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SUMMARY 8

Methodological improvements in cryo-electron microscopy (cryoEM) have made it a useful tool 9

in ligand-bound structure determination for biology and drug design. However, determining the 10

conformation and identity of bound ligands is still challenging at the resolutions typical for cry- 11

oEM. Automated methods can aid in ligand conformational modeling, but current ligand identifi- 12

cation tools — developed for X-ray crystallography data — perform poorly at resolutions common 13

for cryoEM. Here, we present EMERALD-ID, a method capable of docking and evaluating small 14

molecule conformations for ligand identification. EMERALD-ID identifies 43% of common ligands 15

exactly and identifies closely related ligands in 66% of cases. We then use this tool to discover 16

possible ligand identification errors, as well as previously unidentified ligands. Furthermore, we 17

show EMERALD-ID is capable of identifying ligands from custom ligand libraries of various small 18

molecule types, including human metabolites and drug fragments. Our method provides a valu- 19

able addition to cryoEM modeling tools to improve small molecule model accuracy and quality. 20
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INTRODUCTION 23

Over the past decade, cryo-electron microscopy (cryoEM) has become widely used in macro- 24

molecular structure determination as advancements in both data collection and data processing 25

have improved map resolutions. As EM data approaches atomic1,2 and near-atomic resolutions, 26

protein-small molecule interactions are observable, leading to an increase in ligands modeled in 27

cryoEM structures3) and the use of cryoEM in drug discovery4. Despite these advancements in 28

data resolution, the lower resolution of typical cryoEM maps means building models into cryoEM 29

data is still difficult and error-prone for both proteins5 and ligands6. 30

Building on recent advances in protein structure prediction from machine learning, numerous 31

tools exist for robustly building protein models into cryoEM data7–10. However, tools for mod- 32

eling ligands are less well-developed. While ligand fitting tools are available11–13, no capable 33

methods exist to accurately identify ligands at moderate resolution data. Current automated 34

ligand identification methods — primarily developed for crystallographic data — rely on density 35

map correlations14 or shape features of the maps15,16, leading to limited accuracy at resolutions 36

worse than 3 Å. While deep-learning methods for protein structure prediction now promise se- 37

quence to structure prediction of ligands bound to structures17,18, they only determine the ligand 38

conformation, not identity, and are unaware of EM map information. 39
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In order to produce accurate small molecule models and determine ligand identity, additional 40

information to map features must be used. Here, we present EMERALD-ID, a ligand identifica- 41

tion tool for cryoEM data. EMERALD-ID utilizes the RosettaGenFF small molecule force field19, 42

the EMERALD ligand fitting method12, and a linear regression model combining estimated bind- 43

ing affinity and density correlation to discern ligand identities from a library. The accuracy of 44

EMERALD-ID was evaluated on ligand-bound structures of common ligands in the Electron Mi- 45

croscopy Data Bank (EMDB)20, upon which we found 60 EMDB entries with a high-confidence 46

EMERALD-ID solution different from the deposited model. Additionally, we searched deposited 47

maps in the EMDB and identified 65 maps with plausible ligand omissions. Lastly, we show the 48

robustness of EMERALD-ID by screening against large, diverse libraries of human metabolites 49

and drug fragments. 50

RESULTS 51

Explanation of EMERALD-ID 52

An overview of EMERALD-ID is shown in Figure 1. EMERALD-ID takes a user-provided library 53

of ligand identities, an EM density map, and a starting receptor model and docks all identities 54

from the library into the EM map using EMERALD (Fig. 1A). To compare identities fairly, we 55

created a linear regression model that considers ligand size, local resolution of the map around 56

the binding pocket, and the density correlation of the receptor to predict an expected ligand 57

density correlation and estimated binding affinity (∆G) for a given map and ligand (Fig. 1B). 58

The density correlations and ∆G values of all docked identities are compared to the expected 59

values from the model to calculate a unitless Z-score. Once calculated, EMERALD-ID predicts 60

the probability of each identity by a modified cross-entropy function and ranks the molecules 61

(Fig. 1C). 62

To test EMERALD-ID, we wanted to focus on scenarios modelers may experience during 63

structure determination. First, we created a ligand library of thirty common ligands in cryoEM 64

structures. With this library, we determined the accuracy of EMERALD-ID on deposited cryoEM 65

structures, and furthermore, searched maps in the EMDB for unassigned density likely belonging 66

to common ligands. Finally, we examined EMERALD-ID’s capabilities when considering a large 67

endogenous ligand library, as well as its potential for fragment-based drug discovery. 68

Evaluation of ligand identification in deposited structures 69

A common task in ligand identification is screening against a small library of common ligands. 70

We decided to benchmark EMERALD-ID with this task. While the popular modeling suite Phenix 71

provides a list of the most common ligands bound to macromolecular models, several of these 72

ligands do not appear in any cryoEM solved structures. We set out to create our own list of 73

common ligands solved with cryoEM. We settled on 30 common ligand identities to use for 74

evaluation that encompass 38% of small molecule structures in cryoEM. This library included 75

nucleotide substrates and cofactors like ATP and NADH as well as lipids like cholesterol and 76

palmitate. 77

We gathered 1387 appearances of a common ligand identity from 1221 EMDB entries. All 78

30 ligands in the library were docked in the pocket of the first instance of the common ligand 79

in the deposited structure. EMERALD-ID correctly ranked the deposited identity first for 43% 80

of instances (Fig. 2A). Identification results were compared to phenix.ligand identification which 81

determined the correct identity in 10% of cases (Fig. 2A). Our ability to correctly identify the 82
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ligand relied heavily on successfully docking the molecules. EMERALD-ID docked the native 83

identity within 1 Å RMSD of the deposited structure for 39% of cases; in these cases it correctly 84

identified the native ligand 68% of the time (Fig. 2B). Identification accuracy was also dependent 85

on the local resolution of the binding pocket (Fig. 2C). We achieve an accuracy of 46% for all 86

maps with 4.5 Å resolution or better, but accuracy plummeted at worse resolutions. This was 87

unsurprising given the lack of detail in maps at low resolutions, and we previously showed that 88

ligand fitting accuracy in EMERALD decreased at this same resolution12. 89

In instances where EMERALD-ID did not identify the correct ligand, it often chose a closely 90

related identity. In 66% of entries, the top ligand had a Tanimoto similarity coefficient greater 91

than 0.75 to the deposited identity. EMERALD-ID often confused nucleotides that differed by 92

phosphate length or base, which are ambiguous at medium to low map resolutions (Fig. 2D). For 93

steroids and lipids, EMERALD-ID tends to favor smaller ligands within the class, e.g. cholesterol 94

(CLR) vs. cholesterol hemisuccinate (Y01), which is expected given that the larger ligands likely 95

have disordered regions that are not represented in the EM map. 96

Along with the rankings, we looked at the predicted probabilities provided by EMERALD- 97

ID. The true accuracy of the common ligand screen closely matched the predicted accuracy of 98

the top-ranked identity (Fig. 2E). Additionally, the predicted probabilities found possible identity 99

corrections by highlighting high-confidence cases that do not rank the deposited identity first. 100

Indeed, we found 60 “incorrect” cases that have a probability over 0.60. A common possible 101

correction occurred between ATP and ADP. For example, in an ATP synthase21, the deposited 102

structure placed an ATP molecule in the density, despite all 3 phosphates struggling to fit (Fig. 103

3A), while EMERALD-ID preferred an ADP molecule by both binding affinity and density fit (Fig. 104

3B). While the site is likely partially occupied by both identities, our metrics suggested that ADP 105

was the more probable ligand. 106

Another example of mistaken nucleotide identity was found in a structure of the Ufd1/Npl4/Cdc48107

complex22. In the deposited structure, the modeled ATP molecule satisfied the EM map, but 108

in doing so placed the gamma phosphate near an aspartate residue (Fig. 3C). EMERALD-ID 109

elected to avoid this repulsive clash and left a portion of the map unexplained with the top-ranked 110

ADP molecule (Fig. 3D). Likely, the unexplained density belongs to a magnesium ion. Even if 111

EMERALD-ID did not explicitly model the ion, it avoided overfitting into the density because the 112

conformation does not fit energetically. 113

A final example includes a molecule that was too large for the observed density. In a malic 114

enzyme 2 structure23, the nicotinamide moiety of the NAD+ cofactor was unsupported by the 115

density map in the deposited structure (Fig. 3E). The binding pocket is a general nucleotide 116

binding site23, so the AMP molecule favored by EMERALD-ID satisfied the nucleotide restriction 117

while having a better fit into the EM map (Fig. 3F). 118

Discovery of unassigned density of deposited EM maps 119

Given the low resolution of cryoEM maps and lack of ligand identification tools, we suspected 120

that several deposited maps contained regions of density corresponding to ligands that were left 121

unidentified. To remedy this, we searched the EMDB for small molecule-sized unmodeled map 122

regions and screened them using the library of common ligands. Detected regions were filtered 123

by their volume and proximity to the macromolecule so that only the most likely ligand regions 124

were searched. We detected 136 regions from 64 map entries that had a Z-score above -0.5 125

for the top-ranked ligand, and these entries were further analyzed for identity assignment. Likely 126

identifications are shown in Figure 4. 127

Nucleotide di- and triphosphates were commonly found as unmodeled ligands. In the CLC- 128

7/Ostm1 antiporter24, the EM map shows nucleotide-like density, and EMERALD-ID produced 129
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an ADP model that fit the map and interacted with the nearby phosphate binding loop (Fig. 4A). 130

This evidence, the confidence of EMERALD-ID, and that ATP was modeled at this site in a higher 131

resolution map25 (Fig. 4B) all supported this as a nucleotide binding site. We also identified an 132

ATP molecule at an apparent nucleotide binding site in a known ATPase26 (Fig. 4C) that likely 133

went unmodeled because the ligand pocket was not of interest for this protein structure. A 134

structure from the same study modeled ATP at this binding pocket as well (Fig. 4D). Lastly, 135

we found density in a structure of an Na-K-Cl cotransporter in zebrafish27 that EMERALD-ID 136

suspected as an ADP molecule (Fig. 4E). Since this structure’s publication, a nucleotide binding 137

site has been determined in the C-terminal domain in the human homolog of the cotransporter28
138

(Fig. 4F), supporting our finding. 139

Along with nucleotides, our unmodeled density detection found several possible lipid identifi- 140

cations. EMERALD-ID often suggested palmitate molecules in coronavirus spike proteins (Fig. 141

4G). It is known that spike proteins have fatty acid binding sites29 (Fig. 4H), and we previously 142

used EMERALD to model linoleic acid in a spike protein12. While it is likely that palmitate is not 143

the exact identity, we detected the signal of a fatty acid binding site nonetheless. 144

In addition to palmitate molecules, we also found that ten and twelve carbon chain lipids of- 145

ten ranked highly in detected density. For two examples of TRPV channels30,31, the density was 146

found in the transmembrane region of nanodisc-reconstituted proteins (Fig. S1) and likely corre- 147

sponded to disordered lipids from the nanodiscs that cannot be fully identified. While we cannot 148

confidently assign an identity, the frequency of detected regions like these and the abundance of 149

membrane protein structures solved by cryoEM suggest that lipids go undetected in EM maps. 150

Identifying uncommon ligands using an endogenous ligand library 151

While we detected several ligand identities with the common ligand library, we found other den- 152

sity regions that looked like ligands, but evaluation with common ligand identities provided inad- 153

equate models. Additionally, microscopists may co-purify an unknown endogenous ligand with 154

a protein sample, which requires a larger ligand library for identification. To cover scenarios 155

that require more ligand identities, we increased the size of the provided library from 30 to 2950 156

molecules and tested EMERALD-ID’s accuracy on 7 cryoEM structures containing an uncom- 157

mon ligand. 158

To determine test cases, we searched the EMDB for entries containing one of the 2950 de- 159

tected metabolites from the Human Metabolome Database (HMDB)32 and looked at rare ligands 160

with 3 or fewer instances in EM structures. After further filtering by ligand size, resolution, and 161

specimen species, we found 14 cases containing an uncommon ligand, which were reduced to 162

7 after manual inspection. EMERALD-ID ranked the deposited ligand in the top 10% in three out 163

of seven cases (Table 1). For a fourth case (EMDB: 14725, PDB: 7ZH6), the top 10 identities 164

all shared the same steroid core as the endogenous ligand model. Of these four cases, all con- 165

tained a ligand in the top 5% with a Tanimoto similarity coefficient above 0.75, with three being 166

in the top 1%. Of the cases with low signal for the deposited identity, either the deposited ligand 167

model left unexplained density (EMDB: 34910, PDB: 8HNC) (Fig. S2A) or the ligand signal in 168

the EM map was poor, leading to low Z-scores for all molecules tested (EMDBs: 38692, 38966; 169

PDBs: 8XV5, 8Y65) (Fig. S2B&C). 170

During our search for unmodeled ligands in the previous section, we found instances in the 171

EM map that appeared ligand-like, but none of the common ligands scored well. We decided to 172

screen these regions with the endogenous ligand library to find more probable identity matches. 173

For a Piezo 1 ion channel33, a sphingosine lipid was ranked first using the common ligands (Fig. 174

S3A). While the ligand is likely a lipid, the sphingosine model leaves unexplained density, and 175

the density shape and nearby arginine residues suggested a phospholipid identity. Following 176
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identification with the HMDB library, the top-ranked molecule was a phosphatidylserine lipid that 177

explains the binding pocket well (Fig. 5A). EMERALD-ID detected a glutamate ligand for an 178

ADH3 structure in Stenotrophomonas acidaminiphila34 (Fig. S3B). Another structure of the pro- 179

tein in the same study contains a phenylalanine at this binding site34, which was not included in 180

the common ligand library. However, EMERALD-ID detected the amino acid signal, and when a 181

larger library was included, ranked several phenylalanine derivatives within the top 10 structures 182

(Fig. 5B). 183

We also detected a conspicuous ligand blob at the benzodiazepine binding site in a GABAA 184

receptor35 (Fig. S3C). Drugs in the benzodiazepines class bind extracellularly to GABAA recep- 185

tors causing sedative effects, making benzodiazepines effective drugs for anesthetics, seizures, 186

and psychiatric conditions36–38. Given the site’s pharmacological importance, endogenous lig- 187

ands for the site have been sought after, with no known small molecules acting as functional 188

endogenous binders. When we performed an endogenous ligand screen on the detected region, 189

we found 2 plausible identities. Inosine ranked fifth overall (Fig. 5C). Inosine was found to bind 190

to the benzodiazepine site of GABAA receptors39,40, but has been discredited as an endogenous 191

binder for weak binding and lack of activity41. We also found the neurosteroid allopregnanolone 192

in the top 2% (Fig. 5D). Allopregnanolone was included in the sample preparation of the struc- 193

ture and appeared in the transmembrane region of the deposited model35, where it is known to 194

modulate GABAA receptor activity42,43. While further experiments will be needed to confirm the 195

ligand identity, EMERALD-ID provided two reasonable explanations of a small molecule bound 196

to the benzodiazepine site. 197

Identifying fragments for drug screening experiments 198

EMERALD-ID proved accurate when distinguishing identities of endogenous ligands, but as cry- 199

oEM becomes more relevant for drug discovery44, generalizing the method for drug identification 200

becomes crucial. Ligand identification is a necessary task during fragment-based drug discov- 201

ery. In fragment-based drug discovery (FBDD), low molecular weight molecules that weakly bind 202

to a drug target are determined and used as a scaffold to build a drug candidate. An important 203

step in FBDD is to obtain a structure of a fragment bound to the target. However, the identity 204

of the bound fragment may be unknown if a cocktail of fragments is included during sample 205

preparation. Traditionally, structure determination for FBDD has been achieved through X-ray 206

crystallography because high-resolution is needed to resolve the identity of the ligand. But, 207

many drug targets contain transmembrane regions, precluding the use of X-ray crystallography 208

for their structure determination. As resolution limits improve in cryoEM, it is possible to obtain 209

EM maps with resolvable fragment density — opening FDDD to drug targets that are difficult to 210

solve with X-ray crystallography. 211

Principles of FBDD were successfully applied to determine high-resolution fragment bound 212

structures by Saur et al.45 They resolved 4 structures of fragment-sized ligands bound the cancer 213

target PKM2, two of which included cocktails of 4 fragments during sample preparation. These 214

two structures provided examples for us to test fragment screening with EMERALD-ID. We in- 215

cluded both cocktails as libraries for their respective EM maps. EMERALD-ID correctly identified 216

both of the fragments determined by the original authors (Table 2). 217

While these results are promising, more examples will be needed to evaluate EMERALD-ID’s 218

utility for FBDD. To provide more test cases at lower resolution, we turned to realistic simulation 219

EM data (details in Methods). We found 7 high-resolution structures solved by X-ray crystallog- 220

raphy that contained fragment-sized ligands and simulated EM data for them at 3.5 Å resolution. 221

The native fragments were screened against a combined 238 fragment library from the Cam- 222

bridge46 and York47 3D libraries. For five of the seven entries, EMERALD-ID ranked the native 223
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fragment within the top 5 structures (Table 2). Moreover, fragments ranked above the native 224

fragments share similar characteristics to the native fragment (Fig. S4). Despite binding weakly 225

to their receptors, the binding affinity Z-score was powerful at discerning between identities, with 226

5/7 native fragments ranking first by this metric (Table 2). This suggests that EMERALD-ID can 227

be used for fragment screening, even when the fragment density is poor. 228

DISCUSSION 229

Here, we introduce EMERALD-ID to assign identities to ligand density in cryoEM data. We 230

correctly identified ligands in over 40% of instances that contained a common ligand, a rate 231

much higher than Phenix ligand identification. The power of EMERALD-ID was further shown 232

by identifying several ligands that were left unmodeled during the original deposition. Finally, 233

EMERALD-ID proved effective in plausible scenarios of screening a large endogenous ligand 234

library and a fragment library for drug discovery. 235

Along with the predicted probability, we believe the values of the Z-scores will be useful when 236

evaluating ligands. We find that 61% of entries in the common ligand benchmarking set have 237

a top scoring identity with a Z-score of -1.0 or greater. Meanwhile, only 6% of our detected 238

unmodeled ligand regions found a ligand identity better than this threshold. This suggests that 239

the Z-score is sensitive to whether a ligand is present in the structure. Additionally, both binding 240

affinity and density Z-scores should be above -1.0 to eliminate ligands that overfit to the map 241

or ignore the map. By calculating these standardized density fit and energy terms, our Z-score 242

metrics could also be valuable in determining the quality of ligand models. 243

As noted, the success of identification with EMERALD-ID greatly depended on the success 244

of docking the small molecules into density, and the limitations of the method mainly lie with 245

limitations in our ligand docking. Molecules containing inorganic elements like metal ions cannot 246

be properly parameterized for our ligand docking, leaving out ligands like hemes from analysis. 247

Another exclusion from analysis are glycans which, due to their unique structural characteris- 248

tics and covalent binding, require special methods for docking and identification. Additionally, 249

EMERALD can only dock a single ligand conformation at once, so pockets with multiple ligands 250

or cofactors must be docked successively. 251

Incorrect identification may still occur even if the true identity is well-fitted. However, most 252

identity confusion in EMERALD-ID occurred between similar identities (Fig. 2D, Table 1), so 253

even if the true identity is not ranked first or included in the library, a ligand in the same class will 254

likely score well. The binding affinity calculations have a slight bias towards large hydrophobic 255

ligands, and molecules with 10 or fewer heavy atoms can benefit from high density correlations 256

from overfitting. We recommend caution if either scenario describes the top identity and suggest 257

using the Z-score guidelines described above to interpret results. 258

Improvements to EMERALD-ID will likely come from changes in the force field in Rosetta due 259

to the method’s reliance on binding affinity calculations. As mentioned above, these calculations 260

prefer flexible lipids. Corrections to hydrophobic interactions in Rosetta or other advancements in 261

binding affinity calculations via deep learning will alleviate these issues. While our simple linear 262

regression model is effective in estimating binding affinity and ligand map correlation, the model 263

will likely become more accurate with better training data and addition of predictive features 264

— which should occur with standardization of EM tools for ligand validation3,48,49. As presented, 265

EMERALD-ID is effective in identity determination for common modeling scenarios, and we hope 266

that its accuracy and ligand Z-score calculations contribute to improved quality of ligand models 267

for better insights into structural biology. 268
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RESOURCE AVAILABILITY 269

Lead contact 270

Requests for further information and resources should be directed to and will be fulfilled by the 271

lead contact, Frank DiMaio (dimaio@uw.edu). 272

Materials availability 273

This study did not generate new materials. 274

Data and code availability 275

• Data used for this study are available at https://doi.org/10.5281/zenodo.14056520, or- 276

ganized by their respective figure or table. These data include source data for each plot 277

and underlying data used to generate them, all docked ligand conformations for struc- 278

tures featured in figures, docked ligand conformations of the deposited and top identities 279

for the common ligand screen, and docked structures for every tested identity for the en- 280

dogenous ligand and drug fragment screens. Projection stacks, metadata files, and re- 281

constructed maps for simulated EM data for Table 2 are available for download at https: 282

//files.ipd.uw.edu/pub/EMERALD-ID/Table2.tar.gz, and the same files for Figure S6 283

are available at https://files.ipd.uw.edu/pub/EMERALD-ID/Table2FigS3.tar.gz. 284

• Code for EMERALD-ID, the unmodeled density detector, and the cryoEM density simulation 285

are all available in Rosetta for weekly releases after November 12, 2024. Instructions on 286

how to use them and example scripts used for this manuscript are included in the tutorials 287

file at https://doi.org/10.5281/zenodo.14056520. 288

• Any additional information required to reanalyze the data reported in this paper is available 289

from the lead contact upon request. 290
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MAIN FIGURE TITLES AND LEGENDS 309
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Figure 1. Overview of EMERALD-ID. 311

(A) Identities from a provided library are fitted into the EM map with EMERALD. (B) A linear 312

regression model takes features of ligand size, local resolution, and receptor fit into density and 313

predicts expected density correlation and binding affinity values for a given identity-map pair. (C) 314

Predicted values from the model are compared to calculated values from docked models to rank 315

and assign probabilities to identities. 316
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Figure 2. EMERALD-ID results from screening common ligand identities. 318

(A) Fraction of the data for rank placements of the deposited identity for EMERALD-ID (green, 319

n = 1387) and Phenix (purple, n = 1030). (B, C) Accuracy of ranking the deposited identity 320

first by docking success (B) and local resolution (C). (D) Confusion matrix of common ligand 321

identities. Ligands are labeled by their name in the Chemical Component Dictionary. Counts for 322

each identity are normalized by column. (E) Comparison of predicted accuracy to true accuracy 323

for EMERALD-ID. 324
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325

Figure 3. Examples of high-confidence EMERALD-ID identities different 326

than the deposited model. 327

(A, B) Deposited ATP molecule (A) is disfavored for an ADP molecule in EMERALD-ID (B) in an 328

ATP synthase (EMDB: 21264, PDB: 6VOH). (C, D) Deposited ATP molecule (C) is replaced with 329

an ADP molecule in EMERALD-ID (D) in the Ufd1/Npl4/Cdc48 complex (EMDB: 27273, PDB: 330

8DAR). (E, F) Deposited NAD+ molecule (E) in malic enzyme 2 (EMDB: 33145, PDB: 7XDE) is 331

outscored by an AMP molecule (F). 332
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333

Figure 4. Likely ligands identified in unmodeled regions of deposited maps. 334

(A) Detected ADP molecule in the CLC-7/Ostm1 antiporter (EMDB: 30238, PDB: 7BXU). (B) 335

ATP molecule bound at the same site in (A) in a higher resolution EM structure (PDB: 7JM7). 336

(C) Found ATP molecule in the TRiC complex (EMDB: 33053, PDB: 7X7Y). (D) ATP molecule at 337
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an identical site of (C) in a TRiC complex structure from the same study (PDB: 7X3J). (E) ADP 338

molecule ranked first in detected density for a zebrafish Na-K-Cl cotransporter (EMDB: 0473, 339

PDB: 6NPL). (F) ADP bound at nucleotide binding site of a human Na-K-Cl cotransporter (PDB: 340

7AIQ). (G) Detected palmitate molecule bound to a spike protein of SARS-CoV-2 (EMDB: 11207, 341

PDB: 6ZGI). (H) Linoleic acid bound in the free fatty acid binding pocket in SARS-CoV-2 spike 342

protein (PDB: 6ZB5). 343
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344

Figure 5. Endogenous ligand search of detected density. 345

(A) Top-ranking phosphatidylserine molecule for detected density in the Piezo 1 ion channel 346

(EMDB: 7128, PDB: 6BPZ). (B) Identities ranked in the top 10 that share features to phenylala- 347

nine in ADH3 from S. acidaminiphila (EMDB: 35452, PDB: 8IHQ). (C, D) Well-scored identities 348

for detected density at the benzodiazepine binding site in a GABAA receptor (EMDB: 40462, 349

PDB: 8SGO). Inosine (C) ranked fifth overall and allopregnanolone (D) ranked 41st. 350
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MAIN TABLES 351

Table 1. Endogenous library screen of uncommon ligand identities. 352

Entry Rank Rank of similar ligand

EMD-30074: HC3 7/2701 (0.3%) 1/2701 (0.04%)
EMD-25195: BUA 35/2564 (1.4%) 16/2564 (0.6%)
EMD-14725: C0R 294/2676 (11.0%) 15/2676 (0.6%)
EMD-34910: BLR 629/2753 (22.8%) 629/2753 (22.8%)
EMD-35017: GCO 192/2804 (6.8%) 100/2804 (3.6%)
EMD-38692: PXM 457/2516 (18.2%) 457/2516 (18.2%)
EMD-38966: URC 364/2593 (14.0%) 364/2593 (14.0%)

353

Similar ligand defined as an identity with a Tanimoto similarity coefficient greater than 0.75 to 354

the deposited model. 355

Table 2. Screening drug fragments for real and simulated EM data. 356

Saur et al.
Entry (EMDB ID) Rank ∆G Z-score rank

EMD-10577: NXE 1/4 3/4
EMD-10584: NXH 1/4 1/4

Simulated data
Entry (PDB ID) Rank ∆G Z-score rank

1EQG: IBP 1/236 1/236
1GWQ: ZTW 1/237 1/237
1N1M: A3M 2/237 1/237
1QWC: 14W 2/237 25/237
1S39: AQO 1/232 1/232
1YZ3: SKA 36/236 1/236
2OHK: 1SQ 25/236 42/236

357
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STAR METHODS 539

Method details 540

Ligand parameter generation 541

The outcome of ligand docking and identification greatly depends on the protonation state and 542

partial charges assigned to the ligand. We recommend using our provided ligand parameters or 543

using the MMFF94 force field50 to calculate partial charges. For all experiments, hydrogen atoms 544

were added at pH 7.4 to unprotonated SDF files via openbabel (v. 3.1.0)51. Partial charges for 545

the protonated files were calculated with the MMFF94 force field in openbabel. The resulting 546

MOL2 files were then converted to Rosetta-specific ligand residue parameters files for docking. 547

The origin of the unprotonated SDF file depended on the experiment. For model training, an 548

SDF file of the first instance of the ligand in its respective structure was downloaded from the 549

PDB. For the common ligand library, SDF files of the ideal geometries for each ligand were used. 550

The endogenous ligand library and drug fragment libraries started from SMILES strings. The 551

SMILES for the endogenous ligand library were downloaded from the HMDB and converted into 552

2D coordinates with openbabel. The 2D coordinates were converted to 3D in openbabel with 3 553

successive rounds of 3D conformer generation on the slowest setting using a final energy mini- 554

mization with 2000 steps of the steepest descent algorithm. Drug fragments had their SMILES 555

strings protonated with dimorphite (v. 1.2.4)52 at pH 7.4. The protonated SMILES strings were 556

converted to 3D coordinates with openbabel on its default speed and then minimized with 2000 557

steps of the steepest descent algorithm. 558

Local resolution calculation 559

One feature used in training and evaluation of EMERALD-ID was the local resolution of the 560

binding pocket. To generate these values for all maps across all experiments, we first calculated 561

local resolution maps with MonoRes from the Xmipp software package (v. 3.22.07.0)53 and then 562

calculated average local resolution values for all voxels within 5 Å of the ligand’s center of mass. 563

Local resolution maps were determined by filtering the deposited EM map with a Gaussian kernel 564

with a sigma of 0.02 times the map dimensions. Voxels in the filtered map with a value above 565

0.05 times the maximum voxel value were saved to a binary mask for the map, which was then 566

used by MonoRes to create the local resolution map. Voxels with local resolution values of zero 567

were excluded from the average calculation. If the average local resolution in the binding pocket 568

was more than 1 Å lower than the global resolution, then the global resolution was used in place 569

of the local resolution. 570

Linear regression model calculation 571

To train the linear regression model, we took first instances of ligand identities in EMDB entries 572

where the docked ligand conformation was within 1 Å RMSD of the deposited model in our 573

previous EMERALD manuscript12. Since we only looked at ligands with 25 or fewer torsion 574

angles when evaluating EMERALD, we supplemented the training data with entries that had 575

ligand identities with over 25 torsion angles and could be docked within 1.5 Å RMSD of the 576

deposited model. The ligands and surrounding flexible residues of all structures were relaxed in 577

the EM map with a Cartesian minimization in Rosetta and their binding affinities and ligand map 578

correlations were calculated. The relationships between these terms and ligand-map features 579
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were probed with a linear regression model in R (v. 4.3.1). We found that the number of heavy 580

atoms in the ligand (a) predicted binding affinity with Eq. 1 581

∆Gexpected = −12.4442− 0.4918a (1)

and ligand density correlation could be predicted with the ligand’s heavy atom count, the local 582

resolution of the map 5 Å around the ligand, and the correlation of the entire receptor to the map 583

with Eq.2 584

densityexpected = 0.4535− 0.01904r + 0.5543p− 0.0006722a (2)

where r is the local resolution, p is the map correlation of the entire pose, and a is the number of 585

heavy atoms, . 586

The density correlations and binding affinities for all docked identities along with their respec- 587

tive expected values were used to calculate Z-scores where the expected value is the mean and 588

the standard deviation was determined empirically by tuning the standard deviation of the resid- 589

uals from the linear regression model (σ∆G = −10.533, σdensity = 0.043152). Once Z-scores for 590

the binding affinities and density correlations were calculated, they were combined into a single 591

Z-score by averaging the two values and dividing by
√
0.5. To calculate predicted probabilities, a 592

softmax function was applied to a distribution of modified Z-scores 593

s(Zi) =
ekiZi∑K
j=1 e

kjZj

for i = 1, 2, . . . , K (3)

Where k is a vector of constants where 594

ki = e0.1Zmax + e0.3(li−0.6) for i = 1, 2, . . . , K (4)

and Zmax is the maximum Z-score of all identities and l is the map correlation of the docked 595

ligand identity. 596

Determination of common ligand library 597

We wanted to provide a library of common ligands that can be used for most identification tasks. 598

Common ligand libraries exist in other identification methods14,15, but these libraries were created 599

from the entire PDB. Several ligands in the library are ligands relevant for X-ray crystallography 600

but not cryoEM, like cryoprotectants. We decided to create our own library of common ligands 601

specific for cryoEM solved structures. Entries from the EMDB between 2-6 Å global resolution 602

for which a deposited ligand-bound model existed before September 13, 2023 were collected. 603

The first instance of a unique ligand identity in each entry was counted, excluding ligands that 604

cannot be processed by EMERALD, like covalently-bound ligands, ligands containing metal ele- 605

ments, and inorganic compounds. The resulting list of ligands contained several phospholipids. 606

Identities among phospholipids are difficult to parse and require special considerations to dock 607

properly due to their conformational search space, so we excluded examples of phospholipids 608

from the common ligand library. Finally, analogs of higher count common ligands, such as ATP 609

analogs phosphomethyl- and phosphoamino-phosphonic acid adenylate ester, were removed. 610

The remaining ligands with more than 30 instances were separated and provided a library of 30 611

common ligand identities. 612

We searched the PDB for EM-solved entries that contain one of the 30 common ligands. 613

Entries were filtered to exclude those with covalently-bound ligands, metal-coordinating bonds, 614

and examples with another small molecule within 10 Å of the ligand of interest. Structures were 615

further excluded if they were missing whole domains modeled into the map. After filtering, we 616

had 1387 entries to screen common ligands with EMERALD-ID. 617
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Small molecule docking with EMERALD 618

The EM map, ligand parameter files, and an input model of the receptor were provided to EMER- 619

ALD for small molecule docking. Input models had all HETATM lines removed except for an ATP 620

model centered on the analyzed ligand blob. The identity provided in the input structure does 621

not matter, as long as the ligand is centered on the density that is being investigated. For 622

each identity in the library, a pool of 100 ligand conformations were generated and optimized 623

over 10 generations of a genetic algorithm as described in the EMERALD manuscript12, except 624

when docking drug fragments where a pool size of 50 conformations were used because of their 625

smaller conformational search space. The conformation with the lowest Rosetta energy for each 626

identity was passed to EMERALD-ID for evaluation. 627

Estimated binding affinity values were calculated using a simple entropy model in Rosetta 628

as described in Zhou et al.54 For ligand-map correlation values, we applied a penalty to the 629

value from the EMERALD-docked model because large ligands at low resolutions had ligand 630

map correlations unreasonably high for their fit into the map because of high background density 631

signal from the receptor. The penalty was determined by the difference in map correlation with 632

and without the ligand present (∆lig dens). The penalty was empirically derived by observing 633

cutoffs of ∆lig dens values from the training dataset and was calculated with Eq. 5. 634

penalty =

{
0 if ∆lig dens ≥ 0.15

0.15− (2/3)∆lig dens if ∆lig dens < 0.15
(5)

Once calculated, Z-scores were determined as explained above. 635

EMERALD-ID can be operated sequentially or in parallel, depending on the size of the ligand 636

library. When operating sequentially, the cryoEM map needs to be loaded once and all ligand 637

molecules will be docked in a single job of Rosetta. For large ligand libraries, separate EMER- 638

ALD runs for each molecule can happen in parallel, and an external python script evaluates and 639

rank all ligands once docking is complete. Examples on how to run in both modes are included 640

in the file repository described in the Code Availability statement. 641

Ligand identification of common ligands with Phenix 642

EM maps for entries in the common ligand dataset were converted to structure factors using 643

phenix.map to structure factors. Ideal CIF files for each ligand in the common ligand library 644

were downloaded from the PDB. The structure factors, an input model without the ligand, a 645

directory containing the CIF files, and a search center of the center of mass of the deposited 646

ligand model were provided to phenix.ligand identification (v. 1.21.1-5286). The rankings of the 647

deposited identity from Phenix identification were compared to EMERALD-ID. 648

Unassigned density finder methodology and filtering 649

The EMDB ligand-bound entries within 2-6 Å global resolution described above along with 3- 650

4 Å maps containing structures without bound ligands were searched for unassigned regions 651

(”blobs”) of the map that could possibly belong to a ligand. We discovered these regions with 652

an unassigned density finding tool. The tool created a mask of the receptor and calculated the 653

mean and standard deviation of all voxel values within the mask. Z-scores for all voxel values 654

outside the mask were calculated using these values. Voxels with a Z-score greater than 0.5 655

were labeled as peaks and neighboring peak voxels were grouped together to form blobs. Each 656

blob was scored by its number of voxels and fraction of surface voxels that are within 4 Å of the 657

receptor. Blobs were filtered to only keep those with more than 70 voxels, more than 90% of 658
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the blob surface interacting with the receptor, and further than 5 Å from a cut or terminus in the 659

protein structure. All blobs passing the filters were screened with the common ligand library with 660

the binding pocket centered on the found blob. After screening, top-ranked ligand identities with 661

a Z-score greater than -0.5 were manually analyzed. 662

Endogenous ligand library screening 663

We obtained 3030 SMILES strings for all detected and quantified metabolites with an endoge- 664

nous origin from the Human Metabolome Database32. After processing as described above, we 665

had 2950 ligand identities to use for docking. Using the RCSB REST API55, we searched for 666

rare occurring identities that had one to three cryoEM solved structures containing the respec- 667

tive ligand’s SMILES string. Entries were filtered to those that had a human source organism, 668

a resolution worse than 3.3 Å, and more than 5 heavy atoms in the ligand. This left us with 14 669

entries, which were then manually pruned to 7 after removing entries with multiple ligands in the 670

binding pocket and large lipids with inconclusive support in the EM map. The 2950 endogenous 671

ligand identities were docked for each of the 7 entries and ranks were determined. Ligand sim- 672

ilarity among the endogenous library was calculated by Tanimoto similarity coefficient of small 673

molecule fingerprints with RDkit (release 2024.03.4)56. 674

Fragment screening preparation 675

Both examples from the fragment cocktail experiments for pyruvate kinase 2 from Saur et al.45
676

were used for fragment screening. Fragment parameters were created from SMILES strings 677

as described above and a library of the respective cocktails were provided for identification for 678

EMERALD-ID. For examples to use with simulated data, fragment bound crystal structures were 679

taken from Congreve et al.57 The Cambridge46 and York47 3D libraries provided 137 and 106 680

fragments, respectively, for the simulated data fragment screening. We chose these libraries 681

because their SMILES strings were publicly available and the fragment sizes in the library were 682

similar to the fragments in the crystal structures. 683

The sim cryo tool58 in Rosetta was used to simulate cryoEM maps for the fragment bound 684

crystal structures. Briefly, sim cryo creates 2D projections of protein structures for map recon- 685

struction rather than attempting to directly simulate the 3D map. The input structure is randomly 686

rotated for a selected number of rotations, and projection images across each XYZ plane are 687

recorded for each rotation. Gaussian noise is applied to each image, and pixels in the pro- 688

jections, which correspond to atoms in the structure, are randomly perturbed to simulate atom 689

heterogeneity. 690

We simulated cryoEM maps for the crystal structures to a resolution around 3.5 Å by using 691

a Gaussian noise multiplier of 0.6, a pixel size of 1, and an atom perturbation factor of the 692

atom’s B-factor divided by 120 to produce an image stack of 45000 projections. The image 693

stacks of the perturbed projections were passed into cryoSPARC (v.4.4)59 and 2D class averages 694

were created. 3D maps were created from 2D classes with ab initio reconstruction and then a 695

homogeneous refinement. Two cases, 1FV9 and 2JJC, could not produce realistic cryoEM maps 696

because of their small size, but all other structures produced simulated maps with realistic low- 697

resolution ligand binding sites (Fig. S5). To further show the quality of simulated data with 698

sim cryo, we simulated EM data of cryoEM-solved structures using the same simulation protocol 699

described above. We found that map correlations for ligand models and their binding pockets 700

were similar for the real EM and simulated EM data (Fig. S6). 701
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Ligand and data visualization 702

Figures of ligand-bound models and their EM maps were created using UCSF Chimera (v. 703

1.17.3)60. Plotting of data was performed using the ggplot2 package (v. 3.4.3) in R61. 704
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