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Abstract
Decoding neural activity from ventral (speech) motor cortex is known to enable high-performance
speech brain-computer interface (BCI) control. It was previously unknown whether this brain area could
also enable computer control via neural cursor and click, as is typically associated with dorsal (arm and
hand) motor cortex. We recruited a clinical trial participant with ALS and implanted intracortical
microelectrode arrays in ventral precentral gyrus (vPCG), which the participant used to operate a
speech BCI in a prior study. We developed a cursor BCI driven by the participant’s vPCG neural activity,
and evaluated performance on a series of target selection tasks. The reported vPCG cursor BCI
enabled rapidly-calibrating (40 seconds), accurate (2.90 bits per second) cursor control and click. The
participant also used the BCI to control his own personal computer independently. These results
suggest that placing electrodes in vPCG to optimize for speech decoding may also be a viable strategy
for building a multi-modal BCI which enables both speech-based communication and computer control
via cursor and click.

1. Introduction
The pathway from the brain to the muscles can be disrupted by neurological disease or injury such as
stroke or amyotrophic lateral sclerosis (ALS), resulting in an inability to move or communicate.
Intracortical brain-computer interfaces (BCIs) are surgically-implanted devices which bypass the
damaged pathway by reading neural signals directly from the brain and producing an output on the
user’s behalf. For the past few decades, a major focus of the BCI field has been decoding neural
activity associated with attempted movements to control a computer cursor.1–17 By controlling a
computer cursor with their neural signals, a person with paralysis can type sentences using an
on-screen keyboard, send emails and text messages, or use a web browser and many other software
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applications.8,12,14 Most BCIs of this class have been driven by neural activity in dorsal motor cortical
areas such as the “hand knob” area of dorsal precentral gyrus (dPCG) and are controlled by the user
attempting or imagining arm or hand movements.5,6,8–12 In recent years, speech BCIs have emerged as
a viable path toward restoring fast, naturalistic communication for people with paralysis by instead
decoding attempted speech movements.18–23 In contrast to hand-based BCIs, speech BCIs have
typically been driven by neural activity in sensorimotor cortical areas further ventral such as middle
precentral gyrus (midPCG) and ventral precentral gyrus (vPCG) which are most often associated with
production of orofacial movements and speech.18,20–22 Speech BCIs far outperform cursor BCIs with
regard to communication rate,10,20 but are not as well-suited for general-purpose computer control.
Though it is possible to implant electrodes in both dorsal and ventral areas, in some patients it may be
impractical or infeasible. At first glance, this appears to lead to a difficult decision for prospective
neuroprosthesis users and developers: should the surgeon implant intracortical electrodes into dPCG to
optimize for computer control, or into vPCG to optimize for speech decoding?

However, motor cortical neural tuning along the precentral gyrus is not as body-part-specific as
was once believed. dPCG exhibits modulation and some specificity to speech and other non-hand
motor imageries,24–27 and vPCG exhibits modulation and some specificity to hand and other non-speech
motor imageries.27 This begs the question whether vPCG contains enough hand-related (or potentially
effector-agnostic26) movement intention information to drive a cursor BCI. This would make it a
desirable implant target for a multi-modal BCI (a speech BCI and a cursor BCI) that maximizes
speech-based communication accuracy while still providing cursor-based computer control.

We explored the possibility that vPCG supports such a multi-modal BCI with a BrainGate2
clinical trial participant who had four intracortical microelectrode arrays implanted in vPCG. A previous
study demonstrated that decoding this participant’s neural signals from these arrays enabled a highly
accurate speech BCI.22 Here, we engaged the participant in BCI cursor control tasks and trained
decoders to map his neural activity patterns to cursor velocity and click. Similar to cursor BCIs driven by
dPCG, our cursor BCI driven by vPCG proved to be rapidly-calibrating (the participant acquired his first
target 40 seconds into his first-ever usage of a cursor BCI) and achieved a peak performance
comparable to previous intracortical BCI cursor control studies (up to 3.16 bits per second, average
2.90). We found that most of the information driving cursor control came from one of the participant’s
four arrays, and click information was available on all four arrays. Anticipating a multi-function use case,
we also measured the impact of the participant speaking while simultaneously controlling the cursor.
We found that, in contrast to dPCG cursor BCIs,28 speaking did transiently perturb the cursor. Finally,
the BCI enabled the participant to neurally control his personal desktop computer to independently
perform his own desired consumer application activities.

2. Methods

2.1. Participant and approvals
This research was conducted as part of the BrainGate2 clinical trial (NCT00912041). Permission for the
trial was granted by the U.S. Food and Drug Administration under an Investigational Device Exemption
(Caution: Investigational device. Limited by federal law to investigational use). This study was approved
by the Institutional Review Board at Mass General Brigham (#2009P000505) and at the University of
California, Davis (protocol #1843264). This manuscript does not report any clinical trial-related
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outcomes; instead, it describes scientific and engineering discoveries that were made using data
collected in the context of the ongoing clinical trial.

This report includes data from one participant (‘T15’), a 45-year old left-handed man with ALS.
At the time of data collection, T15 was tetraplegic and had severe dysarthria. He retained eye
movement, impaired neck movement, and limited orofacial muscle control. T15 gave informed consent
for this research to be conducted and published, including video. Data reported in this study were
collected between day 39 and day 468 post-implant. All research sessions were performed at the
participant’s home.

2.2. Neural recordings
We surgically implanted four 64-electrode Utah arrays (NeuroPort Array, Blackrock Neurotech, Salt
Lake City, Utah) into T15’s vPCG. Precise target locations were informed by preoperative MRI scans
and alignment of T15’s brain with the Human Connectome Project29 cortical parcellation (Fig. 1b). See
Card et al. 2024 Supplementary Appendix S1.02 for further detail.22 The raw voltage signals from the
256 electrodes were collected at 30 kHz and preprocessed by a neural data acquisition system
(NeuroPort System, Blackrock NeuroTech). Each signal was then bandpass filtered between 250 and
5000 Hz. We applied Linear Regression Referencing (LRR) to each array’s 64 signals to filter out
common noise seen on multiple electrodes.30

Every 1 ms, two neural features (threshold crossings and spike band power) were calculated
per electrode, yielding 512 neural features per ms. Each electrode’s threshold was defined as -4.5
times that electrode’s root mean square (RMS) voltage value, and a threshold crossing was registered
in a given 1 ms window if the signal reached that electrode’s threshold. Spike band power was the
square of the bandpass filtered signal, averaged in each 1 ms window. Each of the 512 neural features
was binned into 10 ms bins (threshold crossings were summed, spike band power was averaged). This
time series of 512-D binned neural features vectors was the input for all online control and decoding
steps presented in this study (referred to as in Sections 2.4. and 2.5.).𝑓

𝑡

Decoders used both threshold crossings and spike band power for all closed-loop experiments
in this study, but post-hoc analyses indicate that comparable performance could have been achieved
using only spike band power (Supp. Fig. 1).

2.3. Behavioral tasks
We engaged T15 in three formal cursor BCI tasks: a ‘Radial8 Calibration Task’ (Supp. Movie 1), a ‘Grid
Evaluation Task’ (Supp. Movie 2), and a ‘Simultaneous Speech and Cursor Task’ (Supp. Movie 3). T15
also engaged in self-directed use of the BCI to control his personal computer. Results reported in this
study are based on data from six data collection sessions: one ‘First-ever Usage Session’, four
‘Evaluation Sessions’, and one ‘Simultaneous Speech and Cursor Session’. The sessions in which
each task was conducted are listed in Table 1.
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Table 1. Session days, with instructed imageries and decoder parameters. are are in speedβ 𝑟
units of screen height / second. and are unitless. is specified for sessions where we normalizedα 𝑝 β
the tuning matrix such that was in meaningful units. and are specified for sessions where theβ 𝑟 𝑝
nonlinear speed adjustment was used (i.e., ).𝑝 ≠ 1. 0

2.3.1 Radial8 Calibration Task
The Radial8 Calibration Task was used to train decoders in all sessions. The cursor workspace was
presented on a computer monitor in front of the participant. The basic structure was similar to that of
many previous cursor BCI studies.8,11,31 The workspace contained eight circular gray targets arranged
around a circle in 45° intervals, a ninth target in the center, and a circular white cursor which could
move. Each trial began with one target turning green (the ‘go cue’). The participant was instructed to
attempt a movement (the ‘instructed cursor imagery’) as if he were moving the cursor toward the cued
target. For blocks where click was involved, the participant was instructed to attempt another movement

Post-implant
day

Session type Task Instructed cursor
imagery

Instructed click
imagery

Cursor decoder
parameters

39 First-ever Usage Radial8 Calibration Right Hand Mouse,
Left Hand Mouse,
Right Hand Paintbrush,
Left Hand Paintbrush,
Tongue Sticking Out,
Tongue Inside Mouth

n/a α = 0. 9

171 Evaluation Radial8 Calibration Head Mouse / Intuition Close Mouth,
Close Right Hand

α = 0. 9
β = 0. 2,  0. 15

Grid Evaluation “ “ “

202 Simultaneous
Speech and Cursor

Radial8 Calibration Right Hand Mouse n/a α = 0. 9
β = 0. 2

Simultaneous
Speech and Cursor

“ “ α = 0. 9
β = 0. 15

233 Evaluation Radial8 Calibration Right Hand Mouse Close Right Hand α = 0. 93
β = 0. 16

Grid Evaluation “ “ α = 0. 9
β = 0. 2

339 Evaluation Radial8 Calibration Right Hand Mouse Close Right Hand 3α = 0. 9
β = 0. 22
𝑟 =  0. 4
𝑝 = 1. 4

Grid Evaluation “ “ “

468 Evaluation Radial8 Calibration Intuition Intuition 2α = 0. 9
β = 0. 13
𝑟 =  0. 05
𝑝 = 1. 5

Grid Evaluation “ “ “
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(the ‘instructed click imagery’) when the cursor was touching the target. The trial ended when the
participant selected the cued target with the cursor, or when a 10-second limit was reached. The cued
target was selected when the cursor dwelled on it (during First-ever Usage Session, and Simultaneous
Speech and Cursor Session) or clicked on it (during Evaluation Sessions). The Radial8 Calibration
Task’s dwell requirement was 0.8 seconds (during First-ever Usage Session) or 1.0 seconds (during
Simultaneous Speech and Cursor Session). The order of cued targets alternated between the center
target and an outer target (‘center-out-and-back’). For the outer targets, the order was pseudorandom
in that each sequence of eight was a random permutation of all of them. There was no intertrial period
or delay period before the go cue (i.e., the next target appeared as soon as the previous trial ended).

T15 performed the task in 3-minute blocks, each of which may contain multiple phases of how
much assistance was provided to the participant (Fig. 1d), as described below. To make the user’s
decoder calibration experience smoother, we developed a procedure to gradually provide more control
to the user based on performance evaluations of a cursor decoder (model and training described in
Section 2.4.) running in the background in real time. When beginning a series of calibration blocks, the
first seconds of the first block was an ‘open-loop’ phase, in which the cursor automatically moved to
each cued target under full computer assist (velocity assist = 1.0), i.e., no neural control. In parallel,
every 2-3 seconds, a cursor decoder was trained to map neural data to intended cursor velocity, using
all the training data in the block up to that point. Even though the decoder was not being used to control
the cursor during this phase, the decoder was still applied to incoming 10 ms bins of neural data to yield
predicted velocity vectors. Using these predictions, every 1 second, in the background we computed
the angular error (the angle between each predicted velocity vector and the vector from cursor to target,
where chance is 90°) over a 20 second sliding window. If the angular error was below 80°, computer
assist would begin to lower and the cursor’s movement each frame would be a weighted sum of the
decoder’s predicted velocity vector and a vector directly toward the target. If angular error lowered to
60°, cursor movement would be controlled only by the user, with no computer assist (velocity assist =
0.0), representing ‘closed-loop’ cursor control. The technique of frequently updating decoder
parameters online follows a previously-demonstrated rapid calibration protocol.11,32

We also developed an independent and parallel procedure for calibration of a ‘click’ decoder.
Click assist was binary (either on or off). With ‘click assist’ on, the computer automatically registered a
click once the cursor was on the target for 1.5 seconds. The click decoder was evaluated according to
on-target clicks and off-target clicks that would have occurred had the decoder been used. In an 8-trial
sliding window, if 7 or more targets would have been clicked and the number of off-target clicks would
have been 4 or fewer, click assist was turned off.

The instructed cursor imageries and instructed click imageries used in each session are listed in
Table 1.

2.3.2 Grid Evaluation Task
To quantify the participant’s cursor and click performance using the BCI, we used the Grid Evaluation
Task. This task followed the standardized task paradigm employed by previous cursor BCI
studies3,5,10,33,34 to yield a bitrate measured in bits per second (bps). The cursor workspace contained a
grid (either 6x6 or 14x14) of square gray targets, and a circular white cursor which could move. As in
the Radial8 Calibration Task, each trial began with a random target turning green, and the participant
was instructed to use the instructed cursor imagery and instructed click imagery to move to and select
the cued target. The trial ended when the participant selected any target (correct or incorrect), or when
a 10-second limit was reached. Selecting the wrong target or timing out were both considered a failed
trial and immediately triggered a failure sound. Selecting the correct target was considered a successful
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trial and immediately triggered a success sound. The target on which the cursor began was disabled
from being selected for 2.0 seconds or until the cursor left the target. A thin area (43 px wide)
surrounding the grid and a gap (1 px wide) between grid cells could be clicked without triggering a
selection.

T15 performed the task in 3-minute blocks. The cursor was under closed-loop neural control the
entire block (no velocity or click assist), using a fixed cursor decoder and click decoder which were
trained earlier in the session using the Radial8 Calibration Task.

The instructed cursor imageries and instructed click imageries used in each session are listed in
Table 1.

2.3.3 Simultaneous Speech and Cursor Task
To measure the impact of the participant speaking while controlling the cursor, we used the
Simultaneous Speech and Cursor Task: a variation of the Radial8 Calibration Task that included speech
prompts (Fig. 4a). Targets were arranged the same as in the Radial8 Calibration Task. However, each
trial began with one target turning red (‘target presentation’) and a word simultaneously appearing
above the cursor’s starting location (‘word presentation’). The prompted word was also played aloud
using text-to-speech. After a randomized 1.3-1.7 second ‘delay period’, the cued target turned from red
to green (‘cursor go cue’) and the prompted word disappeared, initiating the ‘move period’. The
participant used the instructed cursor imagery (‘Right Hand Mouse’) to move the cursor to the target
and dwell on it to select it. Between trials was an intertrial period of 1.0 seconds.

There were two trial types in every block: ‘yes beep’ trials containing an auditory beep (the
‘speech go cue’) and ‘no beep’ trials containing no beep. In ‘yes beep’ trials, the beep occurred at a
random time during the move period or dwell period (either 0.3-2.0 seconds after the cursor go cue, or
0.1 seconds after first entering the target). The dwell requirement was long (1.5 seconds) so that, even
for speech go cues that occurred in the dwell period, the participant had time to react and speak before
the trial ended.

To further test whether performance was affected by having to attend (or not) to the speech go
cue, there were also two block types: in ‘speak if beep’ blocks the participant was instructed to speak
the current trial’s prompted word when they heard the beep, whereas in ‘never speak’ blocks the
participant was instructed not to speak even if there was a beep (i.e., the participant could ignore all
beeps during this block type). With two block types and two trial types, there were four total trial
conditions: ‘speak if beep - yes beep’, ‘speak if beep - no beep’, ‘never speak - yes beep’, and ‘never
speak - no beep’. As described, only the ‘speak if beep - yes beep’ condition required speaking. This
task design was similar to that of a previous study that examined interference between speaking and
cursor control using electrodes in dPCG.28

2.4. Neural cursor decoder

2.4.1. Neural feature preprocessing
Each neural feature in was z-scored according to the data used for training the current decoder, and𝑓

𝑡

clipped at ±5. Electrodes with consistently low activity during calibration (mean firing rate <5 Hz) were
excluded from training and inference. During inference, for bins where noise was detected on an
electrode (4 out of the last 5 bins with firing rate ≥500 Hz, or 4 out of the last 5 bins with spike band
power ≥25000 μV2), that electrode’s features were set to their mean values.
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2.4.2. Cursor decoder model
The cursor decoder was a linear velocity decoder with temporal smoothing,35 summarized by the
equation

.𝑣
𝑡

= α 𝑣
𝑡−1

+ (1 − α) β 𝐷
𝑐𝑢𝑟𝑠𝑜𝑟

 𝑓
𝑡

Briefly, is the input (512-D neural features vector) and is the output (2-D cursor velocity𝑓
𝑡

𝑣
𝑡

vector). This equation defines cursor velocity as a weighted sum of the previous time bin’s velocity and
a new velocity predicted from the neural data. The balance between these two terms is set by , whichα
may be set within the range . The left term ( ) provides temporal smoothing. The higher the[0,  1) α 𝑣

𝑡−1

value of , the smoother the cursor’s trajectory, but the longer it will take to switch direction. Theα
parameter is a speed gain, which may be set within the range . The higher the value of , theβ (0,  ∞) β
faster the cursor will move, but this can make overshooting the target more likely.

is the ‘tuning matrix’ consisting of each neural feature’s (scaled) preferred direction,36𝐷
𝑐𝑢𝑟𝑠𝑜𝑟

computed during the training procedure described in Section 2.4.3 (i.e., is updated every few𝐷
𝑐𝑢𝑟𝑠𝑜𝑟

seconds during the Radial8 Calibration Task).
One final step was applied to before moving the cursor: a nonlinear speed adjustment,13𝑣

𝑡

which made slow velocities slower, and fast velocities faster. The actual cursor velocity output was

,𝑜
𝑡

= 𝑠(|𝑣
𝑡
|)

 𝑣
𝑡

 |𝑣
𝑡
|

where is a scalar function, so is the same direction as but its speed is adjusted based on the𝑠 𝑜
𝑡

 𝑣
𝑡

decoded speed itself . Specifically,|𝑣
𝑡
|

,𝑠(|𝑣
𝑡
|) = 𝑟 (

|𝑣
𝑡
|

𝑟 )𝑝

where the parameter is the inflection point between speeds that are slowed down and speeds that are𝑟
sped up, and the parameter is the degree to which speeds are slowed down or sped up. is𝑝 𝑝
configurable within the range , where means no adjustment and higher means more substantial[1,  ∞) 1
adjustment. The motivation for using this nonlinear speed adjustment was to improve the BCI user’s
ability to stop and select small targets as well as their ability to traverse far distances quickly. The
parameter was not explicitly parameterized in the original description of the speed adjustment𝑟
formula,13 where it was implicitly hard-coded to .𝑟 = 1

The specific values used for , , , and in each session are listed in Table 1.α β 𝑟 𝑝

2.4.3. Cursor decoder training
We used linear regression to calculate the tuning matrix , which maps each neural features𝐷

𝑐𝑢𝑟𝑠𝑜𝑟

vector into 2-D cursor velocity space. The inputs were individual time bins (10 ms) of neural features𝑓
𝑡

and the outputs were the components of the participant’s intended velocity at each time bin. We{𝑥,  𝑦}
used unit vector intention estimation,37 which assumes intended speed is constant while the cursor is
far from the target and excludes time bins where the cursor is near the target. An exception to this is
that during the First-ever Usage Session, we used position error intention estimation,37 which assumes
intended speed scales with the cursor’s distance from the target. The training data included samples
from all phases (open-loop, transition, and closed-loop38–40) of the Radial8 Calibration Task.

The linear regression was performed every 2-3 seconds and incorporated all the training data in
the current consecutive series of Radial8 Calibration Task blocks that used a consistent instructed
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cursor imagery. The active cursor decoder was immediately updated with the new tuning matrix 𝐷
𝑐𝑢𝑟𝑠𝑜𝑟

each time the training was performed (i.e., during calibration blocks, the decoder weights were updated
many times throughout the block, even during ongoing cursor movements).

2.5. Neural click decoder

2.5.1. Click decoder model
The click decoder was a linear classifier with temporal smoothing. Each time bin of neural features 𝑓

𝑡

was multiplied by a tuning matrix to yield a vector of logits for the candidate classes (‘no click’ or𝐷
𝑐𝑙𝑖𝑐𝑘

‘click’). Normalizing this vector so it sums to 1 yields probabilities for the two candidate classes. Each
time bin, the predicted class was chosen as the class with the largest probability. Smoothing was
implemented by the decoder refraining from actually outputting a click until a portion of predicted𝑇
classes within a time window of width were ‘click’. This helped reduce errant clicks due to decoding𝐿
noise. We also employed a cooldown window of width after a click was performed during which𝐶
another click could not be output.

For all sessions, we set , ms, and seconds.𝑇 = 0. 8 𝐿 = 70 𝐶 = 1. 0

2.5.2. Click decoder training
We used logistic regression to calculate the tuning matrix , which maps each neural features𝐷

𝑐𝑙𝑖𝑐𝑘

vector to 2-D class logit vectors. The inputs were individual time bins (10 ms) of neural features and𝑓
𝑡

the output labels were ‘no click’ or ‘click’. Time bins labeled ‘click’ came from the window 0.5-1.0
seconds after the cursor entered the cued target, each time the cursor remained on the target for at
least 0.5 seconds. For all other time bins, if the cursor was not on the cued target they were labeled ‘no
click’, and if the cursor was on the cued target they were ignored.

Similar to the velocity decoder, the click decoder logistic regression was performed every 2-3
seconds and incorporated all the training data in the current consecutive series of Radial8 Calibration
Task blocks that used a consistent instructed click imagery. The active click decoder was immediately
updated with the new tuning matrix each time the training was performed.𝐷

𝑐𝑙𝑖𝑐𝑘

2.6. Software pipeline for experiments
Feature extraction, behavioral tasks, and neural decoders were implemented in Python 3.8 and 3.9,
and were run using the BRAND framework.41 BRAND encourages modularizing the pipeline into
reusable components (processes) called BRAND nodes which use Redis for inter-process
communication and logging. Calculation of the decoders’ tuning matrices used Python package
scikit-learn (1.1.1).42

Feature extraction, behavioral tasks, and neural decoders ran on commercially-available
computing hardware residing on a wheeled cart near the participant. To move and click the native
macOS cursor on T15’s personal Mac computer, we ran a lightweight application on T15’s computer
itself. It received the outputs of the BCI’s cursor decoder and click decoder, and then moved and clicked
the native cursor using Python package pynput.
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2.7. Data and code availability
Neural features, cursor task data, and code will be available upon publication.

3. Results

3.1. Rapid calibration during first-ever cursor BCI usage
We first measured speed of onboarding, i.e., how long it took a first-time cursor BCI user to gain neural
control of a cursor.11 During T15’s first-ever cursor BCI task (Fig. 1d), he spent 25 seconds in the
open-loop phase (velocity assist = 1.0). At 25 seconds, the decoder’s average angular error (using a 20
second sliding window) reached 80°, at which point velocity assist began to lower as angular error
lowered. Between 25 and 34 seconds, angular error dropped to 60° and velocity assist lowered to 0.0,
beginning the fully closed-loop phase. At 40 seconds, T15 acquired his first target fully using neural
control.
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Figure 1. Rapid calibration of cursor control during first-ever usage. a. Schematic of the cursor
BCI. Neural activity was recorded by four 64-electrode arrays located in the left ventral precentral
gyrus. Neural features were calculated in bins of 10 ms. A linear velocity decoder predicted the
participant’s intended velocity and moved a computer cursor accordingly. b. 3-D reconstruction of T15’s
brain (left view), with implanted Utah array locations (black squares) and brain areas (magenta, green,
blue regions) overlaid. Brain areas were estimated through alignment of T15’s brain with the Human
Connectome Project cortical atlas via preoperative MRI scans. c. Trial-averaged firing rates (mean ±
s.e.) recorded from three example electrodes during the Radial8 Calibration Task. Activity is aligned to
when the target appeared (which was also the go cue), and colored by cued target direction (same
colors as in panel e). Multiple arrays showed cursor-related modulation, and some electrodes showed
directional tuning. Firing rates were Gaussian smoothed (std 50 ms) before trial-averaging. d. Timeline
of the first 3 minutes that T15 ever used a cursor BCI. Gray marks every few seconds (top) indicate
updates to the cursor decoder. Angular error between the vector toward the target and the vector
predicted by the decoder is plotted as a rolling average (20 seconds). The task began in open-loop
(assist = 1.0) and gradually transitioned to closed-loop (assist = 0.0) as angular error lowered. Teal
diamonds (bottom) indicate successful target acquisitions (reaching the target and dwelling for 0.8
seconds). Filled diamonds indicate fully closed-loop trials. e. Center-out-and-back cursor trajectories
(224 trials) during T15’s first six Radial8 Calibration Task blocks, colored by cued target direction.

3.2. Cursor and click performance
In later research sessions, we supplemented the continuous cursor control with a discrete click. All four
arrays contained electrodes which modulated to attempted click (Fig. 2a). We evaluated the BCI’s
cursor and click performance in terms of bitrate using the Grid Evaluation Task (Fig. 2b, Supp. Movie
2). Blocks 1-8 used a 6x6 grid, whereas blocks 9-17 used a 14x14 grid and lowered to in order𝑟 0. 05
to better leverage the nonlinear speed adjustment. These changes made a substantial difference so our
assessments segregate the Grid Task Evaluation blocks into “preliminary” blocks (1-8) and “optimized”
blocks (9-17). T15’s average bitrate for the optimized blocks was 2.90 ± 0.16 bps (mean ± s.d.) and for
the preliminary blocks was 1.67 ± 0.21 bps (Fig. 2e). T15’s single-block maximum was 3.16 bps.

Out of 1263 trials, T15 successfully navigated to and selected the correct target 1175 times
(93%), selected the wrong target 88 times (7%), and reached the 10 second timeout without a selection
0 times (0%). There were also 6 clicks on the cued target while it was temporarily disabled, and 23
clicks not on any target. Of the 111 clicks not on the cued target, 107 (96%) of them were less than half
a grid cell away from the cued target (Fig. 2c), suggesting that most errors were attributable to cursor
decoding error as opposed to spontaneous click decodes.
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Figure 2. Accurate cursor control and click. a. Trial-averaged firing rates (mean ± s.e.) recorded
from four example electrodes during the Grid Evaluation Task. Activity is aligned to when the cursor
entered the cued target (left), and then to when the click decoder registered a click (right). Firing rates
were Gaussian smoothed (std 20 ms) before trial-averaging. b. The Grid Evaluation Task. The
participant attempted to move the cursor (white circle) to the cued target (green square) and click on it.
c. Location of every click that was performed, relative to the current trial’s cued target (central black
square), during blocks with the 6x6 grid (left) and with the 14x14 grid (right). Small gray squares
indicate where the cursor began each trial, relative to the trial’s cued target. d. Timeline of the
seventeen 3-minute Grid Evaluation Task blocks. Each point represents a trial and indicates the trial
length and trial result (success or failure). Each gray region is a single block. e. T15’s online bitrate
performance in the Grid Evaluation Task, compared to the highest-performing prior dPCG cursor control
study. Circles are individual blocks (only shown for this study). Triangles are averages per participant
(from this study and others).

3.3. Decoding contribution by brain area
T15’s microelectrode arrays (Fig. 3a and Supp. Fig. 2) were located in middle precentral gyrus (area
55b), ventral premotor cortex (area 6v), and primary motor cortex (area 4). In an offline analysis aimed
at identifying which brain areas contributed to cursor decoding (Fig. 3b), we trained a decoder on each
array alone as well as with each array excluded (i.e., only including the other three arrays). We trained
each decoder using data from the Radial8 Calibration Task. We then replayed the neural data from the
Grid Evaluation Task through each of these eight decoders and calculated each decoder’s average
angular error per trial. Lower average angular error corresponds to better performance, but note that
average angular error need not be near 0° to yield good cursor trajectories because the smoothing
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across time bins ameliorates many decoding errors. The decoder trained on d6v alone (40° angular
error) performed best, almost matching the decoder trained on all arrays combined (39°). The decoder
trained on 55b alone (88°) performed near chance-level, and excluding this array did not significantly
impact offline decoding. Of note, 55b and v6v were the best arrays for speech decoding in Card et al.
2024. The decoders trained on the area 4 array alone (61°) and v6v alone (75°) had intermediate
performance, but excluding either one did not significantly impact offline decoding.

We ran an analogous analysis to identify which brain areas contained click-related information
(Fig. 3c). In the case of cursor control, we had assumed the participant’s intention at each moment was
to move toward the target. Here in the case of click, the participant’s intention (i.e., when exactly they
attempt to click) was not known precisely because they may not have attempted to click the moment
they reached the cued target; instead, they might have first tried to bring the cursor to a halt to avoid
clicking the wrong target. So for this analysis, we assumed a high reliability of the click decoder used
online during the Grid Evaluation Task and treated clicks decoded online as the true click intention (Fig.
2c). From every trial in the Grid Evaluation Task, we took the time window from 110-10 ms before the
trial ended (which was always a click) and labeled it 'click', and took the time window from 800-700 ms
before the trial ended and labeled it 'non-click'. For each array alone and with each array excluded, we
trained a logistic regression model to classify these 100 ms time windows of neural features as ‘click’ or
‘non-click’. All four of T15’s arrays yielded classification accuracies significantly above chance,
suggesting that click information was present in all four brain areas.

Figure 3. The dorsal 6v array contributed the most to cursor velocity decoding. a. Zoomed-in
view of T15’s array locations shown in Fig. 1b. Triangles indicate arrays providing the best decoding
performance for speech (orange) and for cursor control (crimson). The best speech arrays were
identified in Card et al. 2024. b. Offline analysis of cursor decoders trained using neural features from
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each array alone (left) and with each array excluded (right), evaluated according to average angular
error between the vector toward the target and the vector predicted by the decoder. The decoder
trained on d6v alone performed almost the same as the decoder trained on all arrays. Error bars and
the green shaded region indicate 95% CI. Stars indicate significant difference from chance performance
(gray star, p<0.01, one-sample t-test, Bonferroni correction) or from performance using all arrays (green
star, p<0.01, two-sample t-test, Bonferroni correction). c. Offline classification of click vs. non-click time
windows using neural features from each array alone (left) and with each array excluded (right),
evaluated with classification accuracy. Each of the four array locations contained click information. Error
bars and the green shaded region indicate 95% CI. Stars indicate significant difference from chance
performance (gray star, p<0.01, one-sample t-test, Bonferroni correction) or from performance using all
arrays (green star, p<0.01, two-sample t-test, Bonferroni correction). Per-electrode contribution maps
for cursor and click are shown in Supp. Fig. 2.

3.4. Cursor control while simultaneously speaking
Because ventral precentral gyrus is typically associated with speech motor control, we investigated
whether speaking interfered with cursor control. After training a cursor decoder using the standard
Radial8 Calibration Task, we engaged T15 in a Simultaneous Speech and Cursor Task (Fig. 4a), which
is the Radial8 Calibration Task with simultaneous speech cues. While the participant moved the cursor
to each target, some trials (the ‘yes beep’ trials) contained an auditory beep (the ‘speech go cue’) at a
random time to prompt the participant to speak a specific word, and other trials (the 'no beep’ trials)
contained no beep. To control for the added cognitive demands of attending to the beep instructions, in
some blocks (the 'never speak' blocks) the participant was instructed not to speak at all even if they
heard a beep, as opposed to the default behavior (the ‘speak if beep’ blocks) where the participant was
supposed to speak once they heard the beep. We observed a variety of single-electrode tuning
patterns: cursor movements only, speaking only, and both cursor and speech (Fig. 4b).

For each of the four conditions (each combination of the two trial types and two block types
introduced above), we measured T15’s target acquisition times (Fig. 4c). Target acquisition times for the
only condition with speech ('speak if beep - yes beep') were significantly longer (median 4.51 seconds)
than in each of the conditions without speech: 'speak if beep - no beep' (3.51 seconds), 'never speak -
yes beep' (3.49 seconds), and 'never speak - no beep' (3.37 seconds). This suggests that speech
production did interfere with vPCG cursor control, in this scenario where speech was not specifically
accounted for in the decoder or training process. Though many electrodes showed modulation to the
task’s auditory stimuli, trials with the speech go cue but no speech (‘never speak - yes beep’) did not
have significantly longer target acquisition times, suggesting that it was indeed the production of
speech (and not the perceived beep and auditory feedback) which interfered with cursor control.
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Figure 4. Cursor control was impacted by simultaneously speaking. a. Overview of the
Simultaneous Speech and Cursor Task. Each trial may or may not have a speech go cue (an auditory
beep), which could occur during the move period or dwell period. b. Trial-averaged firing rates (mean ±
s.e.) recorded from three example electrodes during the Simultaneous Speech and Cursor Task.
Activity during cursor control alone (left and center columns) is aligned first to target presentation and
then to cursor go cue, and is colored by cued target direction. Activity during simultaneous cursor
control and attempted speech (right column) is aligned to speech go cue, and is colored by prompted
word. Firing rates were Gaussian smoothed (std 50 ms) before trial-averaging. c. Comparison of target
acquisition times in different trial conditions in the Simultaneous Speech and Cursor Task. Target
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acquisition times in the only condition requiring speaking were significantly longer than the other
conditions (* p<0.05, ** p<0.01, *** p<0.001, rank-sum test, Bonferroni correction).

3.5. Personal use of desktop computer
In a prior study, T15 used the BCI system’s speech decoding capabilities in a personal use setting.22 In
the current study, we added the ability to neurally control T15’s personal computer’s (Mac) mouse
cursor (Fig. 5). Video of T15 using the cursor BCI to browse Netflix and play the New York Times
Spelling Bee are shown in Supp. Movie 5 and Supp. Movie 6. Without a cursor BCI, T15 controlled his
computer with a gyroscopic head mouse (Zono 2, Quha), or with the aid of a care partner or family
member.

Figure 5. Participant T15 controlled his personal desktop computer with the cursor BCI. a.
Over-the-shoulder view of T15 neurally controlling the mouse cursor on his personal computer. The red
arrow points to the cursor. b-c. Screenshots of T15’s personal computer usage, with cursor trajectories
(pink lines) overlaid. Cursor position every 250 ms (circles) and clicks (stars) are also drawn. In b., T15
first opened the Settings application (left) and then switched his computer to Light Mode (right). In c.,
T15 opened Netflix from Chrome’s New Tab menu (top) and then selected his Netflix user (bottom).

4. Discussion
We demonstrated a rapidly-calibrating, accurate cursor BCI driven by vPCG, an area canonically
associated with speech and orofacial movements. The finding that the cursor BCI could be controlled
with non-speech, non-orofacial imagery aligns well with accumulating evidence that the whole body is
represented in a distributed fashion along the precentral gyrus.24–27 Furthermore, this study exemplifies
how to leverage this modern view of motor cortex to build multi-modal implanted BCIs using fewer
arrays and implant sites. We note, however, that cursor velocity decoding relied heavily on a single
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array (in the dorsal aspect of area 6v). Achieving similar cursor performance from vPCG may require
specifically seeking out this area preoperatively, and it is not yet known whether a similar motor map is
present (and can be reliably located) in other BCI users, as this study includes a single participant.

4.1. Cursor decoding performance
After optimization, the cursor BCI achieved an average bitrate of 2.90 bps. Compared to the
highest-performing previously published dPCG cursor BCI,10 this is higher than participant T6 (2.2 bps)
and T7 (1.4 bps) but lower than T5 (4.16 bps). It is also lower than unpublished results from participant
P1 in Neuralink’s PRIME clinical trial.43 From a pragmatic perspective, the cursor BCI yielded ample
performance for a participant to control their own computer for their own purposes, and the participant
used the BCI both for work and for leisure.

There also may be opportunities to improve performance. Here we used linear decoders that
assume static neural tuning properties because these techniques were simple and sufficient. However,
a growing body of evidence for the factor-dynamics perspective44 (which emphasizes the
heterogeneous, dynamic, and complex tuning properties present at the single-unit level) suggests that
more expressive decoding architectures such as recurrent neural networks (RNNs)16,45,46 may yield
higher cursor decoding performance.

4.2. Motor imageries driving cursor control
The participant successfully controlled the cursor under a variety of instructed cursor imageries
covering different body parts (hand, tongue, head). However, for some imageries and sessions the
actual movements attempted by the participant may not have matched the instruction, for two reasons.

First, in early sessions the participant visibly moved his head along with the cursor due to
familiarity with using a head mouse. We asked the participant if he could keep his head still but he
found it too uncomfortable to suppress head movement while trying to control the cursor. We revisited
the head movement topic in a later session, and by relaxing his head on his head rest the participant
was able to comfortably keep his head mostly stationary (he still made intermittent, small head
movements to view the cursor and target). In this regime, cursor control continued to work, so we
believe cursor control did not rely on overt head movements.

Second, the participant frequently described his method of moving the cursor as “intuition”, even
for blocks where there was a specific body part instructed. In his own words, “I have to use The Force”
(referring to the telekinetic ability from Star Wars films). Such effector-agnostic, subjective experiences
during neuroprosthesis control are widespread in past BCI studies (although not formally reported), and
present a challenge for interpreting results that rely on the instructed imagery. These caveats preempt
claims comparing specific motor imageries, but do not detract from the practicality of the cursor BCI
demonstrated. Future work could more carefully investigate representations of different body parts in
this brain area.

4.3. Interference from speech-related neural activity
Speech interfered with cursor control, in contrast to when cursor control is driven by dPCG.28 For now,
this may encourage a BCI user to attempt to speak and control the cursor sequentially instead of in
parallel. This did not impede the participant from using the multi-modal BCI for daily life activities in
which he moved the cursor of his personal computer and used the speech BCI for text entry. Of note,
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most able-bodied computer users use a mouse and keyboard sequentially. Nevertheless, cursor control
that is robust to simultaneous speech could improve the user experience. This may be possible to
achieve with modifications only to the calibration protocol, without needing to modify the decoder
architecture, e.g., by prompting the user to speak at random times during the cursor calibration task so
that the cursor decoder learns to filter out speech-related neural modulation. Another strategy could be
to modify the cursor decoder to explicitly account for speech-related neural modulation, using data
either from a modified cursor calibration task or from speech-only windows collected previously during
speech BCI usage.

5. Conclusion
As speech BCIs driven by vPCG mature and proliferate, it is valuable to identify what other BCI
applications vPCG can enable. Here, a participant with ALS who previously achieved highly accurate
speech decoding22 was able to control his own computer as if using a computer mouse. This marks an
important step toward delivering high-performing, multi-modal BCIs to people with paralysis.
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Supplementary Materials
Supplementary Movie 1. Radial8 Calibration Task. Participant T15 performing the Radial8
Calibration Task. Cursor movement and click were in full closed-loop neural control. This was the third
of three consecutive calibration blocks, so the cursor decoder and click decoder being used were
trained on the previous two calibration blocks and continually updated throughout the video. There was
no specific instructed imagery (i.e., T15 described his method of control as “intuition” for both cursor
and click).
Link to view online: https://ucdavis.box.com/s/aywxbzq4l73f23e58kzwvtpa0hd698iw

Supplementary Movie 2. Grid Evaluation Task. Participant T15 performing the Grid Evaluation Task.
Cursor movement and click were in full closed-loop neural control. There was no specific instructed
imagery (i.e., T15 described his method of control as “intuition” for both cursor and click).
Link to view online: https://ucdavis.box.com/s/i5z9oznksdea6s46afxgw5fxjuikl1hd

Supplementary Movie 3. Simultaneous Speech and Cursor Task. Participant T15 performing the
Simultaneous Speech and Cursor Task. Cursor movement was in full closed-loop neural control. The
block type was ‘speak if beep’, so T15 attempted to speak the words (inaudible in this video) when he
heard the beep (the ‘speech go cue’). The instructed cursor imagery was ‘Right Hand Mouse’. Targets
were selected by dwelling the cursor on them (i.e., there was no clicking).
Link to view online: https://ucdavis.box.com/s/jksikp6t3rhi70r87678dun70zw29q2v

Supplementary Movie 4. Rapid calibration during first-ever cursor BCI usage. Participant T15’s
first 3 minutes of ever using a cursor BCI. As described in Section 2.3.1, the task began in open-loop
and gradually transitioned to closed-loop as a decoder being trained in the background improved. From
the 35 second mark on, T15 had full closed-loop neural control of the cursor. The instructed cursor
imagery was ‘Right Hand Mouse’, but T15 also moved his head along with the cursor during this block.
T15 had familiarity with using a head mouse from past experience.
Link to view online: https://ucdavis.box.com/s/uka4ddljzqmhhphihsim0qr9gezudmqi

Supplementary Movie 5. Personal use (opening and browsing Netflix). Over-the-shoulder view of
participant T15 using the cursor BCI to control his personal computer’s mouse cursor, with screen
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capture of his monitor overlaid. In this clip, T15 opened Netflix in a new browser tab, selected his own
user account, scrolled down the page by clicking the scroll bar, and started watching a TV show.
Link to view online: https://ucdavis.box.com/s/x39nfzujcfdf0czhj3h43r720rgk4lts

Supplementary Movie 6. Personal use (playing the New York Times Spelling Bee).
Over-the-shoulder view of participant T15 using the cursor BCI to control his personal computer’s
mouse cursor, with screen capture of his monitor overlaid. In this clip, T15 typed and submitted words
in the New York Times Spelling Bee web game by clicking each letter and clicking the word submission
button.
Link to view online: https://ucdavis.box.com/s/ac6pymrvvenydg5smhbn6ipfguojkuzu

Supplementary Figure 1. Comparison of neural feature types for cursor decoding. a. Angular
error per trial computed offline under three different choices of neural features used for decoding:
threshold crossings, spike band power, and both combined. Input vectors to the training and decoding
algorithms were 512-D when using both types of neural features (as was done online in this study) and
256-D when using each feature type alone. There was no significant difference between using spike
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band power alone vs. using spike band power and threshold crossings together (* p<0.05, ** p<0.01,
*** p<0.001, rank-sum test, Bonferroni correction).

Supplementary Figure 2. Microelectrode contributions to cursor and click. a. Individual
microelectrodes, colored by their relative contribution to the cursor decoder’s output vectors during the
Grid Evaluation Task. The arrays are overlaid on the HCP parcellation results for T15’s vPCG. b. Same
as panel a, but for click decoding. Electrodes are colored by the portion they contributed to the click
decoder’s class probability estimates. See Sections 2.4.2 and 2.5.1 for how each electrode’s decoder
contributions were calculated.
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