 

surpassed models with similar architectures like ESM-2. This indi-
cates that although PRIME’s pretraining process only learned the 
OGT information of bacterial-derived protein sequences, it still ex-
cels in predicting the Tm temperature attributes of proteins from 
other species. This demonstrates PRIME’s generalizable capabilities.

Wet-lab experimental testing of PRIME-designed single-site 
mutants of various proteins for different 
engineering purposes
In practical applications of protein engineering, the prevailing ap-
proach involves identifying positive single-site mutations that en-
hance the protein’s performance (making it more active or more 
stable) and then combining them to form multisite mutants with 
desired properties probably through a greedy search method (25). 
Thus, the successful identification of these positive single-site muta-
tions forms the cornerstone of successful protein engineering. To 
further substantiate the effectiveness and generosity of our method-
ology, we tested the PRIME model on designing single-site mutant 
for five distinct proteins, namely, LbCas12a, T7 RNA polymerase, 
creatinase, nonnatural nucleic acid polymerase (Tgo-D4K), and 
the variable domain of the heavy chain of a nano-antibody against 
growth hormone (VHH). Briefly, we fine-tuned PRIME on a set of 
30,000 homologous sequences for each target protein, sourced from 
the Uniclust30 database (43). This fine-tuning was executed with 
five distinct random seeds for each target protein. By averaging the 
prediction outcomes from these five models for single-site satura-
tion mutations, we generated a single-site mutation score table for 
every protein. PRIME was then used to rank all single-site mutants 
within the landscape, on the basis of the likelihood of the mutated 
sequences relative to their wild-type counterparts (refer to the mu-
tated protein sequence scoring strategy). Subsequently, we selected 
top 30 to 45 mutants from outside the 6-Å range of the catalytic ac-
tive sites or binding pockets for further experimentation. Consider-
ing that mutations within the catalytic active site or binding pockets 
could profoundly affect the protein’s function, direct mutation of the 
active site presents both risks and opportunities (44). In this study, we 
adopted a conservative approach aimed at averting potential drastic 
disruption to the protein’s catalytic capabilities. Notably, we were 
initially unsure about the specific effects of PRIME’s suggested mu-
tations on the properties of the five proteins under study. However, 
each protein had distinct enhancement needs, either in stability or 
activity. For the five distinct proteins, the engineering objectives var-
ied: for LbCas12a, T7 RNA polymerase, and creatinase, the goal was 
to enhance thermostability; for nonnatural nucleic acid polymerase, 
the target was to accelerate the polymerization rate of nontradition-
al nucleic acids, specifically 2′-fluoroarabino nucleic acid (FANA); 
and for VHH, the objective was to increase stability in highly alka-
line pH conditions (pH >  13). Comprehensive outcomes of these 
experiments are elaborated on in the subsequent sections.

PRIME can be used to rank mutants on the basis of both activity 
and stability for single mutants. However, from the ablation study of 
PRIME, we found that the zero-shot performance with only the 
OGT module (PRIME/-MLM) is quite poor in both the ProteinGym 
benchmark and ΔTm. Therefore, we do not use the OGT module to 
select single-site mutations for stability. Instead, we suggest using 
the large langaue model’s (LLM) likelihood of PRIME, obtained 
when predicting OGT as an additional pretraining task. Drawing on 
previous research experience of biologists (7,  44), we can choose 
mutations located on the surface of the protein to improve protein 
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stability and mutate amino acids around the protein pocket to en-
hance protein catalytic activity.
LbCas12a
It is well known that engineering proteins with multiple functions is 
challenging because of the trade-offs between different protein prop-
erties (45). Moreover, these multidomain proteins often have sub-
stantial conformational differences between their functional states 
and their crystal structures, which poses a substantial challenge to 
traditional rational design methods that rely on structure. Thus, we 
sought to challenge our model with a large, multidomain protein 
whose activity requires cross-talk between multiple functional do-
mains. We engineer the Tm of Lachnospiraceae bacterium Cas12a 
(LbCas12a). Cas12a is an RNA-guided endonuclease belonging to 
the type V-A CRISPR-Cas system (46). LbCas12a contains 1228 ami-
no acids with multiple functional domains (Fig. 3A). During the 
catalytic process, CRISPR RNA (crRNA) guides Cas12a to bind to 
and cleave double-stranded DNA substrates. Upon target DNA rec-
ognition, the recognition domain lobe of Cas12a undergoes confor-
mational changes to unleash its trans-activity to cleave nonspecific 
single-stranded DNA (47). This feature makes LbCas12a particularly 
useful in in vitro diagnostic applications (48). We used PRIME to 

perform a round of single-site mutation prediction and tested 30 
single-site mutations, of which 9 of 30 single-site mutants had a Tm 
not lower than the wild type (V936F, I976L, S962K, M957L, M456I, 
L59K, Y549K, G49K, and C1090D) (Fig. 3B).
T7 RNA polymerase
T7 RNA polymerase is a monomeric enzyme derived from T7 bac-
teriophage, comprising a total of 883 amino acids. Since its initial 
utilization in RNA synthesis in the early 1980s, T7 RNA poly-
merase has become a crucial tool in the fields of molecular biology 
and genetic engineering (49). It is now commonly used in various 
applications such as in vitro transcription (IVT) experiments, mRNA 
vaccine production (50), isothermal amplification detection tech-
niques (51,  52), etc. However, T7 RNA polymerase also presents 
some application drawbacks. For example, it produces immunos-
timulatory by-products, such as double-stranded RNA, during the 
transcription process (53), which necessitates complex purification 
processes for mRNA vaccine production. Recent studies have indi-
cated that increasing the reaction temperature to above 48°C ef-
fectively reduces the by-products (54). Nevertheless, the wild-type 
T7 RNA polymerase unfolds at temperatures around 45°C, result-
ing in decreased enzymatic activity and an inability to transcribe the 

Fig. 3. Overview of the structures and performance results of single-site mutants predicted by the PRIME model. The structures and experimental results of single-
site mutants predicted by PRIME for LbCas12a (A and B), T7 RNA polymerase (C and D), creatinase (E and F), nonnatural nucleic acid polymerase (G and H) and VHH (I and 
J) are depicted. The data points representing the mutations were systematically arranged in ascending order, with the corresponding value for the wild-type protein de-
lineated by a gray bar for comparative purposes. Mutants that exhibited superior performance compared to their wild-type counterparts in terms of targeted attributes 
are highlighted in yellow, while negative mutants are shown in blue. The engineering goals varied between proteins for practical purposes: for LbCas12a, T7 RNA poly-
merase, and creatinase, the objective was enhanced thermostability (Tm); for nonnatural nucleic acid polymerase (Tgo-D4K), the aim was to accelerate the synthesis rate 
of FANA; and for VHH, the goal was to improve the tolerance ability under extreme alkaline pH conditions [median effective concentration (EC50) of VHH binding to the 
antigen]. All mutated structure were folded by Alphafold2. Detailed experimental data can be found in the separate Excel file in the Supplementary Materials.
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desired target products at higher temperatures. Therefore, there is a 
critical need to enhance the thermal stability of T7 RNA polymerase.

In this study, we used PRIME to predict mutation sites in T7 RNA 
polymerase and directly selected the top 45 single-site mutants for 
subsequent experimental verification. As depicted in Fig. 3D, our ex-
perimental results indicate that 57.7% (26 of 45) of the mutants have a 
Tm value higher than the wild type (Y846R, C125A, H772K, S606V, 
V687E, F481W, C216L, N601E, A881F, P657K, S633P, K642G, M306K, 
A703T, P476E, A468F, T375K, I217L, R792M, S397W, P865L, C515P, 
W797L, S430P, L446F, and Q786L).
Creatinase
Creatinase, a dimeric proteinase, is widely used in enzymatic assays 
for measuring creatinine levels (55, 56). It is primarily derived from 
microorganisms such as Pseudomonas, Bacillus, and Alcaligenes. 
Creatinase is crucial in medical diagnostics and plays a role in 
quantifying creatinine in serum and urine (57). Elevated creatinine 
levels indicate impaired kidney or muscle function. Nevertheless, 
the optimal catalytic temperature for creatinase typically falls with-
in the range of 30° to 40°C, which constraints both the industrial 
and clinical diagnostic applications. Enhancing the thermal stability 
of creatinase not only improves the efficiency of clinical creati-
nine detection but also facilitates enzyme production, storage, 
and transportation.

Here, we used the PRIME model to predict single-site mutations 
in creatinase obtained from Alcaligenes faecalis (58). At the end, 28 
single-site mutants were selected for experimental validation. As de-
picted in Fig. 3F, 32% (9 of 28) of the mutants exhibited improved 
thermal stability (Q151V, H193Y, V283L, A180K, Y310L, E170T, 
S19L, H74Q, and D17V).
Nonnatural nucleic acid polymerase
Tgo is a DNA polymerase that has been identified in the thermo-
philic bacterium Thermococcus gorgonarius, which was isolated from 
a geothermal vent in New Zealand (59). Tgo has been found to ac-
curately replicate FANA, a genetic polymer with 2′-fluoroarabino 
residues in deoxyribonucleotides (60, 61). However, Tgo DNA poly-
merase can only catalyze the synthesis of FANA on the DNA tem-
plate at a rate of ~15 nt/min (61), which is much lower than that of 
Tgo for DNA synthesis (~400 nt/min) (62), limiting the application 
of FANA as a substitute for DNA in information storage (63), disease 
treatment (64, 65), and other fields. The evolution of a xeno nucleic 
acid (XNA) polymerase necessitates a comprehensive evaluation of 
not only binding affinity but also catalytic activity and processivity. 
This is due to the unique chemical and biophysical properties of 
XNA, which differ from those of DNA and RNA, making prediction 
by traditional in silico methods challenging. Furthermore, the dis-
tinct sugar pucker of XNAs may result in conformational structures 
of XNA that differ from those of DNA, RNA, and nucleic acids mod-
ified in bases, thereby influencing the polymerase’s recognition of 
XNA. Consequently, the in silico prediction and direct evolution of 
XNA polymerase remain formidable challenges. To date, the evolu-
tion of XNA polymerases has relied solely on random mutation 
methods in vitro, such as the compartmentalized self-tagging meth-
od. Pinheiro et al. (66) constructed a high-throughput mutation 
library and conducted at least two rounds of screening to identify 
the currently fastest FANA polymerase, Tgo-D4K (TgoT: L403P, 
P657T, E658Q, K659H, Y663H, E664K, D669A, K671N, and T676I). 
The polymerase was able to extend FANA on the DNA template at a 
rate of ~80 ±  27 nt/min, while the rate of DNA extension on the 
DNA template was reduced to 16 ± 3 nt/min (62). However, the 

synthesis rate of Tgo-D4K for FANA is still lower than that of Tgo for 
DNA synthesis. Therefore, methods are required to modify exist-
ing polymerases to screen for polymerases with higher FANA syn-
thesis rates.

In the present study, we commenced our investigation with Tgo-
D4K as the starting point. Using PRIME, we systematically screened 
potential mutation sites across various domains of Tgo-D4K. Ultimately, 
we selected 27 promising mutations for subsequent experimental vali-
dation. The polymerase kinetic profiling (PKPro) strategy was used to 
detect the FANA synthesis rate of the mutants as previously described 
(62). The experimental results (Fig. 3H) showed that more than 40% (12 
of 27) of the mutants had a higher FANA synthesis rate (P716G, R460E, 
I528A, H659E, K465E, A546V, I471E, D29V, Y481G, T55L, A217P, and 
I693W), and the single-site (I693W) mutation was identified, which 
can notably increase the extension rate to ~3.2-fold of that of the Tgo-
D4K enzyme.
VHH
VHH antibody is the antigen-binding fragment of heavy chain 
only antibodies (67). Because of the advantages of small size, 
monomer state, robust structure, and easy tailoring, VHH has 
been used as an important tool in medical research and clinical 
antibody drug development (68), which have been developed as an 
affinity ligand to selectively purify biopharmaceuticals, for exam-
ple prothrombin, tetrabromobisphenol A, intercellular adhesion 
molecule 1, and so on (69–71). In the practical production of bio-
logical products, the most widely used method of clean in place is 
0.5 M NaOH cleaning for 24 hours. Hence, VHH antibodies used 
for biopharmaceutical purification need mutational engineering 
to tolerate the harsh alkaline condition, which is rarely seen in na-
ture (72, 73).

In this study, we used our PRIME model to predict mutation sites 
for a VHH antibody against a growth hormone that we select from 
an immunized camelid. The top 29 mutants were chosen for further 
testing; 11 of 29 (~38%) mutants enhanced stability after incubation 
at 0.3 M NaOH for 24 hours, as shown in Fig. 3J (A57D, P29T, A15P, 
V113D, P117Q, R20T, R110E, T58K, D114Y, W112F, and L12K). 
Among these, the A57D mutation displayed a remarkable 12-fold 
enhancement in alkali tolerance. Besides, ~31% (9 of 29) of the mu-
tants show increased affinity for antigen before the alkaline treat-
ment (P29T, A15P, A57D, P117Q, Q83D, R20T, T119V, L12K, 
and V113D).

Benchmark of different strategies for selecting 
single-site mutations
To evaluate the efficiency of PRIME and the strategy of our 
single-site mutation selection, we incorporated a benchmark 
comparison for different strategies of selecting single-site muta-
tions. We conducted comparisons both in silico and through 
wet-lab experiments. From the ProteinGym dataset, we used a 
subset with saturated single-site mutation data (comprising five 
datasets with wild-type sequence identity to the PRIME pretrain-
ing dataset below 30%) for this analysis. We compared the top 15 
single-site mutations selected by four different strategies, which 
include the following: (i) the strategy method in this paper, using 
homologous sequences of the target protein to fine-tune the 
PRIME model; (ii) fine-tuning ESM-2 on the same homologous 
sequences; (iii) the ESM vote strategy from (74); (iv) random 
single mutations. Our single-site selection strategy consistently 
outperformed the other methods across three evaluation metrics: 



Jiang et al., Sci. Adv. 10, eadr2641 (2024)     27 November 2024

S c i e n c e  A d v an  c e s  |  R e s e ar  c h  A r t i c l e

9 of 19

the number of positive single-site mutations, the maximum fit-
ness, and the median fitness of the mutants. The specific results 
are presented in table S5. Furthermore, we compared the perfor-
mance of the top 15 single-site mutations selected by different 
methods through wet-lab experiments. We limited our compari-
son to two proteins: T7 RNA polymerase and a nonnatural nucle-
ic acid polymerase Tgo-D4K. We validated the top 15 single-site 
mutations selected by our strategy, the ESM vote strategy, the 
strategy of fine-tuning ESM-2 on homologous sequences, and 
the strategy of scoring saturated single-site mutations with Ro-
setta for unfolding free energy. Rosetta scores protein saturated 
single-point mutations by ranking on the basis of predicted val-
ues of the unfolding free energy. The energy function used to 
calculate this unfolding free energy includes all energy terms ref-
erenced in the literature (75). The results, shown in Fig. 4 (A and 
B) (detailed in table S6), demonstrate that our strategy method’s 
selected single-site mutations comprehensively outperform those 
selected by other strategy methods.

Enhanced multisite mutagenesis through PRIME-driven 
protein engineering
Traditional protein engineering and directed evolution techniques of-
ten use an incremental approach, reminiscent of greedy algorithms, 
accumulating mutations from single-site mutants to construct multi-
site variants. Such a strategy, while prevalent, is prone to pitfalls, nota-
bly converging to local optima. Specifically, the most effective multisite 
mutant does not always emerge from the aggregation of the top-
performing single-site mutants. Harnessing the capabilities of PRIME, 
we unveil an advanced multisite mutation stacking strategy. This pure-
ly data-driven method evaluates the entire landscape of 2N potential 
mutants (where N represents the count of single-site mutations avail-
able for combination), bypassing the pitfalls of traditional directed 
evolution that might settle for local optima through incremental mu-
tations. Our strategy simplifies the prediction of high-performing 
multisite mutations, reducing the need for extensive experimental it-
erations, as depicted in Fig. 1D. Our methodology includes a zero-
shot prediction pipeline based on homologous sequences with PRIME 

Fig. 4. Comparative analysis of PRIME and different models through wet-lab experiments and in silico benchmarking. (A) Comparative web-lab results for the top 
15 single-point mutations in T7 RNA polymerase. (B) Results for Tgo-D4K, as determined by PRIME, Rosetta, ESM-vote, and ESM2(homo). (C and D) Maximum (C) and mean 
(D) fitness outcomes obtained from in silico–directed evolution on the GB1 dataset, involving random mutagenesis, ftMLDE, ESM-2, and PRIME. For ESM-2 and PRIME, we 
examined both top-K sampling and the tiered sampling used by ftMLDE (77).
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fine-tuned for specific proteins. Previous studies have indicated that 
PLMs fine-tuned on homologous sequences can achieve substantial 
better performance in low-N scenarios (76). A comparative analysis 
with the ftMLDE method from (77), using simulated directed evolution 
on the GB1 dataset, demonstrates that our PRIME-based workflow 
more effectively identifies multisite mutants with enhanced max fit-
ness (Fig. 4C) or mean fitness (Fig. 4D). We examined both the top-K 
sampling used by PRIME and the tiered sampling used by ftMLDE 
(77). Our findings indicate that the iterative multipoint mutation 
strategy based on PRIME outperforms ftMLDE in terms of both max-
imum and average fitness across multiple rounds of iteration, where 
the results of top-K sampling were comparable to tiered sampling, 
with top-K sampling showing a slight advantage (detailed results are 
shown in table S7). This in silico–directed evolution was conducted 
100 times, with each iteration comprising two rounds. In each round, 
the top 50 mutants or tiered-50 samples identified from the preceding 
round were used as the training dataset for the following round, using 
a multilayer perceptron (MLP) layer as the regression model for ESM-
2 and PRIME to score the whole rest mutants. For the implementa-
tion of ftMLDE, we executed the code as described in (77) and used 
MSA-transformer as the variant encoding model, and the regres-
sion module is ensemble of ARDRegression, BaggingRegressor, and 
KNeighborsRegressor.
LbCas12a
In the case of LbCas12a, we trained the PRIME model on all the 30 
single-site mutation data points and predicted the Tm of multisite 
mutation combinations. The top 10 scored mutants were then se-
lected from each of the two- to four-site mutation pools for the 
second-round experimental validation. In the third-round stability 
evolution, the 30 multisite mutants were added to the training set to 
further fine-tune PRIME. We then selected the top 5 mutants from 
each of the 3-, 4-, 5- and 6-site mutant collections, and top 10 mu-
tants in total from the 7- to 10-site mutant collections were selected 
for experimental characterization.

As shown in Fig. 5C, 17 of 30 multisite mutants in the second-
round exhibited higher Tm than the wild type. Furthermore, all the 
30 multisite mutants in the third round had a higher Tm than the 
wild type. The best mutant was an eight-site mutant (R2-26) with Tm 
of 48.15°C, which is 6.25°C higher than wild type (details can be 
found in the Supplementary Materials).

In the second round of Tm-enhancing positive multisite muta-
tions, many of the multisite mutations recommended by PRIME 
contain negative single-site mutations (Tm decrease). For example, 
C10L in the R1-3 (C10L; S962K) mutation has a Tm lower than the 
wild type, but it participates in the formation of this double-site mu-
tation with a Tm higher than both two single-site mutations. More-
over, the three-site mutation R1-15 (C10L; S962K; I976L) formed 
by adding the C10L mutation based on the R1-9 (S962K; I976L) 
double-site mutation also has a Tm higher than the previous double-
site mutation. Furthermore, the positive multisite mutations con-
taining C10L consist of mutations from different functional domains. 
As shown in Fig. 5A, for instance, C10L is in the WED-I domain of 
cas12a, while S962 and I976 are in the RuvC-II domain. This dem-
onstrates the remarkable generalization ability of PRIME, which has 
learned the epistatic effects between different mutations from differ-
ent domains with only the information of sequence, and can com-
bine negative single-site mutations into excellent multisite mutations. 
This is challenging to achieve with traditional directed evolution 
methods, which use an incremental approach, reminiscent of greedy 

algorithms, accumulating mutations from single-site positive mu-
tants to construct multisite variants. It is unlikely to directly com-
bine negative single-site mutations into multisite mutations.
T7 RNA polymerase
Taking T7 RNA polymerase as another example, we built on the 
foundation of previously identified single-site mutations and used 
the PRIME model, fine-tuned with homologous sequences of T7 
RNA polymerase, to perform supervised regression prediction tasks 
(details can be found in Methods).

We used the Tm data from all single-site mutations in the first 
round, including the wild-type protein, as the training set and then 
used the trained PRIME models to predict the multisite mutation 
sequences. Subsequently, from sequences with two to four mutation 
sites, we selected 5 sequences each and 10 sequences for eight muta-
tion sites that had the highest predicted Tm, resulting in a total of 25 
multisite mutants for the second round of wet-lab validation. As 
shown in Fig. 5D, after two rounds of mutagenesis, all 25 multisite 
mutants exhibited a Tm higher than the wild type. The standout mu-
tant had eight mutation sites, R1-21 (Q786L; S430P; W797L; P657K; 
N601E; L446F; P476E; T375K), with its Tm being 7.4°C higher than 
the wild type.

However, compared to the commercial thermostable T7 RNA 
polymerase (Hi-T7, Tm = 56.8°C) available from New England Bio-
labs, our eight-site mutant still has a Tm that is 4°C lower. To acquire 
a mutant with higher Tm, we further tested 10 additional single-site 
mutants from the first round of zero-shot prediction by PRIME, as 
shown in Fig. 5D. We then combined the data from all single-site 
mutants and previous multisite mutants, a total of 80 mutants, to 
train the PRIME model. Subsequently, we used the trained PRIME 
model to directly predict the Tm of multisite mutants range from 9- 
to 14-site mutations formed by these single-site mutations. In addi-
tion, the top 15 multisite mutants predicted by PRIME were selected 
into the following wet-lab testing. Five of 15 deep mutants showed 
unambiguous higher Tm as compared to Hi-T7, with the best mu-
tant of 12 mutation sites (Q786L; S430P; L446F; S606V; K642G; 
S633P; I217L; S397W; L534V; A124N; G618E; L665D), whose Tm 
was 12.8°C higher than that of wild type. Notably, the enzymatic 
activity of the five most thermostable mutants were also higher than 
the wild type, as illustrated in Fig. 5D.

Furthermore, we found this 12-site mutant contains several neg-
ative single-site mutations, such as A124N, G618E, and L665D. When 
applied to the wild type, these mutations would lead to a decrease in 
Tm, as shown in Fig. 5D. The amalgamation of negative mutations 
poses a formidable challenge, as these mutation sites are often pre-
emptively excluded from further combinations to form deep mu-
tants in conventional protein engineering because of the paucity of 
domain knowledge on their effective utilization. Given that negative 
mutations are far more common than positive ones, our finding that 
protein LLMs can make use of them as ingredient to form better 
deep mutants could be exciting to the protein engineering commu-
nity for further mechanism and industrial applications.

Without any prior experimental data or high-throughput screen-
ing technique, after three rounds of mutagenesis and wet-lab valida-
tion of 95 mutants, we successfully obtained a T7 RNA polymerase 
variant with up to 12-site mutations that surpasses the commercial 
enzyme. This achievement not only attests to the precision and effi-
ciency of PRIME’s single-site prediction and multisite stacking but 
also highlights its potential in notably reducing the financial over-
heads associated with wet experiments. This accomplishment remains 
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Fig. 5. Illustration of protein structures and experimental results for multisite mutants, comparing their properties against wild-type proteins. The protein struc-
tures and experimental results for multisite mutants of LbCas12a (predicted by Alphafold2) (A and C) and T7 RNA polymerase (PDB ID: 1MSW) (B and D). The functional 
domains of each protein are depicted beneath their structural diagrams. In (C) and (D), a red dashed line indicates the normalized activity level of the wild type. The ac-
tivities of the five most thermostable mutants are marked with red dots to facilitate direct comparison with the wild type. The thermal stability (Tm) of the wild type is 
represented by a yellow dashed line for LbCas12a and a blue dashed line for T7 RNA polymerase. R1 and R2 represent the first and the second rounds of multipoint 
combination, respectively, with the numbers following them indicating the mutant indices.
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elusive in the realm of traditional protein engineering and ratio-
nal design.

DISCUSSION
We present PRIME, an advanced deep learning approach that master-
fully leverages an extensive dataset encompassing sequence-host bacte-
rial strain OGTs. By tailoring an MLM for OGT prediction, PRIME 
astutely captures the semantic, grammatical, and temperature-related 
nuances of protein sequences. Rigorous in silico evaluations consistently 
underscore PRIME’s preeminence over other leading models, including 
ESM-1v, ESM-2, MSA-transformer, Tranception-EVE, CARP, MIF-ST, 
SaProt, Stability Oracle, GEMME, and Rosetta, in predicting thermosta-
bility and the overall fitness of protein mutants. Through PRIME, we 
have crafted five proteins with single-site mutations, achieving substan-
tial enhancements in their physicochemical attributes, with a commend-
able success rate of over 30% among the 30 to 45 AI-conceptualized 
mutants. This highlights PRIME’s transformative potential in the realm 
of protein engineering.

Historically, protein engineering strategies have pivoted around 
either directed evolution or rational design. The former, while effec-
tive, hinges on high-throughput experimental screenings, making it 
resource intensive in terms of both time and capital. For numerous 
pivotal proteins, the practicality of high-throughput experimental 
methodologies is debatable, rendering low-throughput assays a 
more viable alternative. Conversely, rational design demands an 
in-depth comprehension of the biophysical attributes pertinent to 
the target protein’s operational mechanism. With a profound under-
standing of this mechanism, rational design can occasionally iden-
tify high-performing mutants with limited wet experiments. Yet, for 
many proteins with limited mechanistic insights or for modifica-
tions of unconventional activities, such as the polymerization activ-
ity toward nonnatural nucleic acids highlighted in our study, rational 
design often encounters limitations. In these scenarios, AI-centric 
predictions, epitomized by PRIME, stand out. Without necessitating 
extensive wet experimental data or a deep understanding of the pro-
tein’s modus operandi, PRIME offers invaluable insights, streamlin-
ing the protein engineering trajectory.

Traditional protein engineering often adopts a strategy akin to greedy 
algorithms, incrementally accumulating mutations from single-site to 
multisite mutants. While effective, this process can be labor intensive 
and time consuming. Moreover, it occasionally results in suboptimal 
outcomes, as the optimal multisite mutant does not necessarily comprise 
the most beneficial single-site mutants. Our model, PRIME, introduces 
a paradigm shift in this field. It offers a refined strategy for multisite mu-
tation accumulation, overcoming the limitations of conventional tactics 
and expediting the creation of superior multisite protein mutants. 
PRIME can automatically group negative single-site mutations into 
a deep mutant, notably enhancing its fitness. This finding could be piv-
otal, opening a pathway for protein engineers. They can now use nega-
tive mutations, which are more prevalent than positive ones and were 
previously excluded in traditional design, to enhance the fitness of pro-
teins. By reducing the reliance on exhaustive experimental screenings, 
computational tools like PRIME could revolutionize the protein engi-
neering landscape, potentially expanding the range of proteins amenable 
to skilled engineering. This approach holds promise for a wide array of 
applications in pharmaceutical and industrial sectors.

Furthermore, PRIME’s versatile modeling framework holds promise 
for diverse predictive tasks, such as deducing the melting temperature 

(Tm) or the optimal enzymatic activity temperature (Topt) of indigenous 
proteins. PRIME streamlines the prerequisites for protein modifica-
tions, facilitating enhancements in protein stability and activity, elimi-
nating the need for comprehensive mechanistic probes. In addition, 
PRIME’s multitask learning modality, which aligns OGT with MLM, 
considerably boosts the model’s predictive accuracy on temperature-
associated downstream tasks when juxtaposed with other training tech-
niques. Moreover, this does not compromise its predictive efficacy on 
tasks unrelated to temperature. This suggests that while enhancing the 
model’s predictive capability for specific tasks, this pretraining method 
also maintains the model’s generalization capability on other unrelated 
tasks. This pretraining approach could pave the way for a fresh learning 
paradigm, embedding specialized domain insights into foundational AI 
frameworks, and could be instrumental in bridging the gap between 
deep learning and conventional scientific wisdom. PRIME’s predictive 
prowess extends to pinpointing mutation sites that bolster protein prop-
erties, even those seldom observed in nature. Instances include fortify-
ing antibody resilience in extreme alkaline environments or amplifying 
a polymerase’s polymerization velocity on non-native nucleic acids, 
underscoring PRIME’s universal applicability in protein engineering.

METHODS
Details of PRIME architecture
PRIME consists of a common Transformer-based encoder and two 
different components: one for performing MLM pretraining and 
another for pretraining OGT prediction. In this section, we first in-
troduce the common Transformer encoder, followed by a detailed 
description of the MLM module and the OGT prediction module.
Transformer encoder
For the Transformer encoder, we use the same architecture of the 
ESM-2, a widely used Transformer-based pretrained language model. 
Compared to the standard Transformer model architecture, it re-
places the absolute position embedding with rotary position embed-
ding and uses the trick of prelayer normalization like Roberta, and 
the activation unit is a GELU function rather than ReLU. We also 
use Flash attention to accelerate the training and inference. The code 
can be found in our code repository. Conceptually, the Transformer 
encoder acts as a parameterized transformation function, convert-
ing a protein sequence into a sequence of dense vectors

Here, L is the length of the protein sequence, (x1, x2, …xL) represents 
the discrete one-hot encoded amino acids of the protein sequence, and 
the continuous vectors (h1, h2, …, hL) are the outputs of the Transform-
er encoder, representing the protein sequence in latent space.
MLM module
This module is also the same as ESM-2 architecture. This module acts 
as a reverse function of the Transformer encoder, mapping a sequence 
of hidden vectors into the one-hot encodings of protein sequences. 
During pretraining, the MLM module is learned to recover the noised 
protein sequence. The noised sequence is generated heuristically 
from the original sequence by randomly masking 20% of the tokens 
in a protein sequence. Of these masked tokens, 70% are replaced with 
a special <mask> token, accounting for 14% of the entire sequence. 
In addition, 20% of the masked tokens, or 4% of the entire sequence, 
are substituted with amino acids. These substitutions are based on 
their natural occurrence frequencies in the UniProtKB database, en-
suring that more common amino acids have a higher likelihood of 

(

h1, h2,… , hL

)

=Transformer
(

x1, x2,… xL

)
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being chosen. The objective of this task is to let the encoder under-
stand the relationships between words and to learn the contextual 
information necessary for understanding the primary structure of 
protein sequences. It has been shown that the probability distribution 
generated by the model for a given masked position in a protein se-
quence, over all possible amino acids, has a positive correlation with 
the mutant score (78). The mutant score is a measure of how likely it 
is that a given amino acid substitution at that position will result in a 
functional change in the protein. The fact that the probability distri-
bution generated by the model is correlated with the mutant score 
indicates that the model has learned to capture important features of 
protein sequences, such as the effects of amino acid substitutions on 
protein function. Formally, the MLM module is a point-wise param-
eterized function, converting a sequence of dense vectors into a se-
quence of probability distribution on the protein sequence

where j denotes the noised position and hj is the latent representa-
tion, while pj ∈ R20 is probability distribution (20 is the vocab size).
OGT prediction module
The original MLM for natural languages is actually join trained with 
an additional supervised task that learns to decide whether two giv-
en sentences follow each other or not. However, this supervised part 
is usually ignored in protein-based models. To fill this gap, we added 
a supervised module to our model to learn how to predict the OGT 
of the organism to which a protein belongs. This module contains an 
attention-based pooling layer, two MLP layers, and a residue con-
nection. The attention pooling layer takes the latent representations 
of the protein sequence (h1, h2, …, hN) as input and subsequently 
uses a projection-softmax layer to compute the weights and produces 
a weighted vector c

Attention(h1, h2,…, hN)

where W and b are the learnable parameters of the attention 
pooling layer.

Then, an MLP layer with two fully connected layers and GELU 
activation is used to transform the weighted vector c. The first fully 
connected layer maps c to the same dimension as the feed-forward 
network layer of the Transformer, which in our implementation is 
four times the size of the hidden layer. The second fully connected 
layer maps the output of the first layer back to the original dimen-
sion. Between the first and second fully connected layers, there is a 
GELU activation function. In addition, there is a residual connection 
between the output of the second fully connected layer and the out-
put of the attention layer

where FC2 and FC1 are learnable fully connected layers, and g is the 
GELU activation function. In particular, the output vector r can be 
viewed as a representation feature of the whole sequence, which can 
be used in the transfer learning for downstream tasks.

Last, another MLP layer with two fully connected layers and a 
tanh activation function are used to learn to map the sequence rep-
resentation r to the OGT of the protein sequence

where FC3 and FC4 are trainable fully connected layers. We use the 
MSE criterion as the loss function.

Zero-shot prediction of the effects of single-point mutations
According to (18, 21), PLMs, which are trained using the MLM ob-
jective, are capable of predicting the likelihood of an amino acid 
occurring at a specific position in a protein based on the surround-
ing context. This prediction ability can be used to evaluate sequence 
mutant effects. Figure 1C shows how to predict the mutant effect 
using the MLM module. For a given mutation, the amino acid in the 
wild-type protein serves as a reference state. The effect of the muta-
tion is ascertained by comparing the predicted probability of the 
mutated amino acid against that of the original (wild-type) amino 
acid. Formally, the effect of the mutation is quantified through the 
log-odds ratio at the mutated position, as

where Score(i, m ∣ w) represents the score of the single-point mu-
tant, where the ith wild-type amino acid w has been mutated to mu-
tant type m. Also, X = (x1,…, xL) denotes the entire wild-type 
sequence, where xi indicates the amino acid at position i, and L is the 
sequence length. Note that this process can also be applied to multi-
point mutant effects, where the fitness value of multisite mutations 
can be considered as the sum of the fitness of its single-site muta-
tions. This method is used to evaluate multipoint mutants in the 
ProteinGym benchmark.

Training details
Pretraining
As shown in Fig. 1A, PRIME incorporates three distinct loss func-
tions as optimization objectives during pretraining: MLM loss, 
OGT prediction loss, and the correlation loss. Below, we provide 
detailed formula of these three functions. The training and valida-
tion curves during the pretraining process are depicted in fig. S1.

MLM loss. To compute the MLM loss, we use the cross-entropy 
loss. For each masked amino acid in a protein sequence, the model 
computes the probability distribution over its vocabulary (20 natu-
rally occurring amino acids) and compares it to the actual amino 
acid (AA) distribution (represented as a one-hot vector). The loss is 
the negative log-likelihood of the correct amino acid

where P
(

AAtrue
i

)

 represents the predicted probability of the true 
amino acid.

OGT prediction loss. This loss function is used to quantify the 
difference between the predicted OGT and the actual OGT. We use 
the MSE as the loss function, which can be expressed as follows

pj =MLM
(

hj
)
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Here, N represents the number of training samples, Tpred

i
 signifies 

the predicted OGT, and T true
i

 represents the true OGT.
Correlation loss. This loss function aligns the mutation scores 

generated with the predicted OGT of mutations. Given a protein 
sequence S, we randomly generate N single-point mutants M = (M1, 
M2,…, MN). Using the MLM module, we can obtain MLM scores S = 
(S1, S2, …, SN) of these N mutants. In addition, the OGT module is 
used to predict the temperatures T = (T1, T2,…, TN) for these mu-
tants. Pearson correlation coefficient is then used to align T and S, 
with the specific formula given by

where cov(S, T) represents the covariance between S and T, and σS 
and σT are the SDs of S and T, respectively.

The final loss is the sum of three model losses. We observed that 
the OGT prediction loss has a significantly different magnitude 
compared to the other two losses, with values ranging from 0 to 
1000 initially and stabilizing at 0 to 100 later. To maintain numerical 
stability, we multiplied this loss by 0.01.
Implement details
We used PyTorch to implement PRIME. The Transformer encoder 
is composed of 33 layers and 20 attention heads, with 650 million 
parameters and an embedding size of 1280. The learning rate was set 
to 1 × 10−4. The micro-batch size per GPU is 4096 tokens, and the 
gradient accumulation steps are 32. The models were trained for 
200k update steps on 8 × A100 80G GPUs. After pretraining, the 
root mean square root of the OGT prediction task was 3.5 on the 
50,000 held-out validation set, and the perplexity of MLM reached 
3.52. The average error of the correlation loss during pretraining 
reached 0.1623. We initialize all layers of the Transformer encoder 
and MLM module from (19).
Alternating training
Because of the disparate input requirements of the three loss func-
tions—MLM Loss operates on noised protein sequences, OGT Loss 
on complete sequences, and Correlation Loss on N random single-
point mutants of the sequence—we use alternating training strategy 
to optimize these distinct objectives. Specifically, we use Mini-batch 
Gradient Descent with the Adam optimizer to train the model, al-
ternating tasks with each mini-batch iteration. The training regimen 
is delineated in the Python and PyTorch-style pseudocode in table 
S8. After training, we compared the predicted and actual OGT, as 
shown in fig. S2.
Effect of different weights of the multitask loss function to the 
performance of zero-shot prediction
We have explored the design of the multitask loss function with vary-
ing weights to address the relative amount of data or task difficulty. 
To minimize computational costs, we randomly selected 500,000 se-
quences from the full pretraining dataset of 96 million entries to 
serve as our training dataset for these ablation studies. Each combi-
nation of loss weights was selected using a grid search from the list 
[0.01, 0.05, 0.5, 1, 2], resulting in a total of 125 combinations. We 
found that a 1:1:1 weight ratio presents an optimal setting for the 
zero-shot mutation prediction task on the ProteinGym and ΔTm da-
tasets. The specific results are documented in the table S9.

Fine-tuning MLM module on homologous sequence
To improve the performance of PRIME and ESM-2 in zero-shot mu-
tant effect prediction, we explore enhancing it through fine-tuning on 
homologous sequences with only training on the MLM. Fine-tuning 
on homologous sequences involves adapting a pretrained model to a 
specific protein by leveraging the knowledge gained from similar pro-
tein sequences (78). Our approach applies this fine-tuning strategy to 
the ProteinGym or Tm dataset. Using Jackhammer, a renowned se-
quence comparison tool, we identified homologous sequences of pro-
teins within these datasets from the Uniclust30 database (43). For 
proteins with more than 30,000 homologous sequences, the first 
30,000 sequences were selected. Conversely, for those with fewer than 
30,000, all sequences were retained for fine-tuning. The fine-tuning 
process used the same hyperparameter settings as in the pretraining 
phase of MLM module. Specifically, the noised sequence is generated 
heuristically from the original sequence by randomly masking 20% of 
the tokens in a protein sequence. Of these masked tokens, 70% are 
replaced with a special <mask> token, accounting for 14% of the en-
tire sequence. Furthermore, 20% of the masked tokens, correspond-
ing to 4% of the entire sequence, are substituted with amino acids 
based on their natural occurrence frequencies in the UniProtKB data-
base, ensuring that more common amino acids are more likely to be 
chosen. Our objective in fine-tuning on these sequences is to harness 
the shared attributes among homologous proteins, thereby enhancing 
mutation effect predictions. This tailored approach aims to optimize 
the pretrained model for specific protein contexts, offering a promis-
ing avenue for enhanced predictive accuracy.
Transfer learning of PRIME on temperature related 
benchmark and FLIP
PRIME is trained on both temperature-related supervised and un-
supervised tasks. To assess the transfer representational ability of 
PRIME, we use a Tm prediction benchmark and another optimal 
catalytic temperature prediction (Topt) benchmark. The assessments 
were executed using the encoder component and the OGT module. 
All the parameters of the Transformer encoder can be fine-tuned. 
The batch size is set to 256 and the learning rate is set to 0.0001 in 
the Adam optimizer. Moreover, the model was subjected to early 
stopping, with a patience setting of 20 epochs, and the max number 
of training epochs is set to 200 epochs. The loss function is also 
MSE. To ensure robustness, the experiments were executed in five-
fold cross-validation. There is no information in the test set that was 
used during training and validation. The mean of the results was 
used as the final performance metric, and the variance was used for 
the error bars.
Transfer learning of PRIME on supervised mutant effect 
prediction
PRIME can also be applied in supervised mutant effect prediction 
tasks, which is used in our strategy for generating multisite mutants 
(Fig. 1D). Given a training set of mutated sequences with experi-
mental fitness labels, we can use PRIME to learn on the training set 
and further predict the fitness of new mutated sequences. In this 
task, we only use the Transformer encoder and OGT module, while 
the MLM module is dropped. Except for the parameters of the last 
two fully connected layers, FC3 and FC4, in the OGT module, which 
are rerandomized, the rest remain frozen, which is called regres-
sion module in Fig. 1D. We also use MSE as a loss function to learn 
how to minimize the predicted mutated fitness and the true fitness. 
During this training, the learning rate is 1 × 10−4, and the batch size 
is 16. The training epochs are dynamically decided. We begin by 
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splitting the dataset into five folds. In each iteration, we use four 
folds for training and the remaining one for validation. We track the 
number of epochs needed for the validation set across these itera-
tions, resulting in five epoch counts. The final number of training 
epochs for the entire dataset is determined by averaging these five 
epoch numbers. In the final training phase, we do not use a valida-
tion set; instead, we train on the entire dataset using the previously 
determined number of epochs. After training, the model can be 
used to predict the fitness of unseen mutated sequences. For pro-
teins without any labeled mutant data, we first use the zero-shot ca-
pability of PRIME, referred to as PRIME (Zero-shot), to select the 
top-K single-point mutants. These mutants are then experimentally 
labeled. In the first round of design, we use this labeled data to train 
PRIME, called PRIME (Round 1). This trained model is used to pre-
dict fitness scores for multisite mutants combined from all single-
site mutants identified in the zero-shot round, and the top-K mutants 
are selected on the basis of these scores. We then experimentally 
determine the fitness of these top mutants. The labeled multisite 
mutant data from this first round is added to the initial training set, 
and PRIME is retrained on this updated set, called PRIME (Round 
2). Using PRIME (Round 2), we predict fitness scores for all multi-
site mutants combined from both the zero-shot and Round 1, select-
ing the top-K mutants. We then experimentally determine the 
fitness of these top mutants. If the results do not meet the require-
ments, we further add these labeled top mutants to the training set 
and repeat the process.

Dataset
Pretraining dataset
By integrating publicly accessible data from Uniprot and protein 
sequences from metagenomic projects (79–81), we have curated 
ProteomeAtlas, a vast repository of natural protein sequences 
containing 4.7 billion entries. We filtered these sequences, retain-
ing only those that are full length. Further, we used MMseqs2 to 
process these sequences, setting a sequence identity threshold of 
50% for redundancy reduction. This enabled us to identify and 
annotate sequences corresponding to OGTs (26) for bacterial 
strains. Ultimately, we annotated 96 million sequences in this 
manner, providing a rich resource for exploring protein sequence-
temperature relationships.
Benchmark datasets for zero-shot mutation scoring
The dataset used for changes in melting temperature (ΔTm) was 
sourced from MPTherm (37), FireProtDB (38), and ProThermDB 
(39), ensuring that all experiments were conducted under the same 
pH conditions. The ProteinGym dataset was cited from (31). Datasets 
and data split for predicting melting temperature (Tm) and opti-
mal enzymatic activity temperature (Topt) of native protein sequenc-
es were drawn from (82).
Different strategies of selecting single-site mutations for 
different engineering purposes
PRIME can be used to rank mutants on the basis of both activity and 
stability for single mutants. However, from the ablation study of 
PRIME, we found that the zero-shot performance with only the 
OGT module (PRIME/-MLM) is quite poor in both the ProteinGym 
benchmark and ΔTm. Therefore, we do not use the OGT module to 
select single-site mutations for stability. Instead, we suggest using 
the LLM likelihood of PRIME, obtained when predicting OGT as an 
additional pretraining task. Drawn on the past research experience 
of biologists (7,  44), one can choose mutations located on the 

surface of the protein to improve protein stability while not alerting 
much the activity and mutate amino acids around the protein pocket 
to enhance protein catalytic activity. This empirical knowledge can 
be used in a specific protein engineering assignment, which might 
further increase the success rate.

Engineering of high stability or activity in five proteins
Prediction of single-site mutations by PRIME
First, we used Jackhmmer to identify sequences homologous to each 
target protein within the Uniclust30 database (43). For proteins with 
a bounty of more than 30,000 homologous sequences, we randomly 
cherry-picked a subset of 30,000 for the fine-tuning of the PRIME 
model. On the other hand, for proteins boasting fewer than 30,000 
homologous sequences, we incorporated all available sequences into 
the fine-tuning process. This fine-tuning was executed across five 
iterations, each initiated with a distinct random seed, for every tar-
get protein. By amalgamating the predictive outcomes from these 
five distinct model parameters for single-site saturation mutations, 
we synthesized a comprehensive mutation scorecard for each pro-
tein. Mutants that showcased scores surpassing that of the wild type 
in the scorecard were earmarked as potential candidates. In the final 
phase, we meticulously handpicked ~30 to 45 mutants, ensuring 
they were situated beyond the 6-Å radius of pivotal regions like the 
catalytic active sites or binding pockets, to pave the way for subse-
quent experimental evaluations.
T7 RNA polymerase
Preparation of T7 RNA polymerase variants. The T7 RNA polymerase 
(Uniprot ID: P00573) gene and its mutants’ gene were cloned into 
the pQE-80 l expression vector and transformed into Escherichia 
coli BL21(DE3) cells. The cells were cultured in Luria-Bertani (LB) 
media until reaching an optical density at 600 nm (OD600) of ~0.6 to 0.8, 
followed by induction with 1 mM isopropyl-β-d-thiogalactopyranoside 
(IPTG) for a 6-hour growth period at 37°C. After collection, the bacte-
ria were resuspended in a binding buffer [50 mM tris-HCl (pH 8.0), 
300 mM NaCl, 3 mM imidazole, and 0.1 mM EDTA] and lysed via 
sonication. The resulting lysate underwent centrifugation at 4°C and 
12,000 rpm for 30 min. The lysate was then applied to a nickel–nitrilo-
triacetic acid (Ni-NTA) gravity column and washed with a washing 
buffer [50 mM tris-HCl (pH 8.0), 300 mM NaCl, 10 mM imidazole, 
0.1 mM EDTA, and 10% glycerol]. Elution was performed using an 
elution buffer [50 mM tris-HCl (pH 8.0), 300 mM NaCl, 250 mM im-
idazole, 0.1 mM EDTA, and 10% glycerol]. Concentration was achieved 
using a final ultrafiltration buffer [50 mM tris-HCl (pH 8.0), 100 mM 
NaCl, and 0.1 mM EDTA], and the T7 RNA polymerase was diluted 
with a storage buffer [50 mM tris-HCl (pH 8.0), 100 mM NaCl, 0.1 mM 
EDTA, 1 mM dithiolthreitol (DTT), and 75% glycerol] (83).

Thermal melt measurements. The protein staining agent, SYPRO 
Orange, was added to a final concentration of 5×, and the protein sam-
ple (~0.2 mg/ml) was mixed in an eight-row polymerase chain reac-
tion (PCR) tube. Each sample was prepared in a final volume of 20 μl 
and tested in triplicate. Denaturation curves were generated using a 
PCR instrument (Analytik Jena qTower3) equipped with appropriate 
optical filters [FAM (470 nm) and ROX (625 nm) for excitation and 
emission, respectively]. The temperature was incrementally increased 
by 0.5°C steps from 25° to 65°C, with a 5-s hold for equilibration at 
each temperature step. The thermal unfolding curves were analyzed by 
fitting the Boltzmann equation to approximate the Tm (58).

IVT assays. The IVT reaction buffer was prepared, which con-
tained 200 mM Hepes (pH 7.5), 30 mM MgCl2, 20 mM DTT, 
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ribonuclease inhibitor (0.4 U/μl), 5 mM nucleoside triphosphate 
mix, and 100 nM iSpinach DNA template (84). The buffer was incu-
bated at 52°C for 10 min, and then T7 RNAP (0.04 mg/ml) was 
added to initiate the reaction. After the mixture incubated for 1 hour, 
100 mM EDTA was added to stop the reaction. Last, 100 μM DFHBI 
was introduced, and fluorescence was measured with excitation at a 
wavelength of 470 nm and emission at 512 nm.
Creatinase
Preparation of creatinase variants. The creatinase (Uniprot ID: 
Q9RH‑U9) gene was cloned into a pET-28a expression vector and 
transformed into E. coli BL21(DE3) cells. The cells expressing cre-
atinase were cultivated in LB medium supplemented at a tempera-
ture of 37°C while agitating the culture at 220 rpm. To induce the 
expression of creatinase, when the OD600 value of the culture reached 
0.8 to 1.0, IPTG was added at a final concentration of 1 mM.  
The cells were then further cultured at a reduced temperature of 
18°C for a duration of 16 hours. After collecting the cells, they 
were resuspended in a binding buffer [25 mM tris-HCl (pH 8.0), 
200 mM NaCl, and 20 mM imidazole] and subjected to sonication 
for cell disruption. The resulting lysate was centrifuged at 4°C and 
12,000 rpm for 30  min, and the supernatant was collected. The 
supernatant was loaded onto a pre-equilibrated Ni-NTA gravity 
column, and protein elution was performed using an imidazole 
gradient ranging from 20 to 200 mM. The purity of the fractions 
obtained was analyzed using SDS–polyacrylamide gel electropho-
resis (SDS-PAGE).

The fractions containing the purified target protein were com-
bined and desalted using an ultrafiltration unit. The purified protein 
was then concentrated and stored in 1× PBS at a temperature of 
−80°C to maintain its stability and activity (58).

Differential scanning fluorimetry. The thermal stability testing was 
also carried out using a PCR instrument (Analytik Jena qTower3). All 
proteins were diluted in 1× PBS to a final concentration of 0.3 mg/
ml and mixed with SYPRO Orange at a final concentration of 5× in 
an eight-row PCR tube. The protein unfolding process was initiated 
by subjecting the samples to a thermal treatment ranging from 25 to 
85°C (with a temperature increment of 0.5°C per step) with each 
step holding for 5 s.

Subsequently, the thermal unfolding curves were obtained, and 
the data were analyzed using the Boltzmann equation to determine 
the Tm (58).

Activity measurements. Creatine could be hydrolyzed by creati-
nase into urea and creatinine. The resulting urea reacts with p-
dimethylaminobenzaldehyde to form a yellow-colored dye. The 
concentration of urea can be determined by measuring the absor-
bance of the yellow dye at 435 nm using a spectrophotometer (58). 
Consequently, the specific activity of the protein can be calculated. 
Here are the details of the experimental procedure:

1) � Incubate a PBS buffer solution (280 μl) containing 100 mM 
creatine at 37°C for 5 min.

2) � Incubate the mixture with 20 μl of protein solution (1 mg/
ml) for 22 min.

3) � Stop the reaction by adding p-dimethylaminobenzalde-
hyde solution (600 μl) prepared by dissolving 2 g of p-
dimethylaminobenzaldehyde in 100 ml of dimethyl sulfoxide 
and 15 ml of concentrated hydrochloric acid.

4) � Measure the absorbance at 435 nm using a spectrophotometer.

VHH
Protein expression and purification. The gene of the VHH was cloned 
into the pET29a plasmid with an N-terminal His-tag. The expres-
sion plasmid was transformed into E.coli BL21(DE3) cells. A single 
colony of each recombinant E. coli strain was inoculated into 30 ml 
of LB medium with kanamycin (50 μg/ml) for seed culture at 37°C 
for 12 to 16 hours. The seed culture (10 ml) was transferred to 1 liter 
of LB medium with kanamycin (50 μg/ml) at 37°C 220 rpm until the 
OD600 value reached 0.6 to 0.8. The culture was cooled to 16°C and 
then induced with 0.5 mM IPTG for 20 to 24 hours at 16°C. Cells 
were harvested from the fermentation culture by centrifugation for 
30 min at 4000 rpm, and the cell pellets were collected for later pu-
rification. The cell pellets were resuspended in buffer A [20 mM 
Na2HPO4 and NaH2PO4 and 0.5 M NaCl (pH 8.0)] and then lysed 
via ultra sonification. The lysates were centrifuged for 30 min at 
12,000 rpm at 4°C, after which the supernatants were subjected to 
Ni-NTA affinity purification with elution buffer [20 mM Na2HPO4 
and NaH2PO4, 0.5 M NaCl, and 250 mM imidazole (pH 8.0)]. The 
purity of the fractions obtained was analyzed using SDS-PAGE. The 
fractions containing the purified target protein were combined and 
desalted using an ultrafiltration unit. The purified protein was then 
concentrated and stored in buffer A with 10% glycerol at a tempera-
ture of −80°C.

Protein treated with alkaline. Will-type and mutants of VHH were 
incubated at 0.3 or 0.5 M NaOH for 3, 6, and 24 hours. Subsequent-
ly, hydrochloric acid was added to terminate the alkali treatment, 
the samples were stored at a temperature of −80°C.

Alkaline pH stability test (ELISA). Ninety-six-well plates were 
coated with growth hormone protein at a density of 5 ng per well 
at 4°C overnight. The plates were washed with 1 × phosphate buff-
ered solution (PBST) three times. Following blocking with 1% 
BSA in 1 × PBST at 25°C for 2 hours. After washing three times 
with 1 × PBST, the plates were incubated with serial dilutions of 
VHH proteins 100 μl per well (1:2, 1:4.1:8, 1:16, 1:32, 1:64, 1:128, 
1:256, 1:512, 1:1024, and 1:2048) for 1 hour at 25°C. After washing 
three times with 0.5% PBST, horseradish peroxidase (100 μl per 
well; 1:5000) was added and incubated at 25°C for 1 hour. The 
plates were washed with 1 × PBS’T four times, and TMB (a total of 
100 μl per well) was added and incubated at 25°C for 15 min in the 
dark. Last, 2 M H2SO4 (100 μl per well) was added to stop the reac-
tion and absorbance was measured at 450 nm (TECAN, Swiss.).

The log(agonist) versus response -- Variable slope (four parame-
ters) curves were analyzed to calculate median effective concentra-
tion, which determines the stability of VHH after alkaline treatment.
Nonnatural nucleic acid polymerase
Polymerase expression and purification. Polymerases were expressed 
and purified as previously reported (85). Briefly, Tgo-D4K and its 
mutants’ gene were cloned into the pGDR11 vector and transformed 
into E. coli BL21 cells. The cultures were grown in 50 ml of LB me-
dium containing ampicillin (100 μg/ml) at 37°C with shaking at 
240 rpm until the OD600 reached 0.6 to 1.0. Then, the cultures were 
induced by adding IPTG (0.5 mM) and incubated at 16°C with shak-
ing at 240 rpm for 20 hours. The cells were harvested by centrifuga-
tion, and the pellet was lysed by sonication in buffer [10 mM 
tris-HCl (pH 8.0), 500 mM KCl, and 10% glycerol]. The lysate was 
centrifuged for 30 min at 13,300 rpm at 4°C, and the clarified super-
natant was heated for 1 hour at 80°C and then immediately cooled 
for 30 min on ice. The lysate was clarified again by centrifugation for 
30 min at 4°C and 13,300 rpm. Polyethyleneimine (0.5%, v/v) was 
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added to precipitate the nucleic acids, and then the lysate was centri-
fuged for 30 min at 13,300 rpm at 4°C. Ammonium sulfate (60%, w/v) 
was added to precipitate the polymerase. After incubating for 1 hour 
at 4°C, it was centrifuged for 30 min at 13,300 rpm at 4°C. Protein 
pellets were suspended in 4°C precooled buffer [10 mM tris-HCl 
(pH 8.0), 50 mM KCl, and 10% glycerol]. The supernatant was loaded 
onto Ni-NTA resin. All protein eluted at 200 mM imidazole was 
dialyzed in 4°C buffer [10 mM tris-HCl (pH 8.0), 50 mM KCl, and 
10% glycerol]. The purity of the fractions obtained were verified by 
SDS-PAGE and stored at −80°C.

Measurement of synthesis rates of polymerase. To measure the 
synthesis rates of the polymerase, kinetic measurements were per-
formed as previously reported (62). Each measurement (10 μl) con-
tained 1 μM 30-mer template, 100 μM of each nucleotide triphosphate, 
1× ThermoPol buffer, 2× LC Green Plus fluorescent dye, and 20 nM 
polymerase. Reactions were denatured for 3 min at 95°C and ex-
tended for 30 min at 55°C, with fluorescence intensity recorded at 
6-s intervals. Fluorescence data for each polymerase were normal-
ized and converted to nucleotides per polymerase. The synthesis 
rate was determined by linear fitting of nucleotides per polymerase 
over reaction time. The reported values are the average of three in-
dependent replicates.
Lbcas12a
Plasmids construction. LbCas12a mutants were constructed by over-
lap PCR using a previous described pET28a plasmid harboring 
wild-type LbCas12a as the template and oligonucleotides carrying 
desired mutations. The expression plasmid contained a C-terminal 
10× His tag for downstream affinity purification. The recombinant 
plasmids were transformed into E. coli Trelief 5α cells (Tsingke, China, 
Beijing). The sequences of all the plasmid constructs were con-
firmed via Sanger sequencing (Tsingke).

Protein expression and purification. All the LbCas12a proteins 
were expressed in E. coli BL21(DE3) cells cultured in LB medium 
supplemented with kanamycin (50 μg/ml). Single colonies were picked 
from the LB agar plates and grown in a starter culture overnight. The 
next day, the culture was inoculated into fresh LB medium supple-
mented with kanamycin (50 μg/ml) at a ratio of 1:100 and incubated 
at 37°C until OD600 reached 0.6. Protein expression was induced 
with 1 mM IPTG at 37°C for 4 hours. The cells were harvested by 
centrifugation at 5000 rcf for 15 min at 4°C.

Collected cells were resuspended in lysis buffer (pH 8.0) contain-
ing 100 mM sodium phosphate, 600 mM NaCl, 0.05% Tween 20, 
30 mM imidazole, 1 mM DTT, and 0.5 mM phenylmethylsulfonyl fluo-
ride. After disruption by sonication and centrifugation for 1 hour at 
12,000 rcf at 4°C, HisPur Ni-NTA Magnetic Beads (Thermo Fisher 
Scientific, Waltham, MA, USA) were used to purify proteins accord-
ing to the manufacture’s protocol. The harvested protein was con-
centrated into storage buffer containing 50 mM tris-HCl (pH 7.5), 
500 mM NaCl, 10% (v/v) glycerol, and 2 mM DTT by Pierce Protein 
Concentrators (Thermo Fisher Scientific) and stored at −80°C.

crRNA preparation. All the DNA oligos used in this study were 
purchased from Tsingke Biotechnology Co. For crRNA preparation, 
IVT template was generated by annealing a T7 promotor–carrying 
oligonucleotide with a complementary oligonucleotide containing 
antisense T7 promotor, crRNA direct repeat motif and spacer se-
quence. crRNA transcription was performed in a 30-μl reaction us-
ing the above IVT templates and HiScribe T7 Quick High Yield 
RNA Synthesis Kit (New England Biolabs) at 37°C overnight. The 
residual DNA templates in the IVT reactions were removed by 

treatment with deoxyribonuclease I (0.08 U/μl), and the RNA prod-
uct was purified by TRIzol (Invitrogen).

Differential scanning fluorimetry assays. All the LbCas12a pro-
teins were diluted to a final concentration of 0.5 mg/ml in reaction 
buffer containing 50 mM tris-HCl (pH 7.5) and 500 mM NaCl and 
added into Standard Capillaries (NanoTemper). All the experiments 
were carried out at temperatures ranging from 20° to 95°C with a 
heating rate of 1°C/min by using Prometheus NT.48 instrument and 
PR.ThermControl software (NanoTemper, Munich, Germany).

In vitro cleavage assays. The Cas12a trans-cleavage reaction was 
performed as previously described (86) with minor modifications. 
Target DNA was PCR amplified from a plasmid via specific primers 
or generated by annealed oligonucleotides and then purified. Briefly, 
the reaction was carried out with 50 nM LbCas12a protein, 2.5 ng of 
substrate DNA, 100 nM crRNA, 0.5 mM DTT, 1.25 μM single-
stranded DNA (5′-FAM-CCC‑CC-BHQ1-3′), and 1  ×  Buffer 2.1 
(New England Biolabs) in a 10-μl reaction. Each sample was per-
formed with three biological replicates and loaded on to 384-well 
plates. After incubation for 15 min at 42°C, the fluorescence intensity 
was monitored using SpectraMax iD3 Multi-Mode Microplate Read-
er with an excitation wavelength of 485 nm and an emission wave-
length of 535 nm. The fluorescence signal was recorded in a 2-min 
interval and processed in subsequent analyses.
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