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ABSTRACT

TMB-Hunt is a program that uses amodified k-nearest
neighbour (k-NN) algorithm to classify protein
sequences as transmembrane b-barrel (TMB) or non-
TMB on the basis of whole sequence amino acid
composition. By including differentially weighted
amino acids, evolutionary information and by
calibrating the scoring, a discrimination accuracy
of 92.5% was achieved, as tested using a rigorous
cross-validation procedure. The TMB-Hunt web ser-
ver, available at www.bioinformatics.leeds.ac.uk/
betaBarrel, allows screening of up to 10 000 sequ-
ences in a single query and provides results and
key statistics in a simple colour coded format.

INTRODUCTION

Integral membrane proteins can be grouped into two distinct
structural classes: a-helical and b-barrel. Of these the
transmembrane b-barrel (TMB) proteins are the least well
characterized and have proven with high-resolution structures
only been for proteins spanning the outer membranes of Gram
�ve and acid-fast Gram +ve bacteria. It is also widely believed
that TMB proteins are present in the outer membranes of
chloroplasts and mitochondria, presumably owing to the
endosymbiotic theory. As with a-helical transmembrane
(AHTM) proteins, TMB proteins play both functionally
important and diverse roles. Currently >90 TMB protein struc-
tures can be found in the Protein Data Bank (PDB) (1), fitting
23 families in the transmembrane protein structure database
(2) and several folds of the SCOP hierarchy (3). From this
diversity, it seems likely that TMB proteins have multiple
evolutionary origins.

Unlike with the AHTM proteins, which can be easily dis-
tinguished on the basis of long stretches (>20 amino acids) of
hydrophobic residues, development of TMB protein discrim-
inators has proven difficult. This is due to a short and cryptic
inside–outside dyad repeat motif in which only alternate

residues are lipid facing and thus hydrophobic (4). Despite
these difficulties, recently published algorithms have led to
discrimination accuracies ranging from 80 to 90% (5–11) –
levels acceptable if analysing a particular sequence of interest.
Unfortunately, with these accuracy levels, problems will still
occur when screening entire genomes owing to the large
numbers of sequences tested, of which TMB proteins consti-
tute only a small fraction. There is, therefore, still a need for
improved algorithms.

TMB-Hunt uses whole sequence amino acid composition
to discriminate between TMB and non-TMB proteins. Whole
sequence amino acid composition has been applied to a
number of other protein classification problems, including
discrimination between intra- and extra-cellular proteins (12),
membrane protein type (13), subcellular location (14) and
structural class (15). However, although studies of TMB pro-
tein composition have been made, whole sequence amino acid
composition has not yet been applied to the discrimination
problem.

Because TMB-Hunt puts no emphasis on identification of
TM b-strands, we were not dependent on sequences with
resolved structures, thus allowing the use of training sets
that were larger and more representative than those used for
other predictors. TMB-Hunt is at least as accurate as other
predictors. However, we believe that its major advantage is
that, because it adopts a completely different approach from
those of other methods, it will prove valuable to the develop-
ment of consensus approaches that can more accurately be
applied to searching diverse proteomes for novel families of
candidate TMB proteins.

TRAINING AND TESTING SETS

Training sets for TMB, AHTM and non-transmembrane
(NTM) proteins were gathered from a number of manually
curated and published sources. The PDB accessions of 3159
NTM proteins were acquired from PDB-REPRDB via the
Papia database (16), and respective sequences were extracted.
Sequences of 189 AHTM proteins were obtained from datasets
available from the Sanger Centre (17). TMB proteins came
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from a number of sources, including 957 from Uniprot (18),
134 from the transporter classification (TC) database (19) and
35 from the PDB files of TMB proteins found in SCOP. The
TMB protein training set included a diverse range of proteins,
including atypical TMB-forming proteins, TolC (20), a-hemo-
lysin (21) and the mycobacterial porin MspA (22) in addition
to a number of eukaryotic proteins expressed in the mitochon-
dria and chloroplast.

Sequences of <120 residues were removed from training
sets. The remaining sequences were then grouped into
clusters using BLASTclust (ftp://ftp.ncbi.nih.gov/blast/)
with a sequence similarity threshold of 23%. Amino acid
composition frequency profiles were calculated for each of
these clusters using evolutionary information as described
below. In total, 1763 composition profiles were calculated
for NTM proteins, 132 for AHTM proteins and 196 for
TMB proteins.

ALGORITHM

The k-NN algorithm

TMB-Hunt classifies sequences using a k-nearest neighbour
(k-NN) algorithm, which is a simple instance-based learning
algorithm in which the class (i.e. TMB, AHTM or non-TMB)
of a query instance (a protein in this case) is predicted using
the class of its k-nearest neighbours within the training set.
The k-NN algorithm is thus a local approximation, focusing
on the neighbourhood of the query instance. One of its major
advantages is that it is robust to noisy data (provided a large
dataset), as taking the weighted average of the nearest neigh-
bours smoothes out isolated training examples.

Here the difference between two proteins, d2(xi, xj), is
measured using the standard Euclidean metric

d2 xi‚xj
� �

¼
Xn

r¼1

ar xið Þ � ar xj
� �� �2

‚

where ar(x) is the relative frequency occurrence of amino acid
r in protein x.

In the standard k-NN algorithm, a score S(xq, c) is assigned
to each possible class c using

S xq‚c
� �

¼
Xk

i¼1

d c‚c xið Þ½ �
�
d2 xq‚xi
� �

‚

where d(c1, c2) = 1 if the classes c1 and c2 are equal and zero
otherwise. Thus the score for each class is a sum of positive
contributions from each of the nearest neighbours from that
class, where the contribution is weighted according to the
reciprocal square distance between query instance and neigh-
bour, with closer neighbours contributing more strongly.
However, because we are interested in a binary classification
problem (i.e. TMB or non-TMB), we define a discrimination
score

D xq‚c
� �

¼ S xq‚c
� �

�
X

c0„c
S xq‚c

0� �
‚

which is calculated as the score for the TMB class minus the
scores for other classes.

Calibration and scoring

It is possible to convert discrimination scores into a convenient
log likelihood ratio (LLR),

R Dð Þ ¼ log P TMB jDð Þ=P other jDð Þð Þ‚

where P(TMB jD) denotes the probability of a TMB protein
obtaining a score of at least D and P(other jD) denotes the
probability of a protein from the other class obtaining a score
of D or greater. Negative values of R indicate a query protein
more likely to come from the other class, and positive values
indicate a protein more likely to come from the TMB class.

To take into account the multiple testing involved in screen-
ing large sequence sets, an expectancy value is also calculated
using E(D) = N P(other jD), where N indicates the number of
query sequences tested. This measure is related to the standard
Bonferroni correction and is directly analogous to the E-values
reported by the popular sequence search programs FASTA
(23) and BLAST (24).

Differential amino acid weightings

To account for the fact that some dimensions contribute
information more valuable to classification than others,
weights were applied to each of the dimensions used in
calculating Euclidean distances. Optimal weightings were
calculated with a genetic algorithm and were applied using
a modified Euclidean distance

d2 xi‚xj
� �

¼
Xn

r¼1

gr ar xið Þ � ar xj
� �� �2

‚

where gr is the weight applied to the rth dimension.

Inclusion of evolutionary information

Random noise in amino acid composition was reduced by the
inclusion of evolutionary information. Evolutionary informa-
tion was included by building a feature vector using both the
query sequence and a number of close homologues (as determ-
ined by a BLAST query against SwissProt with an E-value
threshold of 0.0001 and a maximum of 25 homologues) to
calculate an average amino acid composition vector for the
sequence and its close evolutionary relatives. A weighted
average composition was used, with more distant homologues
contributing more to the average (since the more distant
sequences contain more new information).

Table 1. Program performance using a variety of settings

Sensitivity
(%)

Positive
predicative
value (%)

Accuracy
(%)

Plain 83 86.5 85
Weighted amino acids 84 90.3 87.5
Evolutionary information 89 93.7 91.5
Evolutionary information +

weighted amino acids
91 93.8 92.5

range of different features.

The ability of TMB-Hunt to discriminate between BTM and NTM proteins,
tested using the ‘leave homologues out’ cross-validation method and with a
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Figure 1. Images of the TMB-Hunt web server query form and output. Results provide key statistics in a simple-to-understand colour-coded format, with a more
detailed output format available. Links are also provided to a number of prescreened genomes.
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PERFORMANCE

Performance was measured using a ‘leave homologues out’
cross-validation. This involved precomputing sequences
similar (with a BLAST E-value threshold <1) to each query
sequence and then removing these in turn from the training
set and seeing if whether algorithm could correctly reassign
them. We found that best performance occurred with k = 5,
although performance was generally insensitive to the precise
value of k, with similar performance shown for moderate
values >5. Table 1 summarizes performance with a variety
of settings. Using the ‘leave homologues out’ cross-validation,
without inclusion of evolutionary information and without
differential amino acid weightings, the program was able
to discriminate between TMB and NTM proteins with
85% accuracy, 83% sensitivity and 86.5% positive predictive
value (PPV). With inclusion of query sequence evolutionary
information and weighted amino acids, discrimination accur-
acy increased to 92.5%, with 91% sensitivity and 93.8% PPV.
Similar levels of accuracy were seen for discriminating
between TMB and AHTM proteins, although clearly there
are more specialized predictors available for this. These results
suggest that TMB-Hunt is more accurate than other predic-
tors (5–11), although direct comparison is difficult owing to
differences in algorithms, test methods and test/training set
size and compositions.

Using the cross-validation, TMB-Hunt correctly classified
all TMB proteins tested that have structures resolved, except
for OmpA (P02934) (25); however, OmpA is correctly
classified in a self-consistency test. Among these correctly
classified proteins were a number of TMB proteins with struc-
tures recently resolved, including NalP (Q8GKS5) (26), Tsx
(P22786) (27), FadL (P10384) (28) and BtuB (P06129) (29).
TMB-Hunt was also able to correctly classify a number of
atypical TMB-forming proteins including the mycobacterial
porin MspA (Q9RLP7) (22), TolC (P02930) (20) and a-hemo-
lysin (O68404) (21), as well as TMB proteins from locations
other than the Gram �ve bacterial outer membrane, for
example, the mitochondrial porin VDAC (Q60931) and plastid
porins Toc75 (Q43715) and OEP24 (O49929). TMB-Hunt
also positively classifies a number of controversial TMB
proteins, including secretin (P31700) and usher proteins
(P30130). The lowest-scoring protein in the TMB test set was
a 60 kDa cysteine-rich outer-membrane protein (P26758) (30).
However, the experimental evidence that this is a genuine
TMB protein is weak, and it has been suggested that it is
falsely annotated (9).

SCOP structural classes were compared with non-TMB
protein cross-validation results. TMB-Hunt was able to
correctly reject 92.9% of the all-a proteins, 85.6% of all-b,
92% of a/b, 91.8% of a + b, 96.5% of other classified and 95%
of those not classified within SCOP. Further analysis of the
all-b results revealed that the main weakness was with the all-b
proteins annotated as being secreted [e.g. sialidase (P37060),
anhydrosialidase (Q27701), candidapepsin (Q00663) and
galactose oxidase (Q01745)].

THE WEB SERVER

The web server (Figure 1) takes FASTA format sequences
as input and has the option for inclusion of evolutionary

information. The algorithm is very quick, capable of screening
>400 sequences in <1 min using a 2 Ghz Pentium processor.
On this basis, the web server allows up to 10 000 sequences in
a single query. Results are reported in a simple, user-friendly
colour-coded output with protein description line, log-
likelihood ratio and E-value statistics. A warning is given if
query sequence compositions are unusually distant to from of
the training instances. Such problems may occur when screen-
ing short peptides (e.g. <50 amino acids) or open reading
frames automatically predicted from a genome sequence.
A link is also available to a ‘full format’ result that includes
information on query sequence composition and individual-
neighbour Euclidean distances. The web server comes with
detailed instructions and also provides links to a number of
prescreened genomes.

CONCLUSION

TMB-Hunt is a program that uses whole sequence amino acid
composition to discriminate between TMB and non-TMB
proteins. Using rigorous cross-validation procedures, accuracy
levels were achieved that were higher than those previously
reported. To our knowledge, this is the first time such an
algorithm has been applied to the TMB protein discrimination
problem, and it is thus hoped that it will prove a valuable step
towards the development of consensus approaches. TMB-
Hunt is extremely quick, and so the web server allows screen-
ing of up to 10 000 sequences in a single query. Results and
key statistics are reported using a simple colour coding system.
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