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Abstract: Two invasive hemipteran adelgids cause widespread damage to North
American conifers. Adelges tsugae (the hemlock woolly adelgid) has decimated
Tsuga canadensis and Tsuga caroliniana (the Eastern and Carolina hemlocks,
respectively). A. tsugae was introduced from East Asia and reproduces
parthenogenetically in North America, where it can kill trees rapidly. A. abietis,
introduced from Europe, makes “pineapple” galls on several North American spruce
species, and weakens trees, increasing their susceptibility to other stresses.
Broad-spectrum insecticides that are often used to control adelgid populations can
have off-target impacts on beneficial insects and the development of more selective
chemical treatments could improve control methods and minimize ecological
damage. Whole genome sequencing was performed on both species to aid in
development of targeted pest control solutions and improve species conservation.
The assembled A. tsugae and A. abietis genomes are 220.75 Mbp and 253.16 Mbp,
respectively, each consisting of nine chromosomes and both genomes are over 96%
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complete based on BUSCO assessment. Genome annotation identified 11,424 and
14,118 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative
analysis across 29 Hemipteran species and 14 arthropod outgroups identified 31,666
putative gene families. Gene family expansions in A. abietis included ABC
transporters and carboxypeptidases involved in carbohydrate metabolism, while both
species showed contractions in core histone families and oxidoreductase pathways.
Gene family expansions in A. tsugae highlighted families associated with the
regulation of cell differentiation and development (survival motor protein, SMN;
juvenile hormone acid methyltransferase JHAMT) as well as those that may be
involved in the suppression of plant immunity (clip domain serine protease-D, CLIPD;
Endoplasmic reticulum aminopeptidase 1, ERAP1). Among the analyzed gene
families, Nicotinic acetylcholine receptors (nAChRs) maintained consistent copy
numbers and structural features across species, a finding particularly relevant given
their role as targets for current forestry management insecticides. Detailed
phylogenetic analysis of nAChR subunits across adelgids and other ecologically
important insects revealed remarkable conservation in both sequence composition
and predicted structural features, providing crucial insights for the development of
more selective pest control strategies.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.21.624573doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624573
http://creativecommons.org/licenses/by-nd/4.0/


Introduction
The introduction of several adelgid species into North America has had a devastating
impact on forest health, in some instances leading to rapid tree mortality in large
tracts of coniferous forests (Ellison et al. 2018; Fei et al. 2019). The adelgids include
over 60 species of small sap-sucking hemipteran insects within the infraorder
Aphidomorpha (Favret et al. 2015). These insects typically exhibit a life strategy
similar to their aphid relatives, primarily feeding on plant sap from phloem tissue, yet
they are uniquely associated with conifers (Sano and Ozaki 2012). A key distinction
can also be observed in the stylet of adelgids, which are longer and more flexible to
allow for feeding on both vascular and nonvascular tissue (Dancewicz et al. 2021).
Additionally, adelgids do not exhibit viviparity, a reproductive trait common in aphids
(Havill and Foottit 2007; Chakrabarti 2018).

Adelges abietis, commonly referred to as the pineapple gall adelgid or eastern
spruce gall adelgid, primarily targets Norway spruce (Picea abies) (Figure 1A). This
species is characterized by its gall-inducing behavior, forming structures on host
trees that disrupt normal growth patterns, leading to decreased vigor and increased
susceptibility of host trees to other pests and pathogens (Cornelissen et al. 2008). It
is believed to have arrived in North America in the early 20th century via the nursery
trade. In North America, it targets non-native Norway spruce as well as native
species, such as black spruce (Picea nigra), white spruce (Picea glauca), and red
spruce (Picea rubens) (Pilichowski and Giertych 2018). The life cycle of A. abietis is
completed entirely on spruce, and consists of two all-female generations per year,
with fundatrices overwintering at the base of buds. Most individuals remain on the
same tree where they were born, resulting in a clustered distribution that can
exacerbate damage to host trees (Carter 1971).

The hemlock woolly adelgid, Adelges tsugae, is an invasive pest that infests Eastern
hemlock (Tsuga canadensis) and Carolina hemlock (Tsuga caroliniana) throughout
Eastern North America (Figure 1D). Originally from East Asia, A. tsugae was
introduced to North America in the early 1950s, with genetic analyses indicating
multiple independent introduction events (Mayfield et al. 2023). Among adelgids, A.
tsugae is unique in using hemlocks as a secondary host. Tigertail spruce (Picea
polita) is the primary host for A. tsugae, but is endemic to Asia. The invasive A.
tsugae lineages reproduce parthenogenetically in North America. Thus, all A. tsugae
in North America are female and spread in the crawler phase or as minuscule eggs
(McClure and Cheah 1999). A characteristic feature of A. tsugae is the presence of
white, woolly sacs on the underside of hemlock branches (Figure 1E). Each wool sac
is capable of producing over 400 eggs, and combined with its parthenogenic nature,
and ability to readily hitchhike on forest dwellers, A. tsugae have contributed to a
significant decline in Eastern hemlock forests (Orwig and Foster 1998), Figure 1F).
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Despite the ecological significance of adelgids, there has been little genetic research
on these species. Recent studies have provided insight into adelgid mitochondrial
genomes (Havill et al. 2006; Yeh et al. 2020), the relationships between adelgids and
their bacterial endosymbionts (Weglarz et al. 2018; Szabó et al. 2022), early
detection of adelgid invasion by environmental DNA (Sanders et al. 2023), and the
evolutionary history of the clade within Aphididae (Mayfield et al. 2023). To date,
among adelgids, only the Cooley spruce gall adelgid (Adelges cooleyi) genome has
been sequenced, highlighting a significant gap in genomic resources for adelgids
(Dial et al. 2023). The genome of A. tsugae and A. abietis will be invaluable for
ongoing forest health studies utilizing environmental DNA collection and barcoding,
as well as for efforts to track trait evolution across invasions and illuminate targets for
insecticides.

Pest control strategies for adelgids include chemical treatments, biological control,
and silvicultural management (Limbu et al. 2018). Integrated pest management
(IPM) combines chemical applications with biological controls like non-native
predatory insects (Havill and Foottit 2007). Breeding resistant Tsuga hybrids
(Montgomery et al. 2009) or identifying lingering cultivars (Kinahan et al. 2020) are
potential long-term strategies. Chemical treatments include horticultural oil,
insecticidal soap, and systemic neonicotinoids, which suppress adelgid populations
(Joseph et al. 2011). Neonicotinoids, acting as nicotinic acetylcholine receptor
(nAChR) agonists, are effective but nonselective, risking off-target mortality in native
insects (Suchail et al. 2001). To mitigate this, neonicotinoids are applied to individual
trees via basal bark application, soil drench, or trunk injection. These precision
approaches reduce, but do not eliminate off-target toxicity. Developing selective
insecticides could improve forest management. We aimed to identify evolutionary
traits unique to Adelgidae, focusing on nAChRs, the target of current insecticides.

Methods & Materials:
DNA Sampling, Extraction, Preparation, and Sequencing
A. abietis were collected from a single gall growing on Picea rubens collected near
Timberline Mountain in Davis, WV, USA on 21 July 2019. Genomic DNA for a 10X
Chromium Linked-Read library was extracted from a pooled sample of approximately 30
individuals. HMW DNA extraction is described in detail in File S1. Isolated DNA was
quantified on a Qubit 2.0 fluorometer and DNA fragment size was checked by
running on a 1.0% agarose gel. The linked-reads library was prepared following the
manufacturer's protocol and the library was sequenced on an Illumina Nextseq 550.

Scaffolding reads in the form of Hi-C Illumina short reads were generated from a
single individual collected from a single gall growing on the same Picea rubens
accession on 16 August 2021. DNA extraction on the adelgid is described in File S1.
The extracted DNA was sent to Phase Genomics (Seattle, WA) for Hi-C library
preparation and sequencing.
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A. tsugae were collected from a single accession of Tsuga canadensis growing at the
Mountain Research Station in Waynesville, NC (35.487 °N, –82.967 °W) (Figure 1E).
Approximately 4 feet of one branch was collected in October 2023 and stored at 4 °C
for 48 hours. Individual adelgids were collected into Macherey-Nagel Lysis Buffer T1
using forceps and a dissection microscope. A total of 400 sistens were collected in
total to provide sufficient material for DNA extraction.

Genomic DNA for nanopore sequencing was extracted from the pooled sample using
the Qiagen MagAttract HMW DNA Kit, with modifications based on (Mao et al. 2023)
and further adaptations outlined in File S1. Isolated DNA quality was measured with
Thermo Scientific NanoDrop One spectrophotometry, Thermo Scientific Qubit 4 DNA
fluorometry, and Agilent 4200 TapeStation Genomic DNA electrophoresis. Oxford
Nanopore Technologies Ligation Sequencing Kit v14 (SQK-LSK114) was used to
prepare the library on the extracted A. tsugae DNA. DNA repair was performed at 20
°C for 20 min followed by 10 min at 65 °C to inactivate the enzymes. DNA was eluted
at 37 °C. The final library was quantified using a Qubit 4 fluorometer. The flow cell
was loaded three times each with 18 fmol of library.

RNA Sampling, Extraction, Preparation, and Sequencing
A. tsugae and A. abietis: Individual A. tsugae were collected from branches of Tsuga
canadensis growing in Leesburg, VA, USA while A. abietis were collected from galls
at the same location as the DNA sampling. For both adelgids, salivary glands and
carcasses were dissected and collected separately into Arcturus PicoPure Extraction
buffer. Total RNA was prepared using the Arcturus PicoPure RNA Isolation kit
including the optional DNAse step. Barcoded RNA-seq libraries were prepared for
Illumina NextSeq 550 sequencing (150bp PE) with a method described previously
(Cembrowski et al. 2018). For A. tsugae, 8 libraries passed quality control with read
lengths of 141-144 bp and 18.1-25.3 million bases per library (GC content
39.5-43.8%). For A. abietis, 20 libraries passed quality control with read lengths of
127-145 bp and 15.3-24.4 million bases per library (GC content 33.7-50.2%).
Libraries with fewer than 15 million reads or mean read length below 70 bp were
excluded from analysis.

Genome assembly
A. abietis: 10X linked reads were assembled into a draft genome with Supernova
using 1.19G linked reads and default parameters. Hi-C reads were aligned to the
Supernova draft assembly with Juicer v1.6.2 (Durand, Shamim, et al. 2016). The
3D-DNA pipeline (Dudchenko et al. 2017) was applied with default settings in
“haploid mode” to correct mis-assemblies and generate chromosome-scale super
scaffolds. Manual review of the 3D-DNA assembly was conducted with Juicebox
Assembly Tools (Durand, Robinson, et al. 2016). The scaffolded assembly was
screened for contamination with BlobTools v1.0.1 (Kumar et al. 2013; Laetsch and
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Blaxter 2017) using aligned 10X Genomics linked reads and taxonomy information
from BLASTN v2.2.31 (Camacho et al. 2009) searches against the National Center
for Biotechnology Information (NCBI) nucleotide database (nt, downloaded October
13, 2017) with the options “-outfmt '6 qseqid staxids bitscore std sscinames
sskingdoms stitle' -culling_limit 5 -evalue 1e-25”. To calculate per-scaffold coverage,
10X Genomics linked reads were debarcoded with process_10xReads.py from the
proc10xG package (https://github.com/ucdavis-bioinformatics/proc10xG) and aligned
to the reviewed 3D-DNA assembly with BWA mem v0.7.7 (Vasimuddin et al. 2019).
Finally, the decontaminated assembly was sorted by scaffold length with SeqKit
v2.9.1 and assessed for with BUSCO, QUAST, and by comparing K-mer content of
the debarcoded 10X Genomics linked reads to the assembly with KAT comp v2.3.1
(Mapleson et al. 2017; Shen et al. 2024).

A. tsugae: Nanopore reads were basecalled from a single PromethION R10.4.1 flow
cell running MinKnow v23.07.12. Initial statistics on the read count, length, and base
quality were assessed using NanoPlot v1.33.0 (De Coster and Rademakers 2023).
Reads passing an initial quality cutoff of >Q10 were screened for DNA contamination
against RefSeq genomes (release 221) of archaea, bacteria, fungi, plants, and
viruses using Centrifuge v1.0.4-beta and reassessed using NanoPlot after removal
of contaminant-classified reads (Kim et al. 2016). The estimated genome size was
obtained via kmer count using kmerfreq v4.0 (Wang et al. 2020) with GCE v1.0.2
(Wang et al. 2020). Filtered reads were assembled using both Flye v2.9.1
(Kolmogorov et al. 2019) and Canu v2.2 (Koren et al. 2017). Initial draft assemblies
and each subsequent iteration were assessed using BUSCO v5.4.5 (Manni et al.
2021) hemiptera_odb10 for completeness, Merqury v1.3 (Rhie et al. 2020) for
quality, and QUAST v5.2.0 (Gurevich et al. 2013) for contiguity. The Canu assembly
was selected for downstream analysis. Heterozygosity was reduced for draft
assemblies using Purge Haplotigs v1.1.2 (Roach et al. 2018). The contig-level
assemblies were scaffolded against the chromosome-level A. abietis genome using
RagTag v2.1.0 (Alonge et al. 2022), reordering contigs into nine chromosomes in
descending order by length. The final assembly was re-assessed for quality metrics.

Structural and functional annotation
The repeat library for each species was generated de novo via RepeatModeler
v2.0.4 (Flynn et al. 2020). This library was used to softmask the assembled
references with RepeatMasker v4.1.4 (Smit, AFA, Hubley, R & Green, P. 2013-2015).
The softmasked reference genomes were provided to EASEL
(https://gitlab.com/PlantGenomicsLab/easel) v1.5 (regressor set to 70) to facilitate
the structural and functional identification of protein-coding genes (Hart et al. 2020).
Transcriptomic evidence provided expression support within EASEL by alignment to
their corresponding genomes, with A. tsugae informed by 4 salivary gland libraries, 4
carcass libraries (salivary glands removed) (SRR30936309), and an adult
overwintering sistens library (SRR1198669) and A. abietis informed by 2 salivary
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gland libraries, 4 carcass libraries, and a whole body library (SRR30936310). NCBI’s
RefSeq protein database (release 208) and OrthoDB v11 (Kuznetsov et al. 2023),
with the addition of A. cooleyi proteins, provided external protein level support in the
pipeline.

Genome synteny in Adelges
Genome synteny was assessed using protein-protein comparisons of the A. tsugae
and A. abietis annotations using the GENESPACE pipeline v1.3.1 (Lovell et al.
2022). GENESPACE was run with default parameters, OrthoFinder v2.5.5, and
MCScanX (Wang et al. 2012; Emms and Kelly 2019).

Comparative genomics among hemipteran
All Hemipteran species with genome annotations available on NCBI (38 total) were
considered for comparative analysis, in addition to 14 related species established as
outgroups of Hemiptera. Annotations with BUSCO protein completeness below 80%
or gene counts greatly exceeding the average range were removed. Annotations that
passed filtering were analyzed with Orthofinder v2.5.5 and run with 45 species to
classify potential orthologous genes and orthogroups (Emms and Kelly 2019). The
longest sequence from each orthogroup was used as a representative to assign a
function with EnTAP v1.2.1 (Hart et al. 2020) that integrated EggNOG v5.0.2
(Huerta-Cepas et al. 2019), Refseq Invertebrate release 224, and Swiss-Prot release
2024_03.

Significant orthogroup expansions were identified with Cafe v5.1 (Mendes et al.
2021) based on birth and death process models. Gene turnover was estimated using
the maximum likelihood inference method. The distances in the rooted tree obtained
from the single-copy genes (from OrthoFinder) were transformed into ultrametric
units. Orthogroups with extreme single-species representation (one species ≥50
orthologs and all others ≤3), representing only two species (cladeandsizefilter.py),
and groups with the largest differential (63 or more orthologs) between the minimum
and maximum representation, were removed. Gene family expansions and
contractions for those genes that are expanded or contracted with P < 0.01 were
reported.

Comparative analysis of nAChR:
A total of 454 reference nAChR alpha-7 genes, representing 1056 transcripts, were
obtained from NCBI’s RefSeq protein database from 269 species across Insecta. A
motif file was constructed via hmmer v3.3.2 (Zhang and Wood 2003) to scan all
proteins from all species assessed to identify nAChRs without exclusive reliance on
existing functional annotations. The resulting proteins were aligned with MAFFT
v7.511 (Katoh and Toh 2008).

Phylogenetic relationships among sequences were inferred from the multiple
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sequence alignment with IQ-TREE v1.6.12 (Nguyen et al. 2015). The Model Finder
function was employed to identify the best-fit evolutionary model for the data-
Q.insect+R9 (Kalyaanamoorthy et al. 2017). The resulting maximum likelihood tree
was visualized and annotated using the Interactive Tree of Life (iTOL) web server
v6.9 (Letunic and Bork 2024). Seven motifs for each of the transcripts and seed
sequences were generated with MEME v0.10.1 (Bailey et al. 2015) based on seven
functional nAChR domains and 501 proteins with p-value < 1e-30 were added to the
gene trees.

A subset comprised of the probable nAChR genes generated by MEME analysis for
A. tsugae, A. abietis, A. cooleyi, Rhopalosiphum maidis, Apis mellifera, Danaus
plexippus, and Drosophila melanogaster was selected for further analysis. These
were selected based on relatedness to Adelgidae (R. maidis, corn leaf aphid), as
non-target pollinators of interest (A. mellifera, Western honey bee; D. plexippus,
monarch butterfly), or as models with well characterized nAChRs (D. melanogaster,
common fruit fly). Protein sequences were aligned in MEGA v11.0.13 (Kumar et al.
2018) with MUSCLE v3.8.31 (Edgar 2004). For the aligned sequences, sequence
similarities were calculated with the “Sequence Manipulation Suite” for JavaScript
using the “Ident and Sim” tool, with similar amino acid groups set to GAVLI, FYW,
CM, ST, KRH, DENQ, P (Stothard 2000).

Maximum likelihood gene trees were produced for both the full set of 501 genes and
the selected species subset using MAFFT and IQ-TREE 2 (Minh et al. 2020).
ModelFinder chose substitution model “Q.insect+R9” and rate heterogeneity model
“FreeRate with 9 categories" for the full set and “VT+I+R5” and “Invar+FreeRate with
5 categories” for the subset (Figure S1) (Kalyaanamoorthy et al. 2017).

nAChR Homology Modeling and Structural Comparison
Structures of insect nAChRs proteins from the selected subset of species were
predicted using AlphaFold3 (Abramson et al. 2024). Since these proteins are
pentameric, structure estimation was simplified by folding all nAChR proteins as
homopentamers, although only some nAChR subtypes are known to
homopentamerize in vivo. Proteins were folded in duplicate to ensure the
reproducibility of AlphaFold outputs, with arbitrary random seeds of 1 and 7000
between duplicate foldings. The batch using seed 7000 was selected for the final
analysis due to improper folding which was noticed in some A. tsugae nAChrR AF3
models generated in the seed 1 batch. Improper folding was identified by abnormally
high template modeling (TM) scores when compared to other nAChRs from the
same batch. These scores were calculated in C++ using Zhang et al’s TM align
algorithm and the scores normalized to the average length of the pair of compared
proteins (Zhang and Skolnick 2004; Xu and Zhang 2010). Full data and confidence
values for all AF3 models are available in supplemental file S3.
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nAChR Active Site Analysis
To identify insect nAChR active site residues, sequences were compared to known
human nAChR active site residues (Gharpure et al. 2020). Insect nAChRs were
aligned in MEGA with MUSCLE and visualized as logo plots (Crooks et al. 2004).
Areas with high homology were then compared with human active site sequences,
leading to the identification of likely active sites. AlphaFold3 generated protein
structures were then used to check the locations of the identified residues against
ligand-bound nAChR and acetylcholine-binding protein crystal structures (PDB:
5FJV, 2ZJU).
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Results and Discussion:

Genome sequencing and assembly:
Adelges abietis 10X sequencing generated 119M Illumina short reads (Table S1).
The Supernova assembled genome produced a reference of 290.32 Mb in 9,607
contigs with an N50 of 4.77 Mb. Scaffolding conducted via Hi-C produced an
assembly that is 253.16 Mb in length, 87.2% of which is contained within 9 (2n=18)
chromosomes (Steffan 1968; Favret et al. 2015). This reference reports 2998.36 N’s
per 100 Kb, and an N50 of 27.91 Mb. BUSCO assessment found 2471 of 2510
expected complete (C:97.2%) single-copy orthologs from the Hemiptera_odb10
database and 47 duplicated (D:1.3%), leaving only 8 fragmented (F:0.3%) and 31
missing (M:1.2%) (Table 1).

Adelges tsugae sequencing generated 100.78 Gb of long reads (ONT) with an 11.02
Kb N50, of which 89.94 Gb passed an initial Q10 quality score threshold and 77.71
Gb passed contaminant screening (File S2; Table S1, Table S2). Among the
4,037,933 (13.60%) reads classified as contaminants, the most abundant species
was Candidatus Pseudomonas adelgestsugas, one of A. abietis’s two dual-obligate
endosymbiotic bacteria, with just over 3 M unique reads representing 75.7% of those
removed. The other paired endosymbiont, Ca. Annandia adelgestsuga, was not
identified. However, Ca. Annandia pinicola (4.43%) and 19 intraspecific variants of
Buchnera aphidicola (together 0.59%) were detected. Given the similarity of the
Buchnera and Annandia genomes, as well as the similarity-based metagenomic
classification technique used, these reads may represent Ca. Annandia
adelgestsuga (Weglarz et al. 2018). The second most abundant classification was
Serratia symbiotica (9.05%), an endosymbiont unique to eastern North America and
Tsuga sieboldii-specific A. tsugae lineages in Japan (von Dohlen et al. 2013). This
was followed by Porphyrobacter sp. GA68 (0.66%), Cellulophaga sp. HaHaR_3_176
(0.18%), and Rhizoctonia solani (0.14%), an indoor air bacterium, a marine
bacterium, and a plant-pathogenic fungus, respectively (Table S2).

Genome size was estimated at 267.97 Mb yielding 290x read coverage. The Canu
assembled draft genome contained 2,131 contigs with a 7 Mb N50. Heterozygosity
reduction yielded 377 contigs with an N50 of 9 Mb. Scaffolding against the
chromosome-scale A. abietis reference yielded 345 contigs with a 21 Mb N50. This
final assembly is 220.75 Mb in length, 99.95% of which is contained within nine
putative chromosomes. This reference reports 1.45 N’s per 100 kb, an N50 of 24.57
Mb, and a Merqury QV of 42.88. BUSCO assessment found 2464 of 2510 expected
complete (C:99.3%) single-copy orthologs from the Hemiptera_odb10 database and
28 duplicated (D:1.1%), leaving only 10 fragmented (F:0.4%) and 8 missing
(M:0.3%) (Table 1).

Of the assembled Aphidomorpha genomes to date, the Phylloxeroidea tend to have
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smaller genomes than the Aphidoidea. The average genome size of Aphidoidea is
369.4 Mb, and none are smaller than 300 Mb. In contrast, all of the Phylloxeridae
genomes are smaller than 300 Mb. A. tsugae is the smallest, with an estimated
genome size of 220.75 Mb, and A. abieties, A. cooleyi, and Daktulosphaira vitifoliae
have estimated genome sizes of 253.16 Mb, 270.2 Mb, and 282.6 Mb, respectively
(Table S3).

Structural and functional annotation:
For structural annotation,17.90% of the A. tsugae genome and 24.91% in A. abietis
were softmasked and identified as repetitive DNA (Table 1). Transposable element
(TE) annotation classified 15.13% and 25.98% of the A. abietis and A. tsugae
genomes, respectively (Figure 2A, 2B). LINEs are the most abundant elements in
both genomes (2.22% A. abietis, 2.75% A. tsugae) while LTRs (1.04% A. abietis,
0.23% A. tusgae) and SINEs (0.00% A. abietis, 0.01%) are less common, a pattern
common among some Hemipterans including aphids and whiteflies (Petersen et al.
2019). A. tsugae differs from the pattern in DNA transposon content with only 0.46%
of sequence compared to A. abietis’s 2.14%, though this and the overall low TE
abundance may be explained by the large portion of unclassified TEs (A. abietis
20.59%, A. tsugae 11.68%). Regions near chromosome ends tend towards a higher
density of repeats, with some exceptions (Figure 2C, 2D). The repeat landscapes of
A. tsugae shows a continuous pattern of TE accumulation across Kimura substitution
levels, with four distinct bursts of activity, whereas A. abietis shows two distinct
peaks. The most recent burst reflects predominately DNA transposon and LINE
element activity, with a smaller contribution from LTR retrotransposons. The three
older bursts in A. tsugae shows similar profiles, dominated by unclassified elements
but with consistent contributions from LINEs and DNA transposons. While LTRs
make up a smaller proportion of each burst, they maintain presence across all
bursts. The recovery of four distinct peaks of TE activity in A. tsugae, differs from
that of A. abietis, and in aphids, which typically show evidence of more recent TE
activity, with large families of DNA transposons dominating this activity, as observed
in species like M. persicae and M. dirhodum (Figure 2A, 2B) (Baril et al. 2023).

Genome annotation identified 11,424 A. tsugae protein-coding genes with BUSCO
completeness of C:98.0% [S:96.7% ,D:1.3%], F:0.2%, M:1.8%. A total of 14,118 A.
abietis protein-coding genes were identified with a BUSCO completeness of
C:96.5% [S:94.9%, D:1.6%], F:0.3%, M:3.2% (Table 1; Table S4). The gene count of
A. tsugae is lower than the estimates for the A. abietis and A. cooleyi (13,556
protein-coding genes), and is the lowest estimate among available Hemiptera
genomes with the exception of the 12,266 Aphis gossypii protein-coding genes
(Table S3, Table S4) (Zhang et al. 2022). Functional annotations, including both
sequence similarity searches and alignments to EggNOG gene families, were
available for 94.32% of A. tsugae protein-coding genes and 90.69% of A. abietis
genes (Table S4). Assessment of synteny identified 196 syntenic blocks between A.
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tsugae and A. abietis genomes, with high collinearity within each chromosome pair.
While the overall chromosomal structure is conserved, internal rearrangements are
particularly visible in chromosomes 1 and 2 (Figure 2E). This level of chromosomal
conservation contrasts markedly with patterns seen in aphids, where chromosome
homology cannot be determined between tribes that diverged over 30 million years
ago, but aligns more closely with the conserved synteny observed in blood-feeding
hemipterans in the Rhodnius and Triatoma genus (Mathers et al. 2021).

Comparative genomics among hemipteran
Across the Hemiptera, 31,666 orthogroups were identified, including 643,982
(93.69%) of 687,323 total proteins examined, 85.61% of which were assigned
functional descriptions based on their longest representative sequences (Table S6).
A total of 1908 orthogroups were shared by all 45 species, 59 of which were
estimated to be orthologous and single-copy. 22,254 orthogroups (68.93%) had no
representation in Adelges, conversely, 862 orthogroups (2.67%) were represented
exclusively by one or more adelgids and 205 (0.63%) by all three. A total of 33, 189,
and 123 groups were unique to A. tsugae, A. abietis, and A. cooleyi, respectively
(Figure 3A).

The two adelgids described here were included in a set of 29 Hemipteran relatives
and across families (Aphididae, Adelgidae, Aleyrodidae, Aphalaridae, Cicadellidae,
Cimicidae, Coccidae, Delphacidae, Miridae, Pediculidae, Pentatomidae,
Phylloxeridae, Pseudococcidae, Psyllidae) and 14 additional arthropods serving as
outgroups (Thysanoptera, Blattodea, Coleoptera, Diptera, Hymenoptera,
Lepidoptera, Arachnida, Branchiopoda) for a total of 45 species curated by
availability of high quality genome resources (Table S3). Phylogenetic analysis of
orthologous gene families support Phylloxeridae (represented by Daktulosphaira
vitifoliae) and Adelgidae as sister families composing superfamily Phylloxeroidea,
sister group to Aphidoidea (Dial et al. 2023) (Figure 3B).

Within this phylogenetic framework, of the 244 orthogroups showing significantly
different evolutionary rates between parent and child nodes, 235 remained after
filtering out TE families. Of these, 32 orthogroups are completely absent across all
three Adelges species. While N- acetylegalactosaminyltransferase-9 was expanded
in D. vitifoliae, the remaining 31 orthogroups were likely lost in a common ancestor
before the divergence of adelgids and phylloxerans (Table S6). Signal transduction
mechanisms were most abundant in the lost families, and included G-protein
receptors, immunoglobulins, diaglycerol binding proteins, and PET domain proteins
involved in cell differentiation. Conversely, among the 22 orthogroups present in at
least one adelgid and absent in D. vitifoliae, 27% are assigned to energy production
and conversion functions - primarily related to the mitochondrial respiratory chain,
especially NADH pathways.The differential retention of these functional categories
may reflect the specialized feeding ecology of adeligids on Pinaceae hosts. While
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phylloxera have evolved many unique genes that are active during feeding and
interacting with their hosts (Rispe et al. 2020), adelgids have expanded their core
metabolic functions, with a focus on energy production, reflecting the patterns of
highly specialized herbivores (Dohlen and Moran 2000).

At the Adelges most recent common ancestor (MRCA) node, 24 orthogroups are
expanding and 34 contracting. Within this lineage, A. tsugae has a total of 19
expanding and 62 contracting orthogroups, while A. abietis has 29 expanding and 46
contracting (Figure 3B; Table S7). The largest expansions in A. abietis were
associated with carbohydrate transport and metabolism, particularly ABC
transporters and carboxypeptidases, suggesting adaptation to host plant
metabolism, a pattern commonly observed in specialized herbivores such as aphids
where metabolic gene families undergo adaptive evolution to cope with host plant
defenses (Wu et al. 2019; Wu et al. 2024).

Specific expansions were observed in A. tsugae for Endoplasmic reticulum
aminopeptidase 1(ERAP1)—a domain commonly associated with the salivary
effector protein family, aminopeptidase-N (apN), where transcriptomic and proteomic
analyses have shown that ERAP-1 proteins undergo lineage specific expansions,
and shows evidence of positive selection in in Acyrthosiphon pisum (Boulain et al.
2018). Although its specific function in this context remains unclear, proteins
secreted from plant pests have been implicated in the negative regulation of plant
immunity (Chen et al. 2019). In addition, clip domain serine protease- D (CLIPD) ,
another rapidly evolving and expanding gene family in A. tsugae, is associated with
regulating immune response in insects (Ruzzante et al. 2022). The survival motor
neuron protein (SMN) family was significantly expanded in A. tsugae and is a
well-studied target in Drosophila, which serves as a model for examining this key
gene associated with muscular dystrophy in humans (Grice and Liu 2011). In insects,
SMN has been shown to interact with several gemins and is critical for RNA
processing and cell differentiation (Maccallini et al. 2020). Loss-of-function studies of
SMN in Drosophila have revealed defective cell divisions and disruptions to the
developmental cycle (Rajendra et al. 2007). The expansion of SMN in A. tsugae,
contrasting with its contraction in A. abietis, suggests potentially different
requirements for RNA processing and cellular differentiation between these closely
related species.

While the MRCA of A. abietis and A. tsugae exhibits contractions in core histone
families H2A/H2B/H3/H4, aphids demonstrate expanded diversity in
chromatin-remodeling proteins compared to other arthropods, a pattern possibly
linked to their developmental plasticity (Rider et al. 2010; Mathers et al. 2017). This
contrast in chromatin-associated gene families may reflect different evolutionary
strategies; aphids require greater regulatory flexibility for their complex life cycles
and host switching, while the adelgids rely on specific conifer hosts (Havill et al.
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2007).

Juvenile hormone is a crucial sesquiterpenoid hormone that regulates a wide range
of essential physiological processes, including development and reproduction
(Shinoda and Itoyama 2003). While the juvenile hormone acid methyltransferase
(JHAMT) shows contraction in the adelgid MRCA, A. tsugae shows expansion of the
haemolymph juvenile hormone binding protein (JHP). Studies in aphids have shown
that silencing juvenile hormone acid methyltransferase (JHAMT), a rapidly expanding
gene family in A. tsugae, leads to increased mortality and delayed development
(Zhang et al. 2024).

Proteins associated with phosphorylation and dephosphorylation pathways showed
variable patterns of evolution, with serine/threonine protein kinases expanding in A.
abietis while phosphatases contracted in the adelgid MRCA (Table S7). These
regulatory proteins are of particular interest as they modulate cholinergic receptor
function through post-translational modifications (Wiesner and Fuhrer 2006;
Makhnovskii et al. 2013; Jiménez-Pompa et al. 2023). Within this group, proteins
involved in phosphorylation-dependent regulation interact with nicotinic acetylcholine
receptors (nAChRs), which are cholinergic ligand-gated ion channels mediating fast
synaptic transmission in insect nervous systems and serving as common targets of
insecticides (Matsuda et al. 2001). While these regulatory proteins show dynamic
evolution, the nAChR genes themselves maintain relatively conserved distributions
across both adelgid genomes.

Comparative analysis of nAChRs:
Since nAChRs are the target of the most commonly used insect control methods for
adelgids (P McCarty and Addesso 2019), a better understanding of nAChR diversity
within Adelgidae and between Adelgidae and Insecta was sought. While nAChR
composition and expression are not the only factors determining susceptibility to
chemical controls, expression of different subunits and mutations within subunits can
impact susceptibility to nicotinic compounds (Zhang et al. 2018; Cartereau et al.
2020).

Gene family analysis placed the 501 nAChR curated genes into 14 orthogroups . Six
of these were exclusively annotated as nAChR genes. The other eight included 168
additional genes, which had a range of predicted functions ranging from diverse
cholinergic receptors, or other ion channel related proteins. One group was
associated with inorganic ion transport and metabolism while all other groups were
associated with signal transduction mechanisms. None of the 14 orthogroups were
significantly expanding, and estimates on the rate of evolution could only be
estimated for eight families, none meeting the threshold of a p-value < 0.01.

To facilitate a comparative analysis of nAChRs within Adelgidae and throughout
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Insecta, a group of seven relevant insects were chosen. This group included A.
tsugae (HWA), A. abietis (PGA), A. cooleyi, Rhopalosiphum maidis, Apis mellifera,
Danaus plexippus, and Drosophila melanogaster. Additionally, the 12 identified A.
tsugae nAChRs were each assigned an individual name (HWA1–HWA12) to
facilitate discussion (Figure 2C, 2D; Table S8).

When clustered phylogenetically by protein sequence in an unrooted maximum
likelihood gene tree (Figure 4A), insect nAChRs tended to cluster by subtype,
reflecting their structural and functional conservation. The designations of these
clusters are apparent from the inclusion of proteins with known designations from
common reference organisms, such as D. melanogaster and A. mellifera, with clear
clusters forming for subtypes 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛽1, and 𝛽2. This clustering pattern
reflects the fundamental structural organization of nAChRs as members of the
Cysteine (Cys)-Loop ligand-gated ion channel (CysLIGC) receptor family, which are
highly conserved throughout Insecta and most eukaryotes.

These nAChRs are composed of five subunits, being either homopentameric or
heteropentameric, and are membrane-bound, with extracellular, transmembrane,
and intracellular regions (Figure 4B and 4C). The subtypes are primarily
differentiated by the presence or absence of a disulfide linkage between two
adjacent cysteine (Cys) residues in the ligand binding site, separating them into 𝛼
and 𝛽 classes. The ligand binding site is located in the extracellular region at the
interface between two subunits and is composed of six loops, with three being
provided by each subunit in the interface. In order to bind a ligand, at least one of the
subunits at the given interface must be an 𝛼 subunit, with the other being either 𝛼 or
𝛽 (Rosenthal and Yuan 2021). Within this structural framework, subtypes 𝛼5 and 𝛼7
did not partition into distinct lineages from one another, and 𝛽3 did not separate well
in clustering, while HWA1, HWA3, HWA4, HWA9, and HWA10 could not be assigned
to clear clusters.

High sequence homology between nAChR sequences from A. tsugae and other
selected species was observed (Figure 5A and Figure S2). HWA2, HWA4, HWA9,
and HWA10 stand out as being the most unique of the observed nAChRs, each
having consistently lower sequence similarity with other nAChRs. HWA4 and HWA10
each had two high similarity matches, one with an A. abietis nAChR and one with an
A. cooleyi nAChR, suggesting that these nAChRs may be rather unique to
Adelgidae. HWA9 had the lowest observed overall similarity within the set, making it
the most unique of the studied nAChRs. Similar trends emerge when the nAChRs
are compared via template modeling (TM scores) of 3D AlphaFold 3 (AF3) models
(Figure 5B and Figure S3). Overall, the observed nAChRs showed a high level of
structural homology, with occasional exceptions such as HWA2 and HWA6, both of
which have on average lower TM scores when compared to the other nAChRs
(0.5-0.6 as opposed to 0.7-0.8). Generally, the largest structural differences are seen
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in the transmembrane domain, with insertions of transmembrane domains observed
in some proteins.

Both the structures and sequences of the ligand binding sites were analyzed. In
order to probe ligand binding site conservation across species, a representative A.
tsugae nAChrR AF3 structure (Figure 5C, HWA5) was compared with a relatively
distantly related human nAChR crystal structure (Figure 5D, PDB: 5FJV). Overall,
the structures are very similar. Key aromatic tyrosine (Tyr) and tryptophan (Trp)
residues, known to be important in ligand binding, are conserved (Barington et al.
2016). The key geminal disulfide bond can be seen in the human crystal structure,
and while its linkage was not successfully predicted by AF3, both Cys residues can
be seen in the expected positions. Notably, the human nAChR binding site is in a
closed conformation, because the PDB structure is ligand bound (ligand hidden for
clarity; Figure 5D), while the AF3 generated HWA5 nAChR structure is in an open
conformation, thus explaining the difference in relative positions of the disulfide
moieties. Aside from this one difference, both binding site structures exhibit near
total structural overlap. To assess if these ligand binding sites differ between
Adelgidae and the rest of Insecta, the aligned ligand binding sites for each group
were visualized as logo plots (Figure 5E). The nAChR ligand binding site sequences
are highly conserved across all observed species. Loop C contains a variable
number of residues, with some nAChRs having one or two amino acid inserts within
the loop. This can be seen as high variability at positions 42, 46, and 47 in the logo
plots (Figure 5E). It is unlikely that these inserts would affect ligand binding, since
they are predominantly present in 𝛽-type sequences which lack the geminal Cys-Cys
linkage and are therefore incapable of ligand binding. Loop C has been extensively
investigated for its role in receptor function, particularly in ligand binding and channel
gating. Key mutations in Loop C, such as the P242E mutation in Drosophila and
E219P in vertebrate receptors, significantly affect neonicotinoid sensitivity,
demonstrating its importance in species-selective insecticide action (Toshima et al.
2009; Shimada et al. 2020).

Recent research has expanded beyond nAChRs to examine the entire CysLGIC
superfamily, especially in the context of protecting ecologically beneficial species, as
these channels serve as targets for various insecticides including avermectins,
fipronil, and dieldrin (Meng et al. 2015; Wang et al. 2024). This broader investigation
is crucial because insecticides target multiple members of this superfamily, including
γ-aminobutyric acid gated chloride channels, glutamate-gated chloride channels,
histamine-gated chloride channels, and pH-sensitive chloride channels. Broadening
the study of nAChR conservation across Insecta is important to future goals of
selective insecticide development, since nAChR similarities exceed 60% between
species and reach up to 98% in some cases (Figure 5A; Figure S2). (Jones et al.
2007).
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Conclusion: The high-quality genome assemblies presented here for A. tsugae and
A. abietis reveal high conservation in genome architecture, from chromosome-level
synteny to shared patterns of repeat evolution and gene family dynamics. Gene
family expansions in A. abietis included metabolic gene families, involved in
carbohydrate transport while expansions in A. tsugae are involved in cell
differentiation and development, and suppression of plant immunity. These genomic
resources, combined with the detailed characterization of nAChR diversity and
distribution, provide a foundation for understanding the evolution of insecticide
targets in adelgids.
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Table 1. Assembly and Annotation Statistics for A. tsugae and A. abietis

Assembly Total
Chromosomes

N50 (Mb) Length (bp) Sequence
in Chroms

% Gaps % Repeat

A. tsugae 9 24.56 Mb 220,755,323 95.27% 0.000% 17.90%

A. abietis 9 27.91 Mb 253,165,100 87.2% 2.998% 24.91%

BUSCO Genome, Hemiptera
Complete Single Duplicate Fragment Missing n Searched

A. tsugae 99.3% 98.1% 1.2% 0.4% 0.3% 2510

A. abietis 98.5% 97.2% 1.3% 0.3% 1.2% 2510

BUSCO Annotation, Hemiptera
Complete Single Duplicate Fragment Missing n Searched

A. tsugae 98.0% 96.7% 1.3% 0.2% 1.8% 2510

A. abietis 96.5% 94.9% 1.6% 0.3% 3.2% 2510
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Figures:

Figure 1. (A) A. abietis immature gallicolae in gall on Picea abies (source: influentialpoints.com). (B)
A. abietis gall in early development, with stem mother visible. (C) Distribution of North American Picea
and observations of Adelges abietis (source: GBIF, iNaturalist). (D) Hemlock woolly adelgid adult
(Collected July, 2024, Ann Arbor, MI). (E) Eastern hemlock branch infested with A. tsugae, with
centimeter ruler for scale. (F) Range of Tsuga canadensis and Tsuga caroliniana (Little and Luther
1971) and the spread of Adelges tsugae since 1951 (source: 1951-2020 Data derived from USDA
FS-FHP, 2021-2024 observations compiled from infestation reports).
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Figure 2. (A, B) Repeat landscape of known TE families in A. tsugae and A. abietis, respectively.
(C&D) Chromosome models of A. tsugae (left) and A. abietis (right) with gene density from light to
dark (A. tsugae 0-56 genes per 500,000 bp, A. abietis 1-49), repeat density tracks alongside
chromosomes (A. tsugae 2-1231 repeats per 500,000 bp, A. abietis 224-1317), and nAChR positions
marked by points. While numbered according to length, A. tsugae chromosomes are presented in the
order produced by scaffolding to show homology. (E) Synteny between A. abietis and A. tsugae.
Inverted regions are desaturated to differentiate them from their respective chromosomes.
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Figure 3. (A) Upset plot of orthologous gene group interactions between 45 species. Minimum
interaction size displayed is 50. Rightmost vertical bars represent lineages, and are grouped from top
to bottom and darkest to lightest: Phylloxeroidea, Aphididae, other Hemiptera, and non-Hemipteran
arthropods. (B) Phylogenetic tree with the number of significantly expanding and contracting genes
indicated at nodes. Silhouette images from bugwood.org.
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Figure 4

Figure 4. Protein phylogeny of nAChR subtypes and representative AF3 nAChR models. (A)
Protein phylogeny of insect nAChRs from selected species. Areas where there is clear
clustering by nAChR subtype are highlighted and labeled with their subtype designation.
Trees with full gene names and full set clustering available in Figure S1a-b. (B) Side view of
AF3 modeled HWA3 nAChR. (C) Top-down view of AF3 modeled HWA3 nAChR.
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Figure 5. Sequence and 3D comparisons of full nAChR sequences and ligand binding sites. (A)
Percent sequence similarity heat map of A. tsugae (HWA) nAChR protein sequences versus other
selected insect nAChRs. (B) TM score heat map of AlphaFold3 generated A. tsugae nAChR protein
structures versus other selected AlphaFold3 generated insect nAChRs. (C) AlphaFold3 generated
ligand binding site of HWA5 nAChR pentamer, open configuration. (D) Ligand binding site of
pentameric Human alpha 2 nAChR crystal structure, closed configuration (PDB: 5FJV). (E) Logo plot
visualizations of ligand binding site sequences. Ligand binding site consensus sequences for
identified nAChRs from Adelges tsugae (HWA), Adelges abietis (PGA), and Adelges cooleyi are
shown in one logo plot (top), while the ligand binding site consensus sequences of nAChRs from
other selected species (Rhopalosiphum maidis, Apis mellifera, Danaus plexippus, and Drosophila
melanogaster) are shown in another logo plot (bottom). The corresponding loops are labeled along
with their presence on the principal (+) binding face or complementary (–) binding face.
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