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ABSTRACT

RNAomics, analogous to proteomics, concerns
aspects of the secondary and tertiary structure, fold-
ing pathway, kinetics, comparison, function and
regulation of all RNA in a living organism. Given
recently discovered roles played by micro RNA,
small interfering RNA, riboswitches, ribozymes,
etc., it is important to gain insight into the fold-
ing process of RNA sequences. We describe the
web server RNALOSS, which provides information
about the distribution of locally optimal secondary
structures, that possibly form kinetic traps in the
folding process. The tool RNALOSS may be useful
in designing RNA sequences which not only have
low folding energy, but whose distribution of locally
optimal secondary structures would suggest rapid
and robust folding. Website: http://clavius.bc.edu/
~clotelab/RNALOSS/.

INTRODUCTION

RNA can play an important functional role in catalysis, e.g.
ribozymes are RNA enzymes that cleave RNA phosphodiester
bonds at specific sites (1); see (2) for an overview of potential
therapeutic applications of ribozymes to cleave mRNAs of
oncogenes (ras or bcr-abl) and viral transcripts (HIV-1), to
overcome drug resistance, control arthritis, etc. Additionally,
some small molecules can function as drugs acting on RNA.
Such is the case for the aminoglycoside and macrolide families
of antibiotics, which disrupt RNA translation in prokaryotes
by targeting ribosomal (rRNA) (3).

In contrast to mRNA, noncoding RNA (ncRNA) is tran-
scribed from genomic DNA and plays a biologically important
role, although it is not translated into protein. Examples of
ncRNA include ribozymes, riboswitches, micro RNA, small
interfering RNA (4), tRNA, rRNA, etc. Riboswitches have
recently been discovered to interact with small ligands and

up- or down-regulate certain genes. Breaker and co-workers
(5) report the crystal structures of the add A-riboswitch and xpt
G-riboswitch aptamer modules, which distinguish between
bound adenine and guanine; see (6) for an overview of bac-
terial riboswitches, and (7) for the structure, as given in the
PDB code 1U8D of a guanine-responsive riboswitch with the
metabolite hypoxanthine.

RNAomics (8), analogous to proteomics, concerns aspects
of the secondary and tertiary structure, folding pathway,
kinetics, comparison, function and regulation of all RNA in
a living organism. RNAomics requires the application of
numerous existent tools, as well as the development of new
computational methods. Well-known RNA computational
tools include secondary structure prediction web servers
mfold (9) and Vienna RNA Package (10), the Sfold
web server (11) to sample secondary structures according to
the Boltzmann probability distribution, the tRNAscan-SE
gene finder for tRNA (12), multiple sequence alignment for
the statistical detection of RNA secondary structure MSART
(13), dynamic programming pairwise sequence-structure
alignment Dynalign (14), tertiary structure modeling tool
Mc-Sym (15), etc. Only a few of the many important com-
putational tools for RNA structure prediction, gene finding,
alignment, etc. have been listed.

In this paper, we describe the web server RNALOSS, based
on the algorithm of Clote (16), which computes an aspect
of the folding landscape of an RNA nucleotide sequence
s = S1,...,8, Given s, this algorithm runs in time O(n4)
and space O(n’), and computes for each k, the number of
k-locally optimal secondary structures (explained below).
Work by Clote (16) was motivated by the following question,
as has been suggested for proteins (17): is it the case that RNA
has been under selective pressure to fold rapidly? Using the
algorithm of the web server RNALOSS, it appears that struc-
tural RNA has a different folding landscape than random RNA
of the same dinucleotide frequency; specifically, for small
values of k, there appear to be fewer k-locally optimal sec-
ondary structures than in random RNA. Related, but distinct
work has appeared in (18-21), for discussion see (16).
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METHODS

A secondary structure for an RNA sequence s = s, ...,s,1S an
expression s = sy, ..., s, involving dot, left and right paren-
thesis, which is well balanced, such that nucleotides corres-
ponding to matching parentheses are either Watson—Crick
complements or GU wobble pairs.

Definition

A secondary structure S on RNA sequence s = sq,...,5, 1S
defined to be a set of ordered pairs (i, j), such that i +3 < j and
the following conditions are satisfied.

(1) Watson—Crick or GU wobble pairs: If (i, j) belongs to S,
then pair (¢;, a;) must be one of the following canonical
base pairs: (A, U), (U, A), (G, C), (C,G), (G,U) and (U, G).
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(i1) Threshold requirement: If (i, j) belongs to S, then j — i > 3;
i.e. there must be at least three unpaired bases in a hairpin
loop.

(iii) Non-existence of pseudoknots: If (i,j) and (k, /) belong to S,
then it is not the case that i <k <j < /.

(iv) Nobase triples:If (i,j) and (i, k) belong to S, then j=k; if (i, )
and (k, j) belong to S, then i = k.

A secondary structure is k-locally optimal if it has k fewer
base pairs than the maximum possible number [i.e. than in the
Nussinov—Jacobson optimal structure (22,23)], and yet no base
pairs can be added without violating the definition of second-
ary structure (e.g. without introducing a pseudoknot). To illus-
trate this notion, consider the RNA sequence GGGGCCCCC,
which has three as the maximum possible number of base
pairs, as given in the structure (((...))). There is only one
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RNALOSS: Web server for RNA locally optimal secondary structure computation

Enter an RNA sequence of at most 100 nucleotides. Enter your email, indicate your operating system (for

file uploads). Select option to either

(A) Pasteltype an RNA sequence (with or without FASTA comment), or

(B) Upload FASTA file containing an RNA (with or without FASTA comment).

For RNA sequences of length 60 nt. or more, output will be returned by email. For each possible value of k,
RNALOSS computes the number of k-locally optimal secondary structures for the input RNA, along with
relative density of states and minimum free energy of a sample k-locally optimal secondary structure (see

Documentation).

NOTE: RNALOSS run time is O(n?), so for sequences of length greater than 60, there will be a waiting time
of several minutes, and the output will be sent by email. Sequences of at most 100 nucleotides are accepted in

current web server.

Here are two sample RNA sequences for sample trial.

* Tiny toy example of RNA

o Ala-tRNA from M. jannaschii, with accession number DA0650, taken from Sprinzl's database. Stored

output from webengine is HERE
» Documentation

Email address: (required): “tebio@be.edu

Select the type of operating system you use (required only for file upload): ~ macintosh 3]

Either paste in an RNA sequence or upload a FASTA format file containing a single RNA sequence.

Select the method of inputting the RNA

q €: type/paste one sequence B3

(A) Sequence:

Figure 1. Screen image of web server RNALOSS. Users may input an RNA sequence consisting of upper or lower case nucleotides A, C, G, T, U, either by uploading

a FASTA-format file (A) or by pasting a nucleotide sequence into (B).
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structure having 3 bp, so the number of O-locally optimal
secondary structures is 1. On the other hand, there are twelve
1-locally optimal secondary structures and three 2-locally
optimal secondary structures. The latter are listed as follows:
@ (.)....(G1) (....)..(1ii) ...(.....). The algorithm of (16) uses
dynamic programming to compute, for each i/ < j and each
k, the number of k-locally optimal secondary structures on the
subsequence s = s;,...,s;. Additionally, the algorithm must
keep track of visible nucleotides and positions, i.e. those
external to any base pair [for technical details see (16)].

WEB SERVER

The web server RNALOSS implements a new algorithm,
described in (16), running in O(n*) time and O(n°) space,
which computes for a given RNA sequence s = sy,...,S,

and all £ = 0, the number of k-locally optimal secondary
structures for s. An RNA nucleotide sequence may be input
by uploading a FASTA-format file or by entering a nucleotide
sequence in the blank provided on the web server form. Three
tables are returned by RNALOSS: the number of k-locally
optimal secondary structures, the relative density of states
(i.e. the ratio of number of k-locally optimal structures over
the total number of locally optimal structures) and the min-
imum free energy (mfe) of a sample k-locally optimal second-
ary structure (for each value of k, RNALOSS computes a
single k-locally optimal secondary structure, denoted here
as Sy, among the many possible k-locally optimal structures.
Since this feature was implemented for debugging purposes,
the current version of RNALOSS does not guarantee that Sy
has lowest mfe as evaluated by RNAeval, over all k-locally
optimal secondary structures. For this reason, the energy of

RNALOSS (RNA locally optimal secondary structures)

Output of graph of density of states, as well as number of k-locally optimal structures, sample energy in kcal/mol.

Click here for box plot of density of states

Number of nucleotides: 54
Maximum level of suboptimality: 13

Number of base pairs for MNussinov-Jacobson optimal structure:20

Number of locally optimal structures for this RNA

k Number of k-locally optimal secondary structures
0 318

1 46598

2 935893

3 9.73283E+06
4 6.68754E+07
5 3.30046E+08
6 1.17413E+09
7 2.81655E+09
8 4.06652E+09
9 3.03951E+09
10 9.8490BE+08
11 1.08339E+08
12 2,.40561E+06
13 1946

Density values

k density
0 0.000000
1 0.000004
2 0.000074
3 0.000772
- 0.005308
5 0.026194
6 0.093185
7 0.223536
8 0.322740
9 0.241231
10 0.078167
11 0.008598
12 0.000191
13 0.000000

Sum of density values: 1.000000

Figure 2. Output of web server RNALOSS on type III hammerhead ribozyme AF170517 from Rfam (24). The web server RNALOSS outputs a table of number of
k-locally optimal secondary structures, for each possible value of k = 0 (shown here). Additionally, tables for the relative density of states and mfe values of sample
k-locally optimal secondary structures are displayed in the browser (data not shown).
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Figure 3. Column graph of relative density of states is obtained by clicking a hot link from the previous screen shot. For each value of k = 0, the ratio of number of
k-locally optimal secondary structures over the total number of locally optimal secondary structures is displayed.

sample structures S, does not necessarily increase monoton-
ically with increasing value of k). For the latter, mfe is com-
puted using RNAfold from the Vienna RNA Package http://
www.tbi.univie.ac.at/~ivo/RNA/. A screen shot of two of the
tables is presented.

Figure 1 displays a screen shot of the RNALOSS web server
form. Figure 2 lists the number of k-locally optimal secondary
structures as computed by RNALOSS for type III hammerhead
ribozyme AF170517 from Rfam (24). Figure 3 presents the
relative density of states for k-locally optimal secondary struc-
tures for AF170517.

Owing to algorithmic time and space constraints, the RNA-
LOSS web server immediately processes RNA of length at
most 60 nt, while for RNA of length 61-100 nt, the results are
emailed to the user. Currently, RNALOSS refuses to process
any sequence of length >100 nt. Current hardware supporting
RNALOSS web server consists of a Beowulf-style cluster
comprising 6 Dell 1650, 2 x 1300 MHz Pentium III, 2 GB
RAM with 4 Apple XServe, 2 x 1333 MHz G4, 2 GB RAM
and finally 6 Dell 1850, 2 x 2800 MHz Xeon EM64T, 2 GB
RAM. Interconnect is 1 Gbit Ethernet. Pentium III nodes are
running RedHat Linux 9, Xeon EM64T nodes are running
WhiteBox Linux 3 and G4 nodes are running MacOS 10.2.8.

DISCUSSION

Upon testing, structurally important RNA, such as seleno-
cysteine insertion sequence elements, precursor mRNAs,
type III hammerhead ribozymes and tRNA, all have a mark-
edly smaller number of k-locally optimal structures than that
of random RNA of the same dinucleotide frequency, for small
and moderate values of k. Since the free energy of k-locally
optimal secondary structures is generally closer to that of

the native state for small &, this suggests that structural
RNA has been optimized not only to have low folding energy
(25), but also to have relatively few potential kinetic traps.
This suggests that RNALOSS might be of use in designing
RNA sequences for rapid folding.
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