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Abstract  

Blood-based RNA transcriptomics o5ers a promising avenue for identifying biomarkers of Parkinson’s Disease (PD) 
progression and may provide mechanistic insights into the systemic biological processes underlying its pathogenesis 
beyond the well-defined neurodegenerative features. Previous studies have indicated an age-dependent increase in 
neutrophil-enriched gene expression, alongside a reduction in lymphocyte counts, in individuals with PD. These 
immune cell changes can obscure disease-relevant transcriptomic signals. In this study, we performed di5erential 
expression (DE) analysis of whole-blood RNA sequencing data from PD cohorts, incorporating a correction for immune 
cell-enriched gene expression, particularly neutrophil-related pathways, to improve the resolution of PD-associated 
molecular changes. Using 1,254 Parkinson's Progression Markers Initiative (PPMI) samples with complete blood count 
(CBC) data, we developed a predictive model to estimate neutrophil percentages in a 6,987 PPMI and Parkinson's 
Disease Biomarkers Program (PDBP) samples. We mitigated the confounding e5ects of immune cell-enriched gene 
expression by integrating predicted neutrophil percentages as a covariate in DE analysis. This approach revealed a 
consistent and significant downregulation of SNCA across all PD cohorts, a finding previously obscured by immune cell 
signatures. Lowered SNCA expression was found in individuals with known predisposition genes (e.g., SNCA, GBA, 
LRRK2) and in non-genetic PD cohorts lacking known pathogenic mutations, suggesting it may represent a key 
transcriptomic hallmark of the disease.  
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Introduction  

Parkinson’s Disease (PD) is one of the fastest-growing neurological disorders in the world, with a predicted 12 million 
a5ected individuals by 20401. Compounding the global severity of PD, timely and e5ective treatment of the disorder 
remains limited by a lack of accurate biomarkers and diagnostics measures2. Current PD diagnosis is predominantly 
based on clinical features that frequently overlap with other neurological disorders, leading to high rates of 
misdiagnosis2,3. As such, reliable diagnostic biomarkers could sustainably improve patient prognosis via early detection 
and potential therapy targets2,3.   

Recent advancements in PD diagnostic biomarkers include the cerebral spinal fluid (CSF) based alpha-synuclein seed 
amplification assay (SAA), demonstrating high sensitivity4-6. Blood-based transcriptomic biomarkers in PD, however, are 
still highly researched7-9. The advantages of blood-based biomarkers include the less invasive and more universally 
applicable nature of blood draws and tests compared to the more invasive lumbar puncture required to obtain CSF 
samples7. Analysis of transcriptomic variation in PD may also provide a better understanding of the disorder’s 
underlying biological mechanisms. Prior GWAS analyses have identified 90 independent risk signals explaining 16–36% 
of the heritable risk of PD, suggesting a significant genetic component of the disease that may be present in the 
transcriptome10. Previous studies have identified significant gene-level alterations in PD blood samples, such as in 
pathways related to immune activity, inflammation, mitochondrial function, cell death, etc.9. These studies, however, 
are limited by small sample sizes, which restricts statistical power and makes reproducibility of di5erentially expressed 
genes identified in each study challenging9.   

The Parkinson’s Progressive Markers Initiative (PPMI) and Parkinson’s Disease Biomarkers Program (PDBP) are two 
multi-center, longitudinal observational studies developed to identify PD biomarkers11,12. These two datasets include 
whole blood RNA-sequencing data for healthy control and PD participants across multiple visits, including PD 
participants with known PD risk variants (i.e. SNCA, LRRK2, and GBA)11-13. Previously, Craig et al. evaluated RNA 
expression in the PPMI cohorts and found a strong enrichment of immune-related genes and pathways, specifically an 
upregulation of neutrophil degranulation in pathway analysis13. This discovery is consistent with prior work establishing 
a relationship between PD and immune activity, and several studies have found neutrophil count or neutrophil-to-
lymphocyte ratio to be a potential PD biomarker14.  

How neutrophils function in PD pathogenesis is still unclear. Some studies have argued PD may be caused by 
dysregulated inflammatory responses that trigger a-syn (SNCA) aggregates or general overexpression of a-syn in 
dopaminergic neurons, and that increased expression of a-syn may, in turn, increase inflammation, resulting in a cycle 
of a-syn aggregation that leads to neurodegeneration15-17. In the brain, a-syn accumulation has been linked to pro-
inflammatory factors, changes in astrocyte activity, and microglia hyperactivity18. However, evidence is limited linking 
a-syn and neutrophil expression, specifically in inflammatory responses. According to the Human Protein Atlas, some 
blood cell types do express SNCA, including neutrophils, monocytes, and dendritic cells, but SNCA expression in 
neutrophils is relatively low at 9.8 pTPM compared to the highest expression of SNCA in plasmacytoid dendritic cells at 
115.5 pTPM19.   

In this study, we further evaluate the impact of neutrophil expression in PD using 3,700 PPMI and 2,790 PDBP 
longitudinal whole blood RNA-seq samples from 1406 PPMI and 1164 PDBP participants. Samples were obtained from 
healthy controls (n=1,026), individuals with idiopathic PD (n=1,054), individuals with a mutation in SNCA (n=24), LRRK2 
(n=419), and GBA (n=347). Only a subset of PPMI samples (n=1,254) had complete blood counts (CBC), so a regression 
learning model was built to predict neutrophil percentage in the remaining samples (n=5,236). Di5erential gene 
expression analysis correcting for predicted neutrophil percentage was conducted between control and PD cohorts, 
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and results were further analyzed to identify potentially significant pathways and gene interactions. SNCA improves as 
a statistically significant DE signal with neutrophil percentage as a design covariate, suggesting a transcriptomic-level 
suppression of SNCA in whole blood that occurs independently from neutrophil-related inflammation in PD. We further 
establish a potential mitochondrial gene expression signature in PD cohorts distinct from healthy control samples.   
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Results  

Out of 8,461 total samples, bulk short-read RNA-sequencing data of 6,987 whole blood samples from 2,711 
participants in PPMI and PDBP passed filtering for analysis. Filtering criteria included QC quality metrics as well as the 
removal of BioFIND samples due to small sample size (see Methods for more details). 1,254 of the PPMI samples had 
known neutrophil percentages from corresponding complete blood count (CBC) data, and as such, were used to 
develop machine learning models to predict neutrophil percentage in the 5,643 PPMI and PDBP samples without CBC 
data. 407 of the 6,987 passing samples had a diagnosis other than ‘Case’ or ‘Control’ upon enrollment into PPMI or 
PDBP and were removed from downstream analysis.   

Neutrophil percentage linear modeling and prediction. To predict neutrophil percentage from whole blood gene 
expression counts, we developed multiple machine learning models and compared their performance to select the 
best model for prediction in the 5,643 samples with no known neutrophil percentage. To avoid data leakage between 
the test and training sets, we insured samples from the same participants were not present in the train and test set 
simultaneously by performing an 0.8-0.2 train test split on participant IDs, then assigning the participant samples to the 
corresponding set. Training set and testing set gene counts were then normalized and transformed using DESeq2 
variant stabilization transformation separately, with design = ~1 to ensure normalization was unbiased by sample 
metadata.   

The first model we developed was a linear model based on genes known to be enriched in blood cells (Fig. 1a). Blood 
cell-enriched genes were selected based on the Human Blood Atlas for neutrophils, lymphocytes (T-cells and B-cells), 
monocytes, eosinophils, basophils, and dendritic cells20. From the 2,070 enriched genes present in the normalized 
counts, a linear model was first created for each cell type to find the genes most predictive of neutrophil percentage by 
cell type. Backward elimination was applied until all genes in each model had a p-value of less than 0.05. The 118 
significant genes were then combined to create a final linear model, once again applying backward elimination until all 
remaining genes had a p-value less than 0.05. The final blood cell-based linear model contains 27 significant genes 
(Supplemental Table 1).  

The second model was a linear model based on data-driven feature selection (Fig. 1c). We used mutual information 
(MI) feature selection to identify which of the 58,780 total genes had the highest dependency with neutrophil 
percentage. We applied a MI score threshold of 0.3, resulting in 352 genes with high dependency. Like the first model, 
these 352 genes were then used to create a linear model, and backward elimination was applied until all p-values were 
less than 0.05. The final MI-based linear model contained 17 genes, of which only 2 were present in the blood cell-
based model. However, all genes in the model were enriched in neutrophils, based on the Human Blood Atlas 
(Supplemental Table 2).   

We then developed a third linear model based on the final genes in the previous blood cell-based and MI-based models 
(Fig. 1d). The combined 44 unique genes were used to train the combined model, once again applying backward 
elimination until all p-values were less than 0.05. This combined model contained 31 genes: 21 from the blood cell-
based model, 8 from the MI-based model, and the 3 genes which were present in both (Supplemental Table 3)  

In addition to linear modeling, we implemented a XGBoost regression model which considered all 58,780 genes to 
predict neutrophil percentage (Fig. 1b). XGBoost is a method of gradient tree boosting that has demonstrated improved 
predictive performance in many fields and applications, including expression-related prediction21,22. In our 
implementation, we used the XGBoost R package to create a regression model with hyperparameters nrounds = 10, eta 
= 0.3 and max depth = 3.  
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We evaluated and compared the four models by calculating the average R-squared, root mean squared error (RMSE), 
and mean absolute error (MAE) in the test set across 100 train-test splits. The worst model across all three metrics was 
the MI-based model, with statistically significant poor performance across all metrics. When evaluating based on the 
R-squared in test sets, the combined linear model significantly outperforms all other models (Fig. 2a). For RMSE, while 
the combined model can still be considered a top performer, there was a nonsignificant di5erence between RMSE 
values from the combined model and the cell-based model (Fig. 2b). The same is true for MAE (Fig. 2c).  

As such, we selected the combined linear model as the best performer for neutrophil percentage prediction. A final 
linear model was fitted using all 1,254 samples and the 31 combined model genes. We then used the model to predict 
neutrophil percentage in the samples without CBC data. The combined list of 5,643 predicted and 1,254 known 
neutrophil percentages were used in all downstream analyses.  

Analysis of sample variation. Before performing di5erential expression analysis, we evaluated the validity of our 
covariate design, as well as the e5ect of including predicted neutrophil percentage, using PCA. PCAs were created using 
plotPCA() in DESeq2. We first conducted PCA on vst counts from all 6,987 samples, in which we found a very high and 
statistically significant correlation between PC1 and the sex of the participant (Supplemental Fig. 1a). We also saw a 
certain degree of correlation with sample QC metrics such percent intronic bases, percent mRNA bases, percent 
usable bases, etc. in PC2 to PC5. A slight correlation with percent chimeric reads was also present, and as such we 
included a small filter for >3% chimeric reads in the passing samples (see Methods). Predicted neutrophil percentage 
was most highly correlated with PC8, indicating that the neutrophil percentages predicted by our model do appear to 
correlate with some variation in gene expression. In a second PCA of the VST counts, this time using the limma 
removeBatchE5ect() function in R to correct for our selected design covariates (ie. disease status, sex, percent mRNA 
bases, participant age, and neutrophil percentage), we can successfully eliminate the e5ect of neutrophil percentage 
and other covariates/confounders (Supplemental Fig. 1b). Removing such e5ects also substantially decreased the 
percent variance explained by each PCA, demonstrating the positive impact of controlling for these covariates in the 
di5erential expression design matrix (Supplemental Fig. 1c,d).  

Differential gene expression analysis with predicted neutrophil percentage. We conducted di5erential gene expression 
analysis on multiple PD cohort vs control comparisons and considered the di5erence between analysis with predicted 
neutrophil percentage as a covariate and without. The full design = ~case + sex + age squared + percent mRNA bases + 
predicted neutrophil percentage was determined through variance analysis and design testing (Supplemental Table 4). 
For each cohort comparison, the DE analyses were conducted with PPMI and PDBP samples combined, as well as with 
samples separated by study and at baseline (i.e. age at initial blood draw upon enrollment into PPMI or PDBP) 
(Supplemental Fig. 3-5).  

By accounting for predicted neutrophil percentage, we see a substantial decrease in the number of di5erentially 
expressed genes in PD case vs all control samples from both PPMI and PDBP studies (Fig. 3a,b). A subset of these genes 
are neutrophil-enriched genes that are eliminated with correction, which indicates that inclusion of predicted 
neutrophil percentage as a covariate is an e5ective proxy in DE analysis for true neutrophil percentage (Fig. 3e,f). 
Neutrophil correction additionally appears to correct for all leukocyte-enriched genes, not just those in neutrophils 
(Supplemental Fig. 6).   

SNCA was the only known PD causal variant to remain di5erentially expressed after neutrophil correction. Not only does 
SNCA maintain statistical significance, but the removal of genes related to neutrophil percentage additionally improves 
the DE signal of SNCA: SNCA is the 973rd most significant DE gene without neutrophil correction (Fig. 3b) and the 18th 
after neutrophil correction (Fig. 3d, Supplemental Table 4). Two PD causal variants, LRRK2 and LRP10, are no longer 
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di5erential expressed after neutrophil correction (Fig. 3b,d). LRRK2 was found to play a role in neutrophil chemotaxis in 
Mazaki et al., which may explain why neutrophil correction resulted in an extreme decrease in LRRK2 significance23. 
LRP10 has been shown to cluster with genes related to neutrophil degranulation in RNA analysis conducted by the 
Human Blood Atlas20. Overall, we can see that neutrophil correction eliminates the DE signals of blood cell-enriched or 
related genes, while simultaneously improving the DE signal of SNCA in our PD case vs control comparison. This 
statistically significant depression of SNCA is also present when plotting log(CPM) of the gene counts, corrected for 
predicted neutrophil percentage (Fig. 4f, Supplemental Figure 14). We additionally establish that SNCA expression 
doesn’t appear to correlate with our predicted neutrophil percentage, suggesting that the mechanisms behind lower 
SNCA expression in PD whole blood occurs independently from immune cell-related activity (Supplemental Fig. 15). 
The lack of correlation is further corroborated by the increased significance of SNCA downregulation in DE analyses 
after neutrophil correction (Fig. 3). 

We then conducted DE analysis between specific PD cohort by genetic status and compared these samples to health 
control samples (where healthy control refers to participants who were labeled ‘Control’ at baseline and have no 
SNCA+/GBA+/LRRK2+ mutation). We continue to see a statistically significant downregulation of SNCA in each PD 
cohort vs HC analysis, with a similar improvement in SNCA DE signal compared to uncorrected analysis (Fig. 4a,b,c,d, 
Supplemental Fig. 2). SNCA is not di5erentially expressed in the LRRK2+ vs LRRK2- comparison, which is consistent 
with our finding that SNCA is only downregulated in relation to control samples (Fig. 4e). The number of neutrophil- and 
lymphocyte-enriched genes were also not meaningfully decreased in LRRK2+ vs LRRK2- after correcting for predicted 
neutrophil percentage (Supplemental Fig. 6f,l), suggesting a stronger relationship between LRRK2 and neutrophils in 
whole blood consistent with the known interactions between LRRK2 and neutrophils.  

Pathway analysis highlights mitochondrial dysfunction in PD. To identify pathways with altered expression in the PD 
cohorts, we conducted Ingenuity Pathway Analysis (IPA) on di5erential expression results from each PD vs control 
cohort analysis. As found in our prior work, the most significantly enriched pathway in PD cases vs controls without 
correcting for neutrophil percentage was ‘Neutrophil Degranulation’ (Supplemental Fig. 7). IPA of neutrophil-corrected 
DE results successfully eliminates the ‘Neutrophil Degranulation’ pathway, with the most significantly enriched pathway 
now being ‘Mitochondrial RNA degradation’ (Supplemental Fig. 8). Neutrophil correction overall reduces the number of 
pathways with z-scores greater than 2 or less than -2 and p-values less than 0.05 from 45 without correction to 12 with. 
Notably, the ‘Parkinson’s Signaling Pathway’ becomes significantly expressed in the PD samples with neutrophil 
correction (Supplemental Figures).   

When conducting pathway analysis by genetic cohort, even with neutrophil-corrected DE analysis, IPA still indicates 
significant enrichment of blood cell and immune-related pathways. As gene expression data was sequenced from 
blood samples, high enrichment of these pathways can likely be attributed to tissue type. Considering this possibility, 
we instead focused on pathways related to potentially relevant aspects of PD identified in prior studies, especially 
mitochondrial-related activity due to the significant presence of such pathways in the neutrophil-corrected case vs 
control IPA results. Pathways related to mitochondrial function were significantly enriched in every PD cohort vs control 
analysis (Supplemental Fig. 8-12). We particularly see positive enrichment of the ‘Mitochondrial Dysfunction’ pathway 
in GBA+, SNCA+, and LRRK2+ samples. Additionally, other pathways such as ‘Granzyme A Signaling’ in LRRK2+, ‘NAFLD 
Signaling Pathway’ in SNCA+, and ‘Coronavirus Pathogenesis Pathway’ in GBA+ are positively enriched and involved in 
mitochondrial dysfunction. In the IPD vs HC analysis, ‘BBSome Signaling Pathway’, a pathway positively involved in 
mitochondrial function, was one of nine significantly enriched pathways and was found to be depressed in IPD 
samples8. ‘Leukocyte Extravasation Signaling’ was another mitochondria-related pathway positively significant in the 
IPD analysis, involved in mitochondrial fission and fusion. This association between PD and mitochondrial activity is 
further supported by di5erential expression analysis, as genes in the mitochondrial genome are consistently 
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downregulated in the PD cases vs controls comparisons (Fig. 3b,d). Mitochondrial gene downregulation appears more 
evident after neutrophil correction (Fig. 3d). We again see a similar overall downregulation of mitochondrial genes in DE 
analyses split by PD cohort (Fig. 4a,b,d,c). LRRK2+ samples appear to have both lower mitochondrial gene expression 
and a larger number of significantly enriched mitochondria-related pathways compared to all other PD cohorts (Fig. 4e, 
Supplemental Fig. 12). We can overall see consistent evidence of mitochondrial activity in relation to PD, with a specific 
trend towards increased dysfunction in disease samples.  

PD cohorts exhibit niches of gene expression in unsupervised analysis. The presence of di5erentially expressed genes 
and enriched pathways from DE and IPA analyses suggest di5erent cohorts PD cohorts may exhibit di5erent overarching 
transcriptomic profiles. To further investigate any global transcriptomic di5erences between PD and control cohorts, 
we applied UMAP dimensionality reduction and tried to identify any clusters of HC, IPD, SNCA+ PD, GBA+ PD, and 
LRRK2+ PD samples. From pathway analysis, we established an enrichment of mitochondrial pathways in PD whole 
blood gene expression, especially related to mitochondrial dysfunction. As such, we performed UMAP dimensionality 
reduction on genes in the Parkinson’s Signaling Pathway (Fig. 5a), the Mitochondrial Dysfunction pathway (Fig. 5b), 
BBSome Signaling Pathway (Fig. 5c), and Leukocyte Extravasation Signaling (Fig. 5d), as listed in the IPA database.  

None of the four UMAPs exhibit obvious clustering by cohort, even between control and case samples. Seeing as 
hierarchal clustering also failed to discriminate between cohorts, we can infer that PD whole blood gene expression 
may have no unique global transcriptomic structure compared to healthy controls, even when considering only 
disease-specific pathways (Supplemental Figure 13). However, by creating density plots of each UMAP stratified by 
sample cohort, we can begin to see specific niches of gene expression, especially within SNCA+, GBA+, and LRRK2+ 
samples. In the UMAP of genes in the Parkinson’s Signaling Pathway, we can see that while HC and IPD samples are 
present at a relatively consistent level across the entire plot, genetic cohorts tend to cluster near the bottom right (Fig. 
5c). In mitochondrial dysfunction genes, we can see an even more distinct division between HC/IPD and 
SNCA+/GBA+/LRRK+, where genetic samples predominantly cluster in a central band and HC/ID samples cluster more 
towards the top and bottom of the UMAP (Fig. 5d). SNCA+ samples tend to occupy the smallest niche of expression in 
both Parkinson’s signaling pathway and mitochondrial dysfunction genes. Di5erences between IPD and HC samples, 
however, are comparatively minor. Some minute di5erences can still be observed, including in the UMAP density plots 
based on the IPD-enriched BBSome Signaling Pathway and Leukocyte Extravasation Signaling (Fig. 5c,d).   

Demographic, clinical, and biological factors influencing SNCA gene expression. The most striking results from our 
analysis of PD whole blood RNA sequencing data has been the significant downregulation of SNCA in DE analyses. We 
further investigated which phenotypic characteristics of PD could be responsible for the SNCA signal by plotting CPM 
normalized and logged SNCA gene counts by mutation status and age at baseline. 

Lower SNCA expression compared to HC is most apparent in SNCA+ samples, both in those from participants with a 
clinical PD diagnosis and without (Fig. 6a). This decreased expression is statistically significant even when only 
considering samples taken at baseline (Fig. 6b). Mutations in SNCA are typically missense, indicating that 
transcriptomic depression of the gene may be due to some indirect mechanism that potentially becomes active in PD24. 
Combined with the fact that SNCA- PD samples also exhibit SNCA downregulation, it is apparent that SNCA mutations 
alone are not responsible for the decreased expression. Looking at other potential genetic drivers, we do see a more 
modest decrease of SNCA in LRRK2+ and GBA+ PD samples, which is statistically significant when considering 
expression in all samples but becomes unsignificant in samples taken at baseline (Fig. 4f, Fig. 6a,b). This is likely due to 
the relatively smaller pool of LRRK2+ PD and GBA+ PD participants compared to HC and more subtle decrease in SNCA 
expression compared to SNCA+ PD participants (Fig. 6b). The overall behavior of SNCA expression is consistent with 
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our findings in di5erential expression analysis by genetic cohort (Supplemental Fig. 3). It remains likely that LRRK2 and 
GBA, along with SNCA, may indirectly impact whatever mechanism is responsible for decreased SNCA in PD. 

Further analysis of SNCA expression by participant age at baseline also suggests a possible SNCA-age dependency in 
PD. In IPD samples (i.e. Case and SNCA-/GBA-/LRRK2-), there is a statistically significant decrease in SNCA expression 
as the baseline age of the participant increases (Fig. 6c). This steady age-related decrease of SNCA is not present in the 
control samples of any genetic cohort, indicating a possible disease-specific behavior of SNCA expression in whole 
blood. Overall, it appears that some combination of genetic and age-related factors may contribute to a systemic 
downregulation of SNCA in the PD whole blood transcriptome.  
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Discussion  

The goal of this study was to investigate the impact of blood cell-enriched gene expression on di5erential expression 
analysis of PD whole blood RNA sequencing samples. To correct for a previously established enrichment of neutrophil-
enriched genes and the neutrophil degranulation pathway in PD case vs control DE and IPA analysis, we developed a 
linear model using 1,254 PPMI samples with CBC data to predict neutrophil percentage in 5,643 PPMI and PDBP 
samples. We developed four models: a linear model using blood cell-enriched gene expression, a second linear model 
with genes selected through MI feature selection, a third linear model using a combined set of the most significant 
genes from the prior two models, and a XGBoost regression model trained on the entire gene expression dataset. We 
selected the combined model for neutrophil prediction due to strong performance in the R-squared, RMSE, and MAE 
evaluation.   

The combined 1,254 known and 5,643 predicted neutrophil percentages were then included as a design covariate in 
di5erential expression analysis, which successfully eliminated a large portion of neutrophil-enriched genes, as well as 
genes enriched in other blood cells, such as lymphocytes, monocytes, basophils, eosinophils, and dendritic cells. IPA 
analysis of neutrophil-corrected DE results no longer exhibit enrichment of the Neutrophil Degranulation pathway, 
indicating that correction using the predicted neutrophil percentages adequately accounts for pathway activity related 
to neutrophil function.   

With neutrophil-correction, we continue to see a consistent depression and DE signal improvement of SNCA expression 
in the whole blood transcriptome for all PD cohorts. Why we see SNCA downregulation is an open question. For one, 
SNCA appears to be relevant to PD beyond the gene’s involvement in blood cell function. While SNCA is not highly 
expressed in neutrophils, the gene is expressed in plasmacytoid dendritic cells (115.5 pTPM), classical monocytes (62.7 
pTPM), and basophils (36.8 pTPM)20. We demonstrated that neutrophil correction decreases the number of di5erentially 
expressed blood cell-enriched genes across all cell types, which may explain the greater magnitude and significance of 
SNCA downregulation after correction. Including neutrophil percentage in our analyses appears to uncover a stronger 
gene expression signal for SNCA in PD cohorts that occurs independently of immune cells. The consistent depression 
of SNCA in every PD cohort compared to healthy controls, including in IPD samples without SNCA+/GBA+/LRRK+, 
suggests that SNCA downregulation in whole blood transcriptomic analysis may be a notable hallmark of disease.  

We further identified multiple mitochondria-related pathways enriched in PD cohorts with IPA. Most notably is the 
positive enrichment of the Mitochondrial Dysfunction pathway in SNCA+, GBA+, and LRRK2+ samples. SNCA is known 
to be involved in mitochondrial function and is present in the Mitochondrial Dysfunction pathway specifically, 
suggesting that mitochondrial activity may be what is driving the SNCA DE signal in PD. Overly active mitochondria has 
previous been tied to neuronal cell death and neurogenerative disease25. Mitochondrial inhibition in DA neurons was 
also demonstrated in multiple studies to induce parkinsonian motor symptoms in both primates and humans26,27. 
Barnhoorn et al. similarly found a reduction of mitochondrial function in PD within the PPMI samples used in this study, 
and that mitochondrial dysfunction appears to scale with disease severity in gene set enrichment analysis28. We see 
further evidence of mitochondrial activity di5erences in UMAP density plots, where PD cohorts exhibit tendencies to 
cluster toward specific niches of gene expression rather than a fully unique transcriptomic profile. The lack of distinct 
global structural di5erences between PD cohorts and control samples corresponds with the high degree of complexity 
in PD development and expression. It is possible that more sophisticated methods of unsupervised analysis may 
provide a better understanding of the highly nuanced transcriptomic di5erences in PD related to mitochondrial activity 
and dysfunction.   
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This study does have notable limitations. For one, despite utilizing the largest compiled PD transcriptomic dataset, the 
analyses in this study were limited to clinical diagnosed PD participants and control individuals due to the relatively low 
number of prodromal and SWEDD patients. We also conducted analyses by sample rather than by participant, since 
individuals with SNCA/GBA/LRRK2 mutations, especially SNCA, compose a relatively small proportion of our total pool 
of participants. As such, participant-related sample dependencies may be unaccounted for in some statistical tests. 
While SNCA may be a strong signal of PD, significant transcriptomic di5erences that typify IPD are still unclear, and will 
likely require further single-cell level analysis to elucidate. Overall, future work in single-cell transcriptomic analysis of 
blood cells will be necessary to identify which di5erentially expressed genes and pathways can be pathogenically linked 
to PD, and which are merely associated with the disease.  

In conclusion, this study incorporated neutrophil percentage correction into di5erential transcriptomic analysis of PD 
whole blood samples. We see a stronger depression of SNCA expression, which may be caused by mitochondrial 
dysfunction and other related mitochondrial pathway activity. Correcting for immune cell-enriched genes in PD whole 
blood RNA analysis can uncover more relevant pathways in the PD transcriptomic profile, which will help guide future 
work in blood-based analysis of the disease.  
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Methods  

Data. All data used in the study was collected and processed according to the protocols outlined by the Parkinson’s 
Progression Markers Initiative (PPMI) and Accelerating Medicines Partnership Parkinson’s Disease (AMP PD®) 
program11,12. Both PPMI and Parkinson’s Disease Biomarkers Program (PDBP) from AMP PD® patient samples were 
labeled by their disease status (PD or non-PD) and genetic group (GBA+/-, LRRK2+/-, and SNCA+/- mutation status). A 
subset of PPMI patient samples included complete blood count (CBC) and neutrophil percentage.   

Genome and transcriptome alignment, quantification and quality control. Samples were sequenced, aligned, and 
quantified as part of PPMI. Sequencing was done using the Illumina NovaSeq 6000 platform, after which FASTQ files 
were aligned to the GRCh38 human genome using STAR 2.6.1d. Gene counts were created using featureCounts 1.6.2 
and GENCODE 29 annotations.   

A total of 8,461 samples were provided by PPMI and AMP PD® (labeled as either PDBP or BioFIND). Only samples with 
a RIN value of greater than 6, usable bases percentage between 20% and 65%, and chimeric reads percentage below 
3% were included in both neutrophil percentage prediction model development and di5erential gene expression 
analysis. Additionally, 166 BioFIND samples were removed due to the relatively small sample size compared to PPMI 
and PDBP. Of the 6,490 passing samples, 1,254 were used for neutrophil prediction model development. 6,490 
samples from participants labeled as ‘Case’ or ‘Control’ at baseline were included in di5erential expression analyses.  

Neutrophil percentage linear modeling and prediction. Genes enriched in white blood cells (neutrophils, eosinophils, 
basophils, monocytes, lymphocytes, and dendritic cells) were identified using annotations from the Human Blood 
Atlas20. Linear models were developed using the lm() function in R. Backward elimination was applied recursively until 
the only genes used in the model had p-values less than 0.05. Mutual information features selection was conducted 
using SelectKBest() and mutual_info_regression from sklearn in python. The XGBoost regression model was built using 
the xgboost r package with the parameters nrounds = 10, eta = 0.3 and max depth = 3. All four models were compared 
using the average Pearson R-squared, root mean squared error and mean absolute error across 100 train-test splits.   

Variance analysis. PCA was calculated using the plotPCA() function from DESeq2 and batch correction was conducted 
with removeBatchE5ect() function from limma. PCs were correlated to the technical (study, plate, usable bases, etc.) 
and biological (neutrophil percentage, age, sex, etc.) variables of the samples using a Spearman’s rank correlation or 
intraclass correlation if the variable were continuous or categorical respectively. The significance of each correlation 
was evaluated using either a spearman or ANOVA test p-value for continuous or categorical variables respectively. 
Categorical variables with singular unique values (sample_id, participant_id, diagnosis_at_baseline, diagnosis_latest) 
could not be evaluated using either method, and as such p-values were set to 0 for all PCs.   

Differential expression analysis. All di5erential expression analyses were conducted using the well-developed limma-
voom 3.58.1 framework in R. We used a p-value threshold of 0.05 and log fold change threshold of 0.1. Each 
comparison used the design = ~0 + case + sex + percent mRNA bases + predicted neutrophil percentage + age squared, 
where age is determined by the age at patient enrollment. The design matrix was determined through successive testing 
and variance analysis to identify the most significant and biologically relevant covariates (Supplemental Fig. 1, 
Supplemental Table 4).   

Genes were labeled in volcano plots by category of interest. Causal variants of PD were determined by evidence in 
previous studies. Mitochondrial genes were labeled based on genes in the Human Gene Nomenclature Committee’s 
mitochondrial genome list29. Pathway genes were compiled and identified from statistically significant pathways in 
Ingenuity Pathway Analysis (IPA) analyses. Leukocyte-enriched genes were identified per the Human Blood Atlas.   
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Ingenuity pathway analysis. Di5erential expression analysis results from multiple comparisons were used to conduct 
pathway analysis with QIAGEN Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc., 
https://digitalinsights.qiagen.com/IPA). For IPA of DE results without neutrophil correction, an adjusted p-value 
threshold of 0.05 and log fold change threshold of < -0.1 and > 0.1 was applied to identify significant genes. For IPA of 
DE results with neutrophil correction, an adjusted p-value threshold of 0.05 and log fold change threshold of < -0.085 
and > 0.065 was used to avoid biased z-score calculations and include a similar number of di5erentially expressed 
genes as the un-corrected analysis (~500 upregulated and ~500 downregulated). Log fold change thresholds of < -0.1 
and > 0.075 and an adjusted p-value threshold of 0.05 were used for IPD vs HC analysis. GBA+ v HC analysis was 
conducted with the same adjusted p-value threshold and a log fold change threshold of < -0.1 and > 0.09. LRRK2+ v 
HC was conducted with the same adjusted p-value threshold and a log fold change threshold of < -0.14 and > 0.15. 
Finally, SNCA+ v HC was conducted with the same adjusted p-value threshold and a log fold change threshold of < -0.1 
and > 0.14. Genes from significant pathways related to mitochondrial function were then compiled and used in UMAP 
dimensionality reduction.  

Dimensionality reduction and density plots. Uniform Manifold Approximation and Projection (UMAP) dimensionality 
reduction was conducted using the umap() function the R package umap version 0.2.10.0. Gene counts were 
normalized and transformed using DESeq2 vst() before applying dimensionality reduction. To make the density plots, 
samples were labeled with ‘Control’ if the participant was not diagnosed with PD and was SNCA-/GBA-/LRRK2-, 
‘Idiopathic PD’, if the participant was diagnosed with PD and was SNCA-/GBA-/LRRK2, SNCA+ if the participant was 
diagnosed with PD and had a SNCA mutation, GBA+ if the participant was diagnosed with PD and had a GBA mutation, 
and LRRK2+ if the participant was diagnosed with PD and had a LRRK2 mutation. Density plots were created using 
ggplot2 and the stat_density_2d() function. Mitochondrial genes were identified using the HUGO Gene Nomenclature 
Committee (HGNC) Mitochondrial genome gene group. Mitochondrial dysfunction, BBSome signaling pathway, 
Leukocyte Extravasation Signaling, and Parkinson’s Signaling Pathway genes were identified based on the 
corresponding molecule list in IPA.  

Statistical software. Statistical analyses were conducted in either R version 4.3.1 or python version 3.7.16. Linear 
models were created in R using the lm() from the R stats package and the XGBoost model was built using the R package 
xgboost version 1.7.8.1. The package scikit-learn version 1.0.2 was used for mutual information feature selection in 
python. Di5erential expression analysis and variance analysis were conducted in R using DESeq2 version 1.40.2, limma 
version 3.58.1, and edgeR version 3.42.4. Plots were made using either ggplot2 version 3.4.4 or EnhancedVolcano 
version 1.18.0. The geom_signif() function in ggpubr version 0.6.0 was used whenever a two-tailed Wilcoxon rank sum 
test was applied.     

Data availability  

Raw sequencing data (FASTQ files), alignment files (BAM files), TPM data and counts for each sample are available at 
the LONI IDA. (https://fairsharing.org/, IDA; LONI IDA, https://doi.org/10.25504/FAIRsharing.r4ph5f). Data are also 
available through the AMP PD® (https://amp-pd.org/). These are the requirements for downloading from the AMP PD®: 
(1) personal and institutional or company details; (2) description of intended data use, for example, proposed analyses; 
(3) institutional signature on the AMP PD® Data Use Agreement (for researchers requesting access to individual level, 
’omics data). Additional data, including but not limited to study arm, motor assessments, DaTscan and MRI imaging, 
genetic testing results, whole-exome and genome sequencing data, patient history and standardized techniques and 
protocols for data collection are also available through the IDA. To access complete data, researchers need to fill out a 
data-use agreement. Data are available in a public (institutional, general or participant-specific) repository that does 
not issue datasets with DOIs (non-mandated deposition).   
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Code availability  

All code for data analysis in this study is available on GitHub and can be accessed via this link: 
https://github.com/kaylaxu/pd_wb_rnaseq_snca_paper. 
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Table 1 | Demographic information and genetic status of PPMI and PDBP participants (Pat) and samples (Sm).   
 
 

 
Fig. 1 | Workflow diagram of regression model development for predicting neutrophil percentage from gene expression 
data. 1,254 passing samples with CBC test results were used to create machine learning regression models to predict 
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neutrophil percentage. a,c,d, Train-test splits for regression model development were created by randomly splitting the 
600 unique participants between an 80% train set and 20% test set, then assigning the respective samples to the 
corresponding set. Three di5erent linear models were created to compare the performance of di5erent methods of 
feature selection: (a) biology-based via selection of only blood cell enriched genes, (c) data-driven via mutual 
information feature selection from all genes, and (d) combining the methods to include genes from both biology-based 
and data-driven selection. b, Additionally, an XGBoost regression model (b) was developed with all 58,780 transformed 
gene counts. We used the best performing model to predict neutrophil percentage for 2,932 AMP samples and 2,711 
PPMI samples with no known neutrophil percentage. 
 

 
Fig. 2 | Comparison of different machine learning models to predict neutrophil percentage in PPMI and PDBP patients. 
a,b,c, Each model type was trained and tested on 100 train-test splits where samples were split 0.8-0.2 by participants. 
(a) plots the R2 value of each model when applied to the test sets, (b) plots the root mean squared errors, and (c) the 
mean absolute errors. A Wilcoxon signed-rank test was used to test the statistical significance of di5erences between 
the models for each metric. *, **, *** indicate p-values less than 0.05, 0.01. and 0.001, while N.S. indicates no 
significance. 
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Fig. 3 | Differential expression in patients comparing case to controls, with and without controlling for predicted 
neutrophil percentage. a,b,c,d, Volcano plots of di5erential expressed genes, without controlling for predicted 
neutrophil percentage (a,b) and with controlling for predicted neutrophil percentage (c,d) in the design matrix. Genes 
with a log2 fold change of > 0.1 or < -0.1 are considered di5erentially expressed and colored in red. Genes which are 
either known PD causal variants or mitochondrial genes are colored purple and orange respectively in the volcano plot 
without controlling for predicted neutrophil percentage (b) and with controlling for predicted neutrophil percentage (d). 
PD causal variants and mitochondrial genes that are di5erentially expressed are additionally labeled by their gene 
name. e,f, Histograms show the distribution of significantly di5erentially expressed neutrophil- and lymphocyte-
enriched genes in the di5erential expression analysis without (e) and with (f) controlling for predicted neutrophil 
percentage. 
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Fig. 4 | Differential expression analysis of all samples by genetic cohort. PD causal variants are colored purple, and 
mitochondrial genes are colored orange. Di5erentially expressed PD causal variants are additionally labeled by gene 
name. a, Idiopathic case samples with no SNCA/LRRK2/GBA mutation were compared to control samples with no PD-
related mutations. b,c,d, Control samples with no PD-related mutations were compared to case samples with GBA+ 
(b), LRRK2+ (c), and SNCA+ (d) mutations. e, LRRK2+ case samples were compared to LRRK2- case samples. f, 
log(CPM) SNCA expression in HC, IPD, SNCA+ case, GBA+ case, and LRRK2+ case samples corrected by predicted 
neutrophil percentage, stratified by genetic cohort. HC includes control samples with no SNCA/LRRK2/GBA mutations. 
Adjusted p-values are labeled according to the adjusted p-value of SNCA di5erential expression from respective DE 
analyses. The dotted red line represents the median SNCA expression in HC samples. 
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Fig. 5 | UMAP dimensionality reduction with pathway-specific genes by disease status and genetic cohort. UMAP 
embeddings were created from variant stabilizing transformed (VST) gene counts. Counts were then corrected for 
participant age and sex, as well as sample mRNA percentage and predicted neutrophil percentage.  a, UMAP of 36 
genes found in the Parkinson’s Signaling Pathway, with samples labeled by disease and genetic status, excluding 
samples from participants with unknown genetic status (n = 5,470). Corresponding density plots were made, stratified 
by disease and genetic status. b, A UMAP and set of density plots were created from 143 genes in the Mitochondrial 
Dysfunction pathway (n = 5,339). A small cluster of samples, mostly Control and Idiopathic PD, were removed from the 
Mitochondrial Dysfunction UMAP for visualization purposes. c, A UMAP of 59 BBSome Signaling Pathway genes and 
density plots (n = 5,358). A small cluster of samples, mostly Control and Idiopathic PD, were removed for visualization 
purposes. d, UMAP and density plots of 52 Leukocyte Extravasation Signaling Pathway genes (n = 5,345). A small cluster 
of samples, mostly Control and Idiopathic PD, were removed for visualization purposes. 
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Fig. 6 | SNCA expression stratified by demographic, clinical, and biological factors. a, b, c, Gene counts were log(CPM) 
normalized and corrected for predicted neutrophil percentage. a, SNCA expression in samples stratified by genetic 
status and diagnosis. The red dotted line represents the median SNCA expression in healthy control samples (i.e. 
‘Control’ and ‘SNCA-/GBA-/LRRK2-’). b, SNCA expression of HC, IPD, SNCA+ case samples, GBA+ case samples, and 
LRRK2+ case samples at baseline only. c, SNCA expression of IPD samples over age at baseline. All p-values were 
calculated using a Wilcoxon rank-sum test. 
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