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Abstract

Information generated from longitudinally-sampled microbial data has the poten-
tial to illuminate important aspects of development and progression for many
human conditions and diseases. Identifying microbial biomarkers and their
time-varying effects can not only advance our understanding of pathogenetic
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mechanisms, but also facilitate early diagnosis and guide optimal timing of inter-
ventions. However, longitudinal predictive modeling of highly noisy and dynamic
microbial data (e.g., metagenomics) poses analytical challenges. To overcome
these challenges, we introduce a robust and interpretable machine-learning-based
longitudinal microbiome analysis framework, LP-Micro, that encompasses: (i)
longitudinal microbial feature screening via a polynomial group lasso, (ii) disease
outcome prediction implemented via machine learning methods (e.g., XGBoost,
deep neural networks), and (iii) interpretable association testing between time
points, microbial features, and disease outcomes via permutation feature impor-
tance. We demonstrate in simulations that LP-Micro can not only identify
incident disease-related microbiome taxa but also offers improved prediction
accuracy compared to existing approaches. Applications of LP-Micro in two longi-
tudinal microbiome studies with clinical outcomes of childhood dental disease and
weight loss following bariatric surgery yield consistently high prediction accuracy.
The identified critical early predictive time points are informative and aligned
with clinical expectations.

Introduction

Microbial communities within the human body are highly dynamic, continuously
adapting in response to a complex interplay of host and environmental factors [1–
4]. These communities are essential for maintaining host health, modulating immune
function, and facilitating metabolic processes [5, 6]. Studies have revealed that the
composition and function of the microbiome can shift significantly over time, impacted
by dietary changes, antibiotic exposure, lifestyle alterations, and disease states [7–
9]. The temporal fluctuations in microbial communities highlight the microbiome’s
responsiveness and potential role as an indicator of health and disease [10].

The temporal development of the microbiome has therefore become an important
topic of microbiome research, and longitudinal human microbiome studies are becom-
ing increasingly available [4, 11, 12]. Capturing the dynamics of microbial communities
over time is not only informative from a microbiological standpoint – it can provide
insights into microbial events preceding disease development, progression, and treat-
ment outcomes. Such information is relevant to many human conditions and diseases
including cancers and inflammatory diseases [13–16]. The temporal development of the
microbiome in various niches across the lifecourse may reflect endpoints of complex
interactions between human behaviors (e.g., nutrition), innate biology, and the envi-
ronment [11, 17, 18]. Understanding longitudinal interactions between the microbiome
and the host is crucial for developing precise diagnoses, prognoses, and underlying
mechanisms. Consequently, predicting incident disease outcomes using microbiome
data is a compelling reason to invest efforts in the study of time-sensitive disease
biomarkers with the potential for clinical translation.

Leveraging longitudinal microbiome data to predict disease outcomes is an ambi-
tious goal, as it demands models that can account for the high-dimensional, sparse,
and often non-linear nature of microbiome datasets. Traditional machine learning
(ML) algorithms, such as support vector machine (SVM, [19, 20]), random forest (RF,
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[21]), and XGBoost [22], have shown promise in cross-sectional studies by identifying
microbial markers of health and disease states. [23–25]. Meanwhile, deep learning (DL)
methods, including recurrent neural networks (RNN, [26]), long short-term memory
networks (LSTM, [27]), and gated recurrent units (GRU, [28]), offer potential by mod-
eling these temporal relationships and capturing the changing microbial landscape
with each time point.

Despite recent advances in predictive modeling, a key challenge in leveraging micro-
biome data for disease prediction lies in selecting the most informative microbial taxa
as inputs, especially in longitudinal studies where data complexity grows. Longitudi-
nal microbiome datasets are notoriously sparse and high-dimensional, often containing
hundreds or thousands of microbial taxa, yet they are typically constrained by small
sample sizes [29]. Standard feature screening, such as least absolute shrinkage and
selection operator (lasso, [30, 31]) and sparse partial least squares (sPLS, [32]), gener-
ally assume linear microbial effects and may therefore miss non-linear microbial signals.
Moreover, these traditional methods struggle in longitudinal setups, where preserv-
ing the continuity of microbial changes across time points is essential for capturing
the trajectory of microbial effects. Methods like lasso and sPLS may select micro-
bial features at isolated time points, often breaking the longitudinal data structure
and hindering analysis of microbial dynamics over time. Advanced feature selection
for non-linear microbial effects and longitudinal microbiome data is needed to achieve
improved prediction power and capture the time-varying pattern.

Another key research question lies in identifying the time intervals during which
signals from the microbial community are strongest for predicting disease onset or
progression, especially when detailed mechanistic information is unavailable. This
question can be answered by examining individual time points or by aggregating
insights over multiple intervals. Suppose that the longitudinal microbial data are col-
lected at times t1, ..., ti, ..., tq, and the outcome (i.e., disease endpoint) is observed at
a later time point tr. One approach is to use the longitudinal data as a reference to
identify the most important single time point for prediction, as the visit-wise predic-
tion, by using microbiome data at each time point ti as predictors independent of
other time points. The other approach is to identify the earliest time points where
predictive information is sufficient, beyond which additional time points may not fur-
ther improve performance, as the cumulative prediction, by using the microbiome data
corresponding to time points from t1 to ti, up to tq. While visit-wise approaches pro-
vide snapshots of microbial states at discrete intervals, cumulative prediction enables
a more holistic understanding of the microbial trajectory leading up to a health event.

In most applied settings—including translational research, biomarker discovery, or
clinical practice—the interpretability of predictive models is crucial. The key objective
is to understand how individual microbiome taxa interacts with the disease progres-
sion over time. To enable interpretable feature identification, common ML/DL-based
methods, such as SHAP values [33–35], provide insights into feature importance but
are less computationally efficient and lack formal significance testing. Alternatively,
methods with formal statistical testing such as knockoffs [36, 37] and hold-out ran-
domized tests (HRT, [38]) involve sampling from feature distributions with parametric
covariate assumptions that are not suitable for highly skewed, zero-inflated, and high
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dimensional microbial data [29, 39]. Recent methods that sample from feature permu-
tations [40, 41], such as PermFit [42] which is an ML/DL-based feature importance test
for high-dimensional data, are superior in accommodating the skewed distribution of
microbial data and avoid strong parametric assumptions. While enjoying the flexibil-
ity of these non-parametric tests, they cannot be directly applied to high-dimensional
longitudinal data due to their reliance on the performance of ML models, which can
be unstable for interpretation in this case.

Here, we introduce LP-Micro, i.e., Longitudinal Prediction Microbiome model, a
comprehensive framework that integrates microbial feature screening, predictive mod-
eling, and biomarker identification specifically tailored for longitudinal microbiome
data. LP-Micro incorporates DL methods with ensemble learning [43, 44] alongside
traditional ML models to build a predictive model well-suited for longitudinal micro-
biome data. In that, we propose the use of polynomial group lasso for feature selection
in LP-Micro. LP-Micro first uses a polynomial spline to approximate the non-linear
additive effects [45–47] and then groups the polynomial effects of a microbial feature
(e.g., one taxon) across all time points (e.g., study visits) as one group [48–51], ensur-
ing simultaneous selection of all features in the same group. Effectively, polynomial
group lasso enables the screening of complete trajectories of informative microbial
features (e.g., taxa) for downstream analyses. To allow for interpretable pre-screened
features previously selected by group lasso, we propose to generalize PermFit [42] for
longitudinal data where group testing is needed, by extending the original inference
from testing a single feature to testing a group of features. This step also provides
p-values for further interpretation, which the standard ML/DL methods can’t pro-
vide. LP-Micro results in superior prediction accuracy in both simulation and in two
longitudinal clinical microbiome datasets, one for early childhood caries (ECC) and
the second for weight loss following Bariatric Surgery (BS). In this paper, we demon-
strate that the LP-Micro framework is useful for the identification of critical time
points and microbial features. LP-Micro can be generalized for use with longitudi-
nal high-dimensional data to jointly predict later outcomes and generate interpretable
predictive features.

Results

Overview of LP-Micro

An overview of the analysis framework in LP-Micro is presented in Figure 1. Briefly,
in the context of longitudinal studies, LP-Micro leverages microbial data from early
time points to predict later outcomes, i.e., incident health and disease statuses. As
mentioned above, with LP-Micro we are poised to achieve cumulative prediction using
longitudinal microbiome data.

There are three embedded steps in the development of LP-Micro. Firstly, to reduce
the high data dimensionality, LP-Micro screens important microbial taxa with polyno-
mial group lasso. To select a candidate set of most disease-predictive taxa, we extend
group lasso to polynomial group lasso, allowing for nonlinear relationships between
taxa and outcomes. According to previous work [46], feature groups can be defined by
including one taxon derived from the feature-wise natural cubic spline method at each
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Fig. 1: Flow chart of LP-Micro. The LP-Micro framework consists of three steps:
(a) Pre-screening of microbial taxa using polynomial group lasso. (b) Cumulatively
training and ensembling ML algorithms. (c) Prediction of the clinical outcome and
interpretation of the contribution of microbiome taxa and time points.

time point. Each group of features represents a taxon at one time point, which will be
selected or discarded by its predictive ability. For cumulative prediction, we gather the
above polynomial variables at each time point so that this one group of features repre-
sents the taxon in both nonlinear and longitudinal terms. In other words, each group
of features represents a taxon across multiple time points. The selected group indicates
that the abundance trajectory of the taxon is predictive of later disease outcomes.

Secondly, LP-Micro leverages the screened subset of microbial taxa to predict the
clinical endpoints of interest. In this step, we deploy a variety of ML models: lasso,
XGBoost, RF, SVM, as well as four deep learning architectures: fully-connected neu-
ral networks (NN), LSTM, GRU, and CNN-GRU. Importantly, we employ ensemble
learning [43] to stabilize the performance of these deep learning methods. The effec-
tiveness of these models is evaluated on a testing dataset, with raw models (i.e., those
without feature screening and ensemble enhancements) serving as benchmarks for
comparison. Using LP-micro, the optimal ML prediction model and the most relevant
time points or periods are identified and reported.

Thirdly for interpretation, upon identifying the best prediction models, LP-Micro
finally calculates permutation importance scores and corresponding p-values to quan-
tify individual feature (i.e., microbial taxon) effects. Additionally, it assesses feature
importance by grouping data in two ways: (i) by aggregating all time points for each
taxon to determine taxon-wise importance across the study, and (ii) by aggregating all
selected taxa at a single time point to evaluate the importance of specific time points
(e.g., study visits) for so-called visit-wise importance score. To clarify, the visit-wise
importance score here in LP-Micro is based on a likelihood function allowing all time
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points of data for cumulative prediction (details in Methods), and it does not neces-
sarily correspond to visit-wise prediction, wherein data from only one time point are
used. The visit-wise importance score in LP-Micro suggests which time points shall
be least missed to achieve the best cumulative prediction results, instead of answer-
ing which single time point is most important. Therefore, this approach enables the
reporting of both the most disease-relevant microbial taxa and the most critical time
points in a period of time for predicting host development or disease progression.

In summary, compared to existing ML methods for disease prediction, LP-Micro
offers three key advantages: (i) effective utilization of longitudinal microbial data; (ii)
rigorous feature screening; (iii) generation of p-values for both temporal and single time
point microbial effects, as well as the importance of time. In this paper, we evaluate the
performance of LP-Micro through comprehensive simulation studies and application
to two longitudinal clinical datasets: childhood dental disease (early childhood caries,
ECC) data generated in the VicGen cohort study [52, 53] and weight loss data after
bariatric surgery (BS) [54].

LP-Micro performance evaluation in simulations

We evaluated the performance of LP-Micro in specifically simulated longitudinal
microbiome data. Because sample sizes of this type of data are typically modest com-
pared to other scenarios where machine learning is commonly used, we simulated
microbiome data including 100-500 taxa from 120 participants measured at five time
points. All simulated study participants have data collected at the same five time
points. We generated five causal features (i.e., microbial taxa) that are associated with
the outcome (i.e., disease), among totals of 100, 200, or 500 simulated microbial taxa,
thus introducing three levels of signal sparsity (i.e., 5%, 2.5%, 1%). A continuous dis-
ease outcome was simulated. To incorporate time-varying microbial effects, one of the
five causal taxa is associated with disease across all five visits, while the other four are
only associated with disease in the last two visits. Consequently, the outcome variable
is simulated based on a model including these 13 total microbial covariates (i.e., fea-
tures in the prediction model). The identification of the correct causal taxa/covariates
among a varying number of total simulated taxa is therefore the evaluation of feature-
wise importance detection. The details of the complex, time-varying effects inspired
by real data are described in the Methods section.

In this simulation, we attempt to predict the disease outcome using all time points.
Although our focus is on cumulative prediction, evaluating predictions across all time
points in this simulation can reflect cumulative prediction evaluations at multiple
time points in real-world scenarios. To evaluate the effectiveness of LP-Micro under
these simulated scenarios, we assess the pipeline’s performance based on three criteria
that correspond to the three steps in LP-Micro: (i) pre-screening efficacy: the number
of causal covariates selected by the pre-screening using polynomial group lasso, (ii)
prediction accuracy: the prediction error of ML models, (iii) feature importance: the
effect importance score assigned to the causal microbial features.

We begin by comparing the pre-screening efficacy of polynomial group lasso with
standard lasso and sPLS [32, 55] considering the number of selected causal covariates.
The results indicate that LP-Micro provides a refined feature set of microbial taxa
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Fig. 2: Feature importance in simulations. (a) Microbial feature importance
at each time point. The x-axis represents five causal microbial taxa, and the y-
axis represents each of five visits. Each grid represents the feature importance of the
microbial taxa during the corresponding visit row. (b) Overall microbial feature
importance across time points. The x-axis consists of five causal microbial taxa
and the set of non-causal microbial taxa. The y-axis represents the taxon-wise impor-
tance across five visits, obtained by aggregating importance scores in (a). Here, p is
the total number of taxa in each simulation.

for downstream analysis (Table 1). Specifically, the pre-screening step of LP-Micro
using polynomial group lasso selects fewer than 50 variables and maintains on average
more than 10 important variables (i.e., out of 13 with causal effects). Importantly, the
number of correctly selected causal variables remains stable while the data dimensions
increase (Table 1). In contrast, when faced with 500 simulated microbial taxa, the
average number of causal covariates selected by the standard lasso is as low as 5.3.
Similarly, sPLS, previously used to select important microbial taxa contributing to
the temporal development of ECC [12], fails to select the majority of causal microbial
variables when the effect is nonlinear and complex. The average number of selected
causal variables is 5.50 in the context of 500 simulated microbial taxa.

Next, we compare the prediction performance of LP-Micro ML models to (i) corre-
sponding benchmark models of XGBoost, RF, SVM, and NN with complete features
as input, (ii) models with screened input features by sPLS, using mean squared error
(MSE) and Pearson correlation (PCC) between predicted and observed outcomes as
metrics. As shown in Table 1, all other benchmarked ML models have larger predic-
tion errors than lasso regression. However, with LP-Micro screening and ensembling,
using a simple NN results in prediction MSE as low as 0.61, outperforming other
methods. XGBoost, RF, and SVM also achieve more accurate prediction performances
compared to their corresponding benchmarked models in this simulation setting. In
comparison, while sPLS also improves the performance of ML models by reducing
covariate complexity, the extent of improvement from sPLS is inferior to that of LP-
Micro. For example, when faced with the scenario of 500 simulated microbial taxa,
sPLS improves the prediction PCC of RF by only 1%, whereas LP-Micro increases
it by 18%. We carried out similar comparisons for other NN architectures, including
LSTM, GRU, and CNN-GRU (Supplementary Table 1) demonstrating that none of
the advanced architectures result in significant improvement over the simple NN. Some
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architectures, such as LSTM, even experience overfitting, wherein the predictive error
on the validation data increases as training progresses.

Lastly, we compare feature importance scores of LP-Micro models to those obtained
from benchmark models using PermFit. Recall that the data-generating process
assumed that one microbial taxon has a consistent effect over all five time points, four
microbial taxa have effects only in the last two time points, and the remaining taxa
are not associated with the disease outcome. LP-Micro accurately identified the pat-
terns of longitudinal microbial effects on the outcome, highlighting the importance of
the fourth and fifth visits (Figure 2a). Moreover, it detected the one microbial taxon
with the simulated constant temporal effect starting from the first visit. In contrast,
PermFit based on RF, SVM and NNs missed the temporal microbial effects. Although
PermFit based on XGBoost correctly captured the pattern of time-varying microbial
effects, its importance scores were lower than those from LP-Micro, indicating the effi-
ciency benefit brought about by feature screening. In terms of microbial biomarker
identification, the importance scores from LP-Micro align well with the simulation
settings, assigning high scores to the causal microbial taxa (Figure 2b). Conversely,
PermFit failed to identify those causal microbial taxa and instead highlighted non-
causal features as important. For further comparison, we implemented HRT (which
samples the microbial distributions using Gaussian distributions instead of permu-
tations) as a means of deriving feature importance scores from LP-Micro and the
benchmark models. The inferior performance of HRT compared to both PermFit and
LP-Micro, underscored that the Gaussian sampling used by HRT is unsuitable for
microbial data as HRT has much worse performance than LP-Micro to identify the
true signals of important predictive features (Supplementary Figure 1).

Application of LP-Micro to study early childhood caries
(ECC) in the VicGen cohort study

The VicGen cohort consists of compositional microbial profiles generated for 134 chil-
dren at six time points, with a binary disease outcome indicating the presence of dental
caries in early childhood (ECC, i.e., cavities in primary teeth) measured via a clinical
examination at age five [12], defined as having an International Caries Detection and
Assessment System (ICDAS) score 3 or above [56]. This is the threshold of macroscopic
enamel loss, i.e., a frank cavity which is an unambiguous and irreversible stage of den-
tal caries, likely to be clinically consequential and commonly used in observational
and experimental studies of childhood dental disease [57, 58]. The six time points of
microbiome collection range from one or two months of age up to five years old and
are generally matched across this cohort in this study (Figure 3a). We aim to predict
ECC at age 5 using the longitudinal microbiome data of the first six time points up
to 48 months of age. To address the importance of longitudinal microbial profiles in
prediction, we reshape this aim as a cumulative prediction to understand up to which
time points before 48 months old, the highest prediction accuracy and area under
the curve (AUC) can be achieved. Because the ECC outcome at year five is known,
multiple ML models in the prediction step of LP-Micro, i.e., RF, XGBoost, NN, and
SVM, can be applied with multiple options at the feature selection step, i.e., baseline
ML methods with either no specific feature selection, sPLS, PermFit, or group lasso
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Fig. 3: Timeline of longitudinal microbiome data collection in (a) the Vic-
Gen cohort investigating ECC, (b) the weight loss study following BS. The
y-axis represents all available study participants from the two studies (n = 134 and
n = 120, respectively), and the x-axis represents the time when their saliva or fecal
samples were collected and analyzed. In the VicGen cohort, the exact timing of sub-
jects’ first visits is not available, though the range of first visit times is detailed in the
Methods section. Additionally, for 10 subjects in the VicGen cohort, the timeline is
not shown due to missing recorded visit times.

in LP-Micro. We can also use the VicGen Study and the next weight change study to
compare the performance of these models with varying feature selection options. We
still include a simple model lasso for both feature selection and prediction as a more
traditional reference model for comparison.

The analysis for the VicGen cohort can be summarized as follows: First, we com-
pared the prediction performance of the five models lasso, RF, XGBoost, NN, and
SVM within LP-Micro, as well as to the five models across different feature selection
options for evaluation of feature selection procedure (Figure 4a). Second, we used the
two best performance ML models and the reference lasso model to conduct visit-wise
prediction directly by using these existing models on each of the single time points,
cumulative prediction by directly using these existing models on stacked data due
to multiple time points, and the cumulative prediction using LP-Micro (Figure 5a).
Third, we calculated the permutation feature importance scores for Operational Tax-
onomic Units (OTUs, equivalent to taxa, and mostly bacterial species in this study)
and time points using the selected models (Figure 5b, 6). Essentially, this step quan-
tifies the contribution of each microbial taxon at each time point to the cumulative
prediction of ECC measured at age five, enhancing our understanding of their roles in
ECC development during the early stage of life. Overall, the p-values of importance
scores (Figure 6a) at variable-wise, visit-wise (Figure 5b) and taxon-wise (Figure 6b)
were generated based on the full length of time points from first visit to the last visit
at year five. We choose to use p-values of feature important scores instead of the scores
in real data for interpretation because it is convenient to use p-values as a cutoff.
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Fig. 4: Prediction results to compare feature screen procedures for (a)
the VicGen cohort investigating ECC, (b) the weight loss study following
BS. Three sets of features are compared including first, the full longitudinal features
combined by p taxa and q time points, second, the pre-screened features either by
sPLS or by group lasso we developed in LP-Micro, and third, the selected features from
the second sets further being narrowed down using the original PermFit. Selection
of features in PermFit is based on the p-values of the permutation-based important
scores per feature, so that the feature selection step and the interpretation step are
the same step in PermFit. In the comparison, baseline models use full longitudinal
features as input, while sPLS(-DA) and LP-Micro models use both the second and
the third sets of features. In plots of LP-Micro, columns of PermFit-NN, PermFit-RF,
PermFit-SVM, and PermFit-XGB further retrain LP-Micro models using only the
corresponding second sets of features in LP-Micro with PermFit-generated p-values
smaller than 0.1 so that the third set is a subset of the second set of features. Similarly,
in plots of sPLS, columns of PermFit-Models also use only the corresponding second
sets of features in sPLS with PermFit-generated p-values smaller than 0.1. In the
VicGen study (a), only longitudinal microbial features were used for prediction, with
no inclusion of demographic or clinical variables. Age was excluded as all participants
were of similar age at enrollment. In contrast, for the weight loss study (b), both
microbial features and five demographic variables were used for prediction, as detailed
in Table 2.

Feature Screening in LP-Micro improves ECC prediction.

To validate taxa screening procedure by LP-Micro in prediction results, we compare
the LP-Micro ML models with (i) the corresponding baseline models using full fea-
tures as combination of taxa and time points, and (ii) the models using features
screened by sPLS discriminative analysis (sPLS-DA). As shown in Figure 4a, LP-Micro
improves the performance of most baseline models in terms of accuracy and AUC,
with LP-Micro RF and LP-Micro XGBoost being top performers. XGB and RF have
higher accuracy and larger AUC overall. Compared to other prediction frameworks,
the performance of ML models with sPLS-DA screening is inferior to the correspond-
ing algorithms of LP-Micro, indicating that LP-Micro selects more reliable microbial
taxa for ECC prediction. Interestingly the baseline XGBoost also is among the best
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Fig. 5: Results of visit-wise prediction, cumulative prediction, and LP-
Micro. To accomplish visit-wise prediction and cumulative prediction, ML algorithms
are trained using all microbial features. LP-Micro refines the cumulative prediction
by microbial feature pre-screening and model ensembling. (a) Prediction accuracy
and AUC for ECC in the VicGen cohort. The trajectory is smoothened using
local polynomial regression. (b) Visit-wise microbial importance scores calcu-
lated in LP-Micro for cumulative prediction of ECC using microbiome data
up to the 6th visit. (c) Prediction MSE and PCC for BMI change in the
weight loss cohort. (d) Visit-wise microbial p-values of importance scores
calculated in LP-Micro for cumulative prediction of BMI change predic-
tion using microbiome data up to 12 months after BS. In (b) and (d), log is
20 based. In the weight loss study (d), five covariates, i.e., height, sex, race, age, and
surgery type (together as clinical in x-axis) with details in Table 2, were included in the
prediction model. Pre-surgery in x-axis of (d) is the microbiome data before surgery.

prediction model without our specific feature selection, however the feature impor-
tance scores in XGBoost, e.g., gain, do not have the corresponding p-values, the test
for prediction is not at the level of grouped features for longitudinal data (e.g., mul-
tiple time points in one taxon) so that XGBoost provides less model interpretation in
high-dimensional longitudinal prediction comparing to LP-Micro.

Furthermore, to validate the feature interpretation in LP-Micro, we assess the
impact on model performance after selecting significant features with small p-values,
following the original PermFit method [42]. A minimal performance change after
feature selection indicates reliable feature interpretation, as most of the predictive
information remains within the selected significant features. Specifically, we chose to
retrain sPLS-DA models and LP-Micro models using significant features with p-values
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<0.1 in PermFit, denoting them as PermFit-ML models. Due to their high computa-
tional cost for high-dimensional data, PermFit models for the baseline algorithms failed
to converge and are therefore unavailable. In LP-Micro and sPLS, the performance of
PermFit-XGB and PermFit-RF, as shown in Figure 4a, remains either comparable or
slightly lower to their corresponding models without PermFit. The stable performance
upon feature selection suggests that the variance of ECC can mostly be explained by
the microbial features identified by LP-Micro.

Longitudinal microbial data boost ECC prediction.

As the most important figure in this study, the prediction trajectory illustrates that
the incorporation of longitudinal microbial features improves the prediction accuracy
(Figure 5a). Although the improvement is limited at the initial visits, possibly due
to weak microbial signals (i.e., the primary dentition may not be complete until the
age of 2.5-3.0 years and the oral microbiome is still developing), incorporating previ-
ous microbial profiles improves the prediction accuracy starting at the 5th visit (39 ±
3.2 months-of-age). By the 6th visit (48.6 ± 1.6 months-of-age), the prediction accu-
racy of XGBoost incorporating information from previous visits is 74.0%, while the
accuracy of visit-wise prediction is only 56.6% (Figure 5a). In contrast, RF, which
tends to be more sensitive to high-dimensional data and prone to over-fitting, shows
a more modest improvement. When past microbial profiles are concatenated directly,
the accuracy increases from 57.0% to 61.3%. This smaller gain is likely due to the
additional complexity introduced by the longitudinal data. Nevertheless, the feature
selection process of LP-Micro mitigates this over-fitting issue, allowing RF to leverage
the enriched information from longitudinal data more effectively. As a result, by the
6th visit, RF achieves a prediction accuracy of 70.0%.

LP-Micro provides insight to early changes in the oral microbiome that are predic-
tive of later ECC development and may be reflective of early, sub-clinical changes in
the oral ecology that could inform disease prevention, timely intervention, or disease
management strategies. By the 5th visit at 39 months-of-age, cavities were clinically
detectable in only 12 out of 65 children who were later diagnosed with ECC, with the
remaining 53 children diagnosed at later stages, at 48 or 60 months of age. However,
LP-Micro achieved a 70.0% accuracy in predicting the future development of cavities
at this early stage (Figure 5a), suggesting that the salivary microbiome may be indica-
tive of the disease process two years before frank cavities are macroscopically evident
on children’s teeth.

The prediction curve of LP-Micro identified age three (i.e., the 39-month visit) as
a critical time point for ECC prognosis using participating children’s salivary micro-
biome. As shown in Figure 5a, RF and XGBoost achieved the highest accuracy of
visit-wise predictions at the 5th visit. The accuracy of longitudinal prediction substan-
tially increases with the inclusion of microbiome information obtained at the 5th visit.
Said differently, the 5th visit information boosts the prediction accuracy for ECC. The
observation is consistent with previous findings reported from the same cohort, sug-
gesting that the microbiome information from the initial visits is less associated with
ECC than those of later visits [12]. In contrast, we noticed that baseline models like
lasso do not produce desirable patterns. Group permutation tests further reinforce
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the observation by greater feature importance scores for microbiome profiles collected
around 39 months-of-age compared to other visits. The microbial signal for ECC is the
strongest at 39 months-of-age (Figure 5b). When the statistical significance level of the
visit-wise importance scores (y axis in Figure 5b) calculated for cumulative prediction
in LP-Micro using data from 1st time point to the 6th visit) is set to 0.05, RF model
identifies that microbiome profiles from the 3rd to the 6th visits are significant, while
XGBoost only identifies the 5th visit as the significant time point. Besides address-
ing the importance of microbial profiles from later stages, both RF and XGBoost also
indicate that the microbial information before the 5th visit is increasingly important,
whereas information from the 6th visit for ECC prediction is less important than the
5th visit. The trend in visit importance score implies that microbial effects on ECC
are time-varying, potentially with a peak of effect size between the 5th and the 6th
visits, providing additional insights compared to earlier reports [12].

Interpretation of the identified microbial taxa is aligned with
empirical evidence.

The feature-wise permutation importance score identified significant microbial OTUs
(i.e., bacterial taxa) associated with ECC development and highlighted Streptococ-
cus mutans as the most predictive taxon (Figure 6). This is consistent with previous
studies showing that S. mutans is highly correlated with dental caries [59–61]. Fur-
thermore, we find that S. mutans begins to associate with ECC as early as at the 39
months-of-age visit, while the association is not significant earlier. Specifically, the p-
values for S. mutans at the 5 and 6th visits from RF and XGBoost are smaller than
0.05. In contrast, the abundance level of S. mutans collected from other visits is less
correlated with ECC. Our results also show that S. mutans is more predictive at 39
months-of-age (5th visit) than at the subsequent time point. The p-value of S. mutans
at the 6th visit from RF is only slightly smaller than 0.05, while the p-value of the
same OTU at the 5th visit is smaller than 10−5. This finding also helps explain the
leap of longitudinal prediction trajectory at the 5th visit, implying that the new infor-
mation brought by S. mutans at that time is crucial for timely disease diagnosis. This
observation is also aligned with the expectation that microbiome changes should be
detectable before the onset of clinically manifested disease.

Aside from S. mutans, RF and XGBoost also identify Streptococcus vestibularis,
Scardovia wiggsiae, Pseudomonas fluorescens, Porphyromonas pasteri, Peptoniphilus
indolicus, Pedobacter oral taxon 321, Megasphaera micronuciformis, Lachnospiraceae,
and Haemophilus parainfluenzae as important predictors of ECC, and novel asso-
ciations will need to be replicated and experimentally validated in future studies.
Their longitudinal dynamics and temporal associations with ECC can be found in
Supplementary Figure 2-4.

Application of LP-Micro to study weight loss after Bariatric
Surgery (BS)

This cohort study collected microbial data (1533 genera) and body mass index (BMI)
measurements from 144 adult participants before their BS (pre-surgery as time 0) and
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Fig. 6: Feature importance for the ECC data. The y-axis consists of microbial
taxa selected by LP-Micro. The p-value is computed on RF and XGBoost using micro-
bial features up to the 6th visit. (a) Microbial importance for ECC prediction
at each visit. Each grid represents the significance of the microbial taxon during the
corresponding visit. Darker color indicates higher importance. (b) Overall micro-
bial importance across all visits for ECC prediction. The x-axis represents the
negative log10 p-values for each taxon in terms of their longitudinal effects on ECC. In
(b), taxa are defined as significant if their permutation important scores have p-values
smaller than 0.1.

1, 6, 12, 18 and 24 months after surgery. Participants’ microbial profiles in the BS
study were characterized through shotgun whole genome sequencing for time-series
metagenomics data of 120 subjects (n = 120, [62]). Demographic variables, including
participants’ height, sex, race, age, and surgery type are also available pre-surgery.
Subjects have practically the same timeline of microbial sample collection (see Figure
3b).

BMI shows no significant change between 12 months to 24 months and more than
50% of participants were lost to follow up after month 12. Therefore, we only investi-
gated prediction of BMI change between the 12th month post-surgery to that before
surgery, using pre-existing demographic and clinical characteristics, such as the surgery
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Variable Number Proportion (%) Mean (± s.d.)

BMI 84
Pre-surgery 45.64 (± 7.20)
1 month 40.27 (± 6.65)
6 months 34.28 (± 6.16)
12 months 32.71 (± 6.32)

Age (years) 84 42.63 (± 10.18)
Height (inches) 84 66.2 (± 3.36)
Sex

Male 13 15.48
Female 71 82.80

Race/Ethnicity
Caucasian 60 71.43
Black 19 22.62
Hispanic 2 2.38
Other 3 3.57

Surgery
RYGB 54 64.29
SG 30 35.71

Table 2: Demographic and clinical characteristics of
patients included in the weight change sub-cohort for
our analysis (n=84).

type of BS, and longitudinal (0, 1, 6, 12 months) microbial profiles. Consequently, we
included 84 individuals with longitudinal microbial data and no missing time points
from pre-surgery to 12 months post-surgery, a total of four time points. The descriptive
statistics of their demographic variables are summarized in Table 2.

Feature Screening in LP-Micro improves predictability of weight
loss.

The genera selected by LP-Micro maintain most of the correlation with weight loss
and lead to best prediction performance compared to baseline and models with
sPLS screening (Figure 4b). LP-Micro NN outperforms all other predictive models.
Moreover, LP-Micro enhances the performance of all tested ML models in terms of
prediction MSE and PCC. In comparison, the performance of NN, XGBoost, and
Lasso with sPLS is inferior to LP-Micro. These findings imply that LP-Micro selects
reliable microbial taxa for weight prediction and feature interpretation. Furthermore,
the performance of PermFit ML models, as shown in Figure 4b, is comparable to the
baseline when using only significant features as predictors. The stable performance
upon feature selection implies that obesity-related information is concentrated in the
microbial genera selected by LP-Micro, resulting in reliable interpretation.

Leveraging longitudinal microbial data improves prediction
accuracy of weight change after BS.

Incorporating microbial features obtained at multiple visits instead of only from one
visit boosts the performance of ML models. This implies that earlier levels of microbial
abundance are reflective and thus predictive of subsequent BMI changes. As shown
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in Figure 5c, the prediction of LP-Micro, which utilizes information from multiple
visits, is more accurate than the visit-wise prediction in terms of MSE and PCC. How-
ever, we observe that the advantage of using longitudinal microbiome data diminishes
when temporal microbial abundance is directly aggregated for training. For example,
both NN and SVM show a marked decline in performance when longitudinal data is
included. Their cumulative prediction accuracy does not significantly improve com-
pared to visit-specific predictions. For instance, SVM achieves its highest accuracy
(PCC > 0.4) using microbiome data from six months post-surgery (see the visit-
specific plot in Figure 5c), whereas its cumulative prediction PCC remains below 0.35
(see the cumulative plot in Figure 5c). Additionally, the accuracy of both NN and SVM
is consistently lower than that of lasso, for both visit-wise and cumulative predictions.
In contrast, LP-Micro shows significant improvements in cumulative predictions that
account for time-varying microbiome effects, delivering better results than visit-wise
predictions. For example, at 6 and 12 months post-surgery, the prediction PCC of NN
exceeds 0.55, outperforming other models. Interestingly, lasso performs best for early
predictions of one-year BMI changes after BS, achieving the highest accuracy among
models using only microbial abundance from one month post-surgery. However, its
performance becomes inferior to NN and SVM as more time points are included. This
aligns with our expectation, as LP-Micro has too few time points to be effective in
one month after BS. Nevertheless, it still enhances the performance of NN and SVM
in this case. Beyond the one-month mark, LP-Micro NN and SVM become stronger
predictors of weight loss.

The pattern of prediction curves in Figure 5c suggests that microbial features after
(versus before) surgery may be more important in predicting weight change. In the
visit-wise prediction, lasso achieves its lowest prediction errors using information at
one month after surgery, while NN and SVM achieve their best performance with
microbial data collected at six months after surgery, suggesting that the gut microbial
dynamics right after surgery may be most associated with the weight loss effect of
BS. In contrast, the microbial profiles collected before surgery and 12 months after
surgery, are shown to be less important in terms of accuracy, in all three prediction
approaches. The group permutation test of LP-Micro further affirms our interpretation
of time point importance (Figure 5d). Both SVM and NN identify clinical variables
(including surgery type, race, gender, and age) and gut microbiome measured at 1
and 6 months after BS as important signs of future weight loss or weight gain, while
later microbial profiles are less correlated with the weight change. Specifically, we find
that pre-surgery clinical variables and microbial profiles from the first two visits post-
surgery have significant effects on later weight gains (p ≤ 0.05), while microbiome
information collected at the last visit is not important. Additionally, we re-conducted
the analysis by removing the pre-surgery microbial features, and the results are similar
to the analysis on the complete data as summarized in Supplementary Figures 5-7.

LP-Micro provides insight in the temporal development of weight
change after BS.

According to permutation importance scores, age is one of the most important fac-
tors influencing the recurrence of obesity one year after BS (Figure 7). In contrast,
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Fig. 7: Feature importance for the weight loss data. The y-axis consists of
microbiome genera selected by LP-Micro, and p-values are computed by PermFit. (a)
Each grid represents the significance of the microbiome at each corresponding visit.
Darker colors indicate higher importance. (b) The x-axis represents the log10 p-values
for each taxon in terms of their longitudinal effects on BMI change.

gender and height appear not to be predictive of BS outcomes. This finding is similar
to previous reports [63] showing that weight change after BS varies by age, regardless
of gender and surgery type. Other demographic characteristics such as race are also
significantly associated with patients’ BMI change. Furthermore, among the microbial
genera selected by group lasso, Acidilobus, Cloacibacterium, Cobetia, Escherichia, Lito-
rilituus, Schaalia, Sulferhydrogenibium, Thermosulfuriphilus, and Turicibacter showed
significant effects in both NN and SVM in predicting patients’ weight gain (Figure
7b). Interestingly, as suggested by Figure 7a, we find that the effects of Cobetia and
Schaalia are more significant before surgery or in one month after surgery, suggest-
ing the potential of these two genera as early-stage biomarkers for weight loss. The
longitudinal dynamics of those features and their time-varying association with post-
surgery BMI change are summarized in Supplementary Figure 8-9. Notably, we find
the correlation between most gut microbial taxa and the weight change non-linear.
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Discussion

LP-Micro leverages polynomial group lasso, ML algorithms and permutation impor-
tance tests to improve incident outcome (e.g., future disease) prediction using longi-
tudinal microbial data. Compared to other ML/DL algorithms, LP-Micro addresses
the challenges of leveraging the high-dimensional and longitudinal microbiome data
for disease prediction or early detection. As shown by our simulation, popular ML/DL
algorithms such as LSTM and its variants tend to overfit microbial data, result-
ing in poor prediction accuracy. Conversely, by introducing feature pre-screening and
ensembling techniques, we demonstrate that ML/DL algorithms become more power-
ful in capturing the complicated time-varying association between microbial features
and disease outcomes. Additionally, LP-Micro provides more interpretable association
results in this context. Compared to the traditional generalized linear models, the ML
algorithms in LP-Micro avoid making parametric assumptions regarding microbiome-
disease associations so that it typically provides higher prediction accuracy and better
flexibility to be suitable the data distribution and the non-linear association. Moreover,
LP-Micro uses permutation-based tests that can better accommodate the skewness
and zero-inflation of microbial data compared to HRT.

LP-Micro has shown favorable performance in both simulations and real data. In
the simulations, LP-Micro outperforms the other state of the art ML methods in terms
of identifying the right set of features and accuracy or prediction. In the VicGen study
to predict ECC, LP-Micro is among the two best cumulative prediction methods and
the only method that can provide p-values of important features for interpretation.
Strikingly, the significant important taxa output from LP-Micro identifies S. mutans
abundance as highly predictive of future disease occurrence, confirming previous stud-
ies [12, 61]. LP-Micro extends this observation as the visit-wise analysis results also
suggested the 5th visit at about 39 months of age is most important for prediction of
ECC at age 5 (Figure 5a, 6a, 6b). In addition, and consistent with the polymicrobial
aetiology of ECC, increased relative abundances of S. vestibularis and S. wiggsiae,
that have both previously been associated with disease [64, 65], were identified as
being significantly predictive of ECC at five years of age in our analysis. A decrease
in relative abundance of P. pasteri was also identified as a novel biomarker of future
disease, which is consistent with current understanding of ECC microbial aetiology
and the pH sensitivity of this species. In the weight loss study, the pre-existing clini-
cal/demographic variables, especially ages, are important for prediction of BMI change
at the end of year one (Figure 7b). Specifically, older ages are associated with worse
BS results, i.e., less BMI decrease (Supplementary Figure 8). Among the microbial
biomarkers, Schaalia and Cobetia emerged as particularly significant, demonstrating
their highest importance during the early and middle time points, while Litorilituus
became more prominent at the one-year mark (Figures 5d, 7a, 7b). Schaalia, formerly
Actinomyces [66], potentially due to its association with host infection, has previously
been linked to weight loss [67]. This finding aligns with our observation that elevated
levels of Schaalia correlate with weight loss (Supplementary Figure 8). Cobetia has
been shown to be positively associated with the metabolite 5-hydroxytryptophan (5-
HTP) [68], which has been used in the treatment of obesity [69]. Metabolite 5-HTP is
a precursor to serotonin and has been studied for its role in regulating appetite and
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mood, both of which are critical in obesity management [70]. By increasing serotonin
levels, 5-HTP may reduce appetite and cravings, particularly for carbohydrates, which
in turn supports weight management efforts [71]. These prior findings provide further
support for the results observed in our study concerning these two taxa. Notably, Cobe-
tia exhibited significant relevance pre-surgery, suggesting its potential as a biomarker
for predicting patient response to BS. Furthermore, our analysis revealed that, of the
two surgery types examined, RYGB was associated with superior outcomes, a finding
supported by previous research [72].

In this paper, we demonstrate the predictive performance of LP-Micro for four
popular ML algorithms: NN, SVM, XGBoost and RF. However, the LP-Micro frame-
work is highly flexible and can be extended to more advanced ML/DL algorithms. For
example, in our simulation, LP-Micro improves the performance of GRU and CNN-
GRU. Although such models are inferior to other ML algorithms in our simulation,
they may gain in power in larger sample sizes. In conclusion, we provide comprehen-
sive evidence from simulations and applications to two clinical datasets that the new
method, LP-Micro offers advantages over existing approaches for powerful outcome
prediction and feature interpretation in the context of time-varying microbiome data.
Furthermore, while LP-Micro currently requires aligned time points of measurement, it
can be extended to accommodate irregular longitudinal microbiome data in the future.
For example, the prediction of using gut microbiome data of the Inflammatory Bowel
Disease (IBD) patients at different time points [15] may be a different type of predic-
tion since the patients don’t start from the same time points of disease progression.
However, the prediction of the treatment effect may still be desirable. We used two
well-designed microbiome studies that had samples from the same subjects at multiple
time points to reflect the progression of the childhood oral microbiome and its asso-
ciation with ECC, or the longitudinal microbial changes after BS and how they are
associated with the weight loss (measured as decreased BMI). There are currently few
available longitudinal microbiome datasets that have both clear starting time points,
e.g., two months of age or BS, and clear well-defined outcomes after a period, e.g.,
ECC or weight loss. However, much more of such data will become available in the
future using sequencing techniques that can provide higher sequencing resolution than
16s rRNA gene sequencing. LP-Micro will be a valuable tool for the analyses of these
cohorts.

Methods

Description of the two longitudinal microbiome datasets

The first dataset, derived from the VicGen longitudinal cohort established in 2008,
aimed to study the natural history and causal factors of Early Childhood Caries (ECC)
in infants and children [12, 52, 53]. Participants were recruited through their mothers
from Maternal and Child Health Centers in six local government areas in Victoria,
Australia. Clinical oral examinations and collection of saliva from the children were
conducted at seven time points (mean ages ± standard deviation): 1.9 ± 0.8, 7.7 ± 1.3,
13.2 ± 1.2, 19.7 ± 2.0, 39.0 ± 3.2, 48.6 ± 1.6 and 60 ± 1.8 months [12, 52, 53]. Saliva
samples collected at the first six visits were analyzed by 16s rRNA gene sequencing
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of the V4 region, and a total of 356 OTUs were identified. Of the 134 children whose
oral microbiome was determined in this cohort, 69 remained healthy (i.e., cavity-free)
throughout the study. By 39 months-of-age (the 5th visit), 12 children had a dental
cavitation (defined as by having at least one ICDAS score of 3 or higher, [56]). By
the time of the 6th visit (48.6 months-of-age), the number of children with at least
one dental cavitation rose to 45. At the study’s conclusion, 65 children had developed
cavities by 60 months-of-age. Our analysis aimed to predict children’s final ECC status
using compositional microbial abundance data from the first six visits. We corrected
anomalous samples that presented with visit times of the 5th visit later than that of
the 6th visit. There are 100 subjects who have all the first six time points up to about
48 months, without any missing time points. We include data from these 100 subjects
in our analysis, in which 42 subjects had ECC at about 60 months.

The second dataset records patients’ weight loss following BS. The cohort recruited
144 participants undergoing BS (50% Roux-en-Y Gastric Bypass (RYGB) and 50%
Sleeve Gastrectomy (SG)) at the beginning of the study. These surgeries involve sig-
nificant anatomical and physiological alterations that lead to changes in behavior and
biology [54]. Body mass index (BMI) measurements and fecal material were collected
from individuals at 1, 6, 12, 18 and 24 months post-surgery. Participants’ microbial
profiles in the BS study were characterized through shotgun whole genome sequenc-
ing for time-series metagenomics data of 120 subjects (n = 120, [62]). A total of 1,533
microbial taxa were identified. Participants’ demographic data were collected before
surgery, including age, race, height, and sex. Due to the high dropout rates (>50%)
beyond 12 months, our analysis focused on predicting BMI changes at 12 months
post-surgery, using log-normalized microbial genera counts, where 35 patients with
incomplete visits were excluded. There are 84 subjects who have all four time points
at pre-surgery, 1, 6, 12, without any missing time points up to 12 months. We include
data from these 84 subjects in our analysis.

Polynomial group lasso for longitudinal feature selection

Let xi = (xi1, ..., xi(p×q))
T be a p×q-dimensional concatenated vector of the abundance

of p microbial taxa measured at q time points from the i-th subject. Let yi be the
outcome variable to be predicted. For a cohort with n samples, define the design matrix
X = [x1, ...,xn]

T and the response vector y = (y1, ..., yn)
T . The objective is to identify

a subset of microbial taxa that are temporally associated with the clinical outcomes.
To facilitate this, we employ the group lasso estimator, an extension of the lasso

regularization technique [48, 49]. The group lasso estimator is defined as:

β̂ =


argminβ∥y −Xβ∥22 + λ

∑G
g=1∥βg∥2, if y continuous,

argminβ
∑n

i=1 log[1 + exp(xT
i β)]

−yix
T
i β + λ

∑G
g=1∥βg∥2, if y binary,

(1)

where β represents the vector of coefficients, G is the total number of predefined vari-
able groups, λ is the regularization parameter, βg denotes the indices corresponding
to the g-th group, and ∥·∥2 denotes the ℓ2 norm. Unlike the standard lasso estima-
tor, group lasso promotes sparsity across predefined groups of coefficients rather than
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individual coefficients. This characteristic is beneficial for screening high-dimensional
variables that can be naturally clustered into coherent groups. In longitudinal data
analysis, these groups can be defined by the repeated measurements of a microbial
taxon. Thus, group lasso preserves the entire temporal trajectory of these measure-
ments if they show significant correlation with clinical outcomes. In contrast, the
standard lasso might only select sporadic points from this trajectory, potentially
overlooking important patterns.

One major concern of utilizing group lasso on longitudinal microbiome data is its
assumption of linear effects. Due to the linear constraint on the functional forms, the
variable selection process may suffer from being unstable. For example, a simple trans-
formation of the raw count may alter the selection of microbiome taxa. Inspired by
previous work [45, 46], we employ natural splines based on the scaled data to approx-
imate more general functional forms of the original data to relax the linear problem
assumptions in group lasso. Specifically, we define zij = (ϕ1(xij), ..., ϕM (xij))

T , where
ϕm(·) represents the spline function of order m. Thus, the polynomial design matrix
of the j-th covariate is Zj = [z1j , ..., znj ]

T , and the total polynomial design matrix is
Z = [Z1, ...,Zj ]. In the polynomial group lasso for longitudinal data, we replace X by
Z in the following modified group lasso equation (1):

β̂(M) =



argminβ(M)∥y − Zβ(M)∥22 + λ
∑G

g=1∥β
(M)
g ∥2

if y continuous,

argminβ(M)

∑n
i=1 log[1 + exp(zTi β

(M))]

−yiz
T
i β

(M) + λ
∑G

g=1∥β
(M)
g ∥2

if y binary,

(2)

where M is a predefined order to approximate the non-linear functions. In this paper,
we set M to 3.

To be noted, if there are other pre-existing clinical or demographic variables
reported before (or at) the first microbiome-collection time point, that are needed to
be considered in prediction, xi in design matrix will be accordingly modified to include
these variables to be screened together with the other longitudinal features in polyno-
mial group lasso. In addition, it’s also possible that there are other longitudinal clinical
or demographic variables to be used for prediction, that will be considered together
with the longitudinal microbial features by modification of the design matrix.

Visit-wise and cumulative longitudinal prediction

We train various ML models to predict the clinical outcomes from the chosen taxa
from microbiome data. Details on the ML algorithms employed will be provided in a
subsequent section. The prediction strategies include: (a) visit-wise prediction, utiliz-
ing microbiome profiles from one visit, and (b) cumulative prediction, incorporating all
microbiome profiles up to a chosen visit. Specifically, the visit-wise prediction models
at the k-th visit utilize microbiome data from only that time point to predict clin-
ical outcomes, i.e., estimating E[y|X·(p×k+1:p×(k+1))], where X·(a:b) denotes columns
indexed from a to b−1. In contrast, the cumulative prediction models at the k-th visit
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estimate E[y|X·(1:p×(k+1))]. The fitted models at the k-th visit are denoted as f̂(k)(X)

for visit-wise, and f̂(1:k)(X) for cumulative predictions. The features used for cumula-
tive prediction at this step are the selected microbial taxa by the above procedure of
polynomial group lasso.

To determine at which visit the microbial abundance provides the most accurate
prediction of outcomes, we evaluate the q cumulative models on an independent testing
set. The difference in performance metrics between the models for the (k − 1)-th and
k-th visits indicates the additional information in prediction from a visit. For instance,
using MSE to assess the model performance, the increment in model prediction can
be quantified by

D(k − 1, k) = E
[(

y − f̂(1:k)(X)
)2

−
(
y − f̂(1:(k−1))(X)

)2]
.

A negative or zero value of D(k − 1, k) suggests that the k-th repeated measurement
of microbiome levels does not enhance disease prediction. In practice, the information
increment D(k − 1, k) is estimated by D̂(k − 1, k), or

1

nT

nT∑
i=1

[(
yi − f̂(1:k)(xi)

)2
−
(
yi − f̂(1:(k−1))(xi)

)2]
,

where nT denotes the sample size of the testing set. Upon identifying the optimal
visit for prediction by each ML algorithm, we rank these algorithms based on their
performance metrics at their respective optimal visits.

Feature importance score for explainable longitudinal
predictors

To understand the time-varying association between microbiome profiles and clinical
outcomes, we need to investigate three types of feature effects: (i) variable-wise effect,
which examines the impact of a microbial taxon on the disease outcome at each single
time point, (ii) taxon-wise effect, which calculates the average impact between a micro-
bial taxon and the disease outcome across multiple time points, (iii) visit-wise effect,
which assesses the average impact of all selected microbial traits at a single time point.
LP-Micro provides an importance score and a corresponding p-value for each of these
effects. These metrics are derived from top-ranked ML models f̂(·) from the previous
section. In this paper, we utilize the best two models to evaluate the microbial effects.

Inspired by previous studies [38, 42], we quantify the three types of effects defined
above by importance scores. For each type of effect, we replace the corresponding
columns of the previously defined design matrix X, where columns represent the p× q
features by combination of p taxa and q visits, by generating replicates from the same
distribution but breaking the association with the disease outcome, denoted as X′′.
Specifically, for each variable-wise effect, we replace one column with its permutation
replicates, producing p × q importance scores and p-values, while for each taxa-wise
or visit-wise effect, q or p columns corresponding to the information from the taxon
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or visit are replaced, producing p or q importance scores and p-values, respectively.
Similarly, as in feature selection, xi in design matrix X can be modified here for
importance score if other pre-existing clinical or demographic variables, as well as
other clinical predictors, need to be considered in prediction.

We calculate those importance scores and p-values by evaluating the performance
of the ML model f̂ with the permuted design matrix X′′ as input using the following
empirical loss functions:

LV (X
′′) =

{
1
n

∑nV

i=1[yi − f̂(x′′
i )]

2, if y continuous,
1
n

∑nV

i=1 CE(yi, f̂(x
′′
i )), if y binary,

(3)

where CE(y, ŷ) = −y log ŷ−(1−y) log(1−ŷ), the cross-entropy loss for binary response,
and nV is the sample size of an independent validation set V . Under the null hypothesis
that an effect is not predictive, the expected mean difference in loss, E[MV (X

′′)] =
E[LV (X

′′)−LV (X)] = 0, should equal zero. This mean difference is termed the effect
importance score. To accommodate the skewed microbial distribution with excessive
zeroes, we employ group permutation instead of multivariate normal bootstrapping to
generate null samples, as inspired by previous works [40, 42].

To accurately estimate the feature importance score, we adopt the K-fold cross-
fitting strategy. Suppose we split the data into C distinct validation sets, denoted
as V1, ..., VC . For each validation set, we fit an ML model using the rest of the
data. The cross-validated effect importance score M(CV )(X

′′) can be computed by
taking the arithmetic average of MVc

(X′′) with respect to their sample size, where
c = 1, ..., C. M(CV )(X

′′) is defined as the feature importance score. Its one-sided
p-value is then computed by assuming normality of M(CV )(X

′′), and the empirical

variance V̂ar[M(CV )(X
′′)] can be computed by taking the arithmetic average of:

V̂ar[MVc
(X′′)] =

1

nVc

∑
i∈Vc

[l(x′′
i )− l(xi)−MV (X

′′)]2,

where l(xi) (or l(x′′
i )) denotes the value of mean squared loss or cross-entropy loss

defined in equation (3) evaluated at the i-th sample in the validation set (or its
permuted version), and nVc

denotes the sample size of the validation set Vc.

Machine learning algorithms in LP-Micro

SVM is implemented via R package “e1071” using Radial kernels. RF and XGBoost
are implemented via R package “randomForest” and “xgboost” respectively. Their
hyperparameters are identified via five-fold cross-validation.

Deep learning architectures in LP-Micro

LSTM, GRU, and CNN-GRU are implemented via Keras and TensorFlow for R. Fully
connected deep neural network is implemented via R package “deepTL”. The detailed
parameter settings are provided in a Supplementary section. To stabilize the perfor-
mance of deep architectures, LP-Micro includes the following ensemble mechanism
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[43]: (i) we first train B deep learning models via bootstrapping training samples,

denoted as f̂1(·), ..., f̂B(·), (ii) next we evaluate trained models on out-of-bag (OOB)
sample sets O1, ..., OB . The final models are obtained by aggregating the models:
f̂(·) = 1

τ

∑B
i=1 f̂i(·)I(ri < τ), where ri is the rank of model performance. We set B to

50 and τ to 40 for all deep learning algorithms.

Simulation design

We evaluate the performance of LP-Micro with the following data generation model.
Specifically, we simulate the continuous disease outcome yi as

yi = Scale

(
q−1∑
k=0

βj cosxi(p×k+1) +

5∑
j=2

log

(
q−1∑
k=3

γjx
2
i(p×k+j) + 1

))
+ ϵ,

where xi = (xi1, ..., xi(p×q))
T represents p microbial taxa abundance collected from

q repeated visits, following Poisson log-normal distribution PN(µ,Σ), and βj and
γj are coefficients sampled from uniform distributions U(−2, 2) and U(0, 4) at the
beginning of each simulation and fixed afterwards. This model assumes one microbial
taxon is effective across all five visits, while the other four taxa are only effective in the
last two visits, with 13 nonlinear covariates in total. To mimic the highly correlated
microbial data, we pose within-visit correlation to xi by setting its covariance Σ =
diag(Σ1, ...,Σq), where Σj is a p×p matrix with diagonal entries of 1 and off-diagonal
entries of 0.1. After normalizing the response for all covariates to zero mean and unit
variance, noise ϵ following the normal distribution N (0, 0.1) is added.

We set both the training and testing sample size to n = 120 and the number of
repeated measurement q set to 5. To investigate the impact of the number of microbial
taxa, we vary the number of microbial taxa p across {100, 200, 500}, simulating three
levels of sparsity (5%, 2.5%, 1%). Each scenario is randomly repeated for 50 times,
where the hyper-parameter of group lasso is set at half of the largest λ that allows
non-zero coefficients, and 5-fold cross-validation is used to compute feature importance
scores and p-values.

Real data analysis

The ECC and weight loss data are split into a training set, a validation set, and
a testing set. Specifically, 75% of the samples are allocated to the training set for
variable selection and model training. The validation set comprises 10 samples from
the remaining 25% to select the group lasso hyperparameter. The remaining samples
constitute the testing set used to evaluate the models.

To evaluate prediction results, for the ECC data, we compute accuracy and AUC,
and for the weight loss data, we compute MSE and PCC. In accordance with previous
studies [12], we categorize ECC data into two groups for group lasso: the first four visits
and the last two visits. For baseline models, we fit either a logistic regression model
or a linear regression model with an l1 penalty. The penalty parameter is selected via
10-fold cross-validation. This entire procedure is repeated 20 times.
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[12] Dashper, S., Mitchell, H., Lê Cao, K.-A., Carpenter, L., Gussy, M., Calache, H.,
Gladman, S., Bulach, D., Hoffmann, B., Catmull, D., et al.: Temporal develop-
ment of the oral microbiome and prediction of early childhood caries. Scientific
reports 9(1), 19732 (2019)

[13] Poore, G.D., Kopylova, E., Zhu, Q., Carpenter, C.S., Fraraccio, S., Wandro,
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