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2 

1. Abstract 24 

Initially introduced in 1909 by William Bateson, classic epistasis (genetic variant 25 

interaction) refers to the phenomenon that one variant prevents another variant from a 26 

different locus from manifesting its effects. The potential effects of genetic variant 27 

interactions on complex diseases have been recognized for the past decades. 28 

Moreover, It has been studied and demonstrated that leveraging the combined SNP 29 

effects within the genetic block can significantly increase calculation power, reducing 30 

background noise, ultimately leading to novel epistasis discovery that the single SNP 31 

statistical epistasis study might overlook. However, it is still an open question how we 32 

can best combine gene structure representation modelling and interaction learning into 33 

an end-to-end model for gene interaction searching. Here, in the current study, we 34 

developed a neural genetic block interaction searching model that can effectively 35 

process large SNP chip inputs and output the potential genetic block interaction 36 

heatmap. Our model augments a previously published hierarchical transformer 37 

architecture (Liu and Lapata, 2019) with the ability to model genetic blocks.  The 38 

cross-block relationship mapping was achieved via a hierarchical attention mechanism 39 

which allows the sharing of information regarding specific phenotypes, as opposed to 40 

simple unsupervised dimensionality reduction methods e.g. PCA. Results on both 41 

simulation and UK Biobank studies show our model brings substantial improvements 42 

compared to traditional exhaustive searching and neural network methods. 43 

 44 

2. Introduction 45 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.18.24317486doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.18.24317486
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

In the past decades, the genetic factors that contribute to the pathogenesis of complex 46 

diseases have been extensively studied, and genome-wide association study (GWAS) 47 

has played a fundamental role in unveiling novel risk alleles. The approach of the 48 

GWAS framework assumes each SNP has an independent effect on phenotype and the 49 

disease's statistical relevance was tested individually (Niel et al., 2015). However, 50 

most complex disease variants identified so far confer relatively small increments in 51 

risk, leading to many questions about how the remaining “missing heritability” can be 52 

explained (Maher, 2008). For example, GWAS correlation identified >80 common 53 

variants for type 2 diabetes with most of those associated with insulin secretion, 54 

together, they only contribute ~ 10% of type 2 diabetes (T2D) heritability. T2D Low-55 

frequency and rare variants have also been identified, but their contribution towards 56 

“missing heritability” is also limited (Stančáková and Laakso, 2016).  Indeed, with a 57 

larger sample size and the advancement of sequencing techniques, GWAS will likely 58 

continue to expand the number of novel complex disease genetic markers. However, 59 

the current consensus underscores the growing recognition that the missing heritability 60 

of complex diseases extends beyond the scope of singular genetic factors. Interactions 61 

among two or more SNPs, a combinatorial effect known as epistasis, have been 62 

proven (Turton et al., 2011) can at least partly explain the “missing heritability”.  63 

 64 

Finding the optimal interacting SNP combination for certain phenotypes, which 65 

implies an exhaustive search of all possible cases, can be a challenging task. For 66 

instance, in a dataset containing 500,000 SNPs, there are approximately 250 billion 67 

possible pairwise SNP combinations. This immense number presents significant 68 
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challenges, not only in terms of computational hardware requirements but also in the 69 

risk of losing true signals due to overcorrection for multiple comparisons resulting in a 70 

reduction in statistical power. A problem we often refer to as the “curse of 71 

dimensionality”. To address this issue, several scalable statistical approaches have 72 

been proposed in recent years; however, each comes with its own set of limitations. 73 

Some methods (Cordell, 2002) only select “top SNPs” (the SNPs most correlated with 74 

phenotypes) for epistasis searching, while ignoring the potential effects of 75 

neighbouring SNPs. Indeed, over the past few decades, extensive research (Morris and 76 

Kaplan, 2002; Zaykin et al., 2002; Chen et al., 2020) has highlighted the necessity and 77 

efficiency of leveraging the combined effects of multiple SNPs within certain genetic 78 

regions e.g. haplotype blocks, rather than focusing on individual SNPs in association 79 

studies. Some have proposed to summarise multi-dimensional SNPs into one-80 

dimensional representations using unsupervised methods such as PCA (Li et al., 81 

2009). However, these methods overlook important phenotype information and 82 

compress highly dependent SNPs into a single dimension, making it difficult to detect 83 

signals within these units. In short, it is still an open question how we can best 84 

combine genetic block representation learning and interaction modelling to an end-to-85 

end model to increase calculation power.  86 

 87 

The rapid development of deep learning and artificial intelligence seems to hold 88 

another promise for epistasis studies. Several studies (Pérez-Enciso and Zingaretti 89 

2019; Cui et al., 2022) have suggested Deep Neural Networks (DNNs) can map the 90 

flexible, both linear and non-linear relationships between SNPs and observed 91 
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phenotypes. However, DNNs, which are primarily designed for classification, with a 92 

black-box nature that makes it challenging to interpret results, particularly in 93 

identifying which SNPs are interacting. Many studies aim to bridge this gap between 94 

interpretability and DNN structures using such as layerwise relevance (Mieth et al., 95 

2021), permutation testing (Cui et al., 2022), and more recently, transformer with 96 

attention scores (Graça et al., 2024). While the potential application of transformer in 97 

genome sequencing analysis has enjoyed renewed interest. Scanning through most of 98 

the genetic transformer studies in recent years (Jubair et al., 2021; Reyes et al., 2022; 99 

Zhou et al., 2022), the basic unit, as the “word” in natural language, is still single SNP 100 

with little existing genetic structure e.g. haplotype block, the main focus of current 101 

study, introduced within the attention block. The size of haplotype blocks can vary 102 

and is often larger than the typical units analysed in natural language processing. This 103 

variability poses a substantial challenge in encoding these differently-sized haplotype 104 

blocks into the transformer encoder while preserving their biological significance 105 

during this process, to ensure that the outputs of the attention scores are interpretable 106 

and relevant. 107 

 108 

In the current study, taking inspiration from the hierarchical transformer model (Liu 109 

and Lapata, 2019), we proposed a novel haplotype block-haplotype block association 110 

study workflow, Haplotype Block LSTM hierarchical Transformer (HB-LT). HB-LT 111 

is constructed in a hierarchical manner which allows it to efficiently capture both 112 

within and cross-haplotype relationships relevant to specific phenotypes. We 113 

demonstrate with simulations that grouping SNPs into dimensionality-reduced 114 
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haplotype block structures significantly increases detection power for epistasis studies 115 

compared to existing methods. Furthermore, by evaluating our model on the UK 116 

Biobank dataset, we demonstrated its potential for real-world applications. 117 

 118 

3. Methods 119 

3.1 Model description. 120 

 The model in the current study is mainly inspired by Liu and Lapata (2019) and 121 

several previous machine learning works (Chang et al., 2020; Cui et al., 2022 and 122 

Graça et al., 2023) dedicated to epistasis studies. Our haplotype epistasis study system 123 

is illustrated in Figure 1. The inputs of the model are the pre-organised haplotype 124 

datasets and the associated phenotype of each individual, while the outputs are the 125 

attention weights (epistasis) among potential candidates.  126 

 127 

3.1.1 Long short-term memory (LSTM) pre-selection. For large dataset analysis, 128 

applying pre-selection methods effectively reduces computational burdens and 129 

enhances calculation efficiency. However, one of the key challenges in the current 130 

study is the variation in haplotype block lengths, which can range from as few as 2 to 131 

more than 100 SNPs. Here, we adopted a learning-based approach. A linear regression 132 

model is applied to each haplotype individually, and its average root of mean square 133 

error on the testing dataset is used as a score indicating whether it should be selected 134 

as a phenotype-associated candidate. Haplotype blocks of the SNP dataset were first 135 

constructed using the confidence interval method (Gabriel et al., 2002), we then use 136 

recurrent neural network LSTM to represent each haplotype block. Let 137 

                           138 
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 are word embedding for tokens in each haplotype block, where  are updated 139 

vectors for the token after LSTM.  140 

An average-pooling is then used to obtain a fixed length representation and a linear 141 

transformation yields the final representation of the haplotype block .  142 

                           143 

All input haplotype blocks were pre-split into training and testing datasets. The model 144 

is trained by minimising the root of mean square error of  and the phenotype . In 145 

testing, the phenotype-associated haplotype block candidates were selected based on 146 

the mean prediction score.  147 

 148 

3.1.2 Hierarchical transformer encoder.  149 

3.1.2.1 Embedding. Input SNPs are first represented by word embeddings. Let150 

 represent the embedded dimensional vectors of the SNP . Let  denote the 151 

haplotype where .  is the total number of SNPs in each haplotype block. 152 

In our hierarchical haplotype transformer, each token (SNP) has two positions that 153 

need to be considered, namely , the position of the token (SNP) within the haplotype, 154 

and , the position of the haplotype block within the input sequence. We follow 155 

(Vaswani et al., 2017) and use sine and cosine functions for calculating positional 156 

embedding. These two positional embedding vectors were then concatenated and the 157 

final input vector of each token (SNP) for the hierarchical haplotype transformer 158 

model is: . 159 

  160 

3.1.2.2 Local haplotype attention block. The main aim of the local haplotype 161 

attention block is to map the dynamic attention scores among SNPs within each 162 
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haplotype block. It contains several components, including multi-head attention, layer 163 

normalisation and feed-forward. The number of these local attention blocks to be used 164 

in the model will be decided by the researchers themselves. Let 165 

 denote the features of SNPs within each haplotype input to 166 

the local haplotype attention block. For the  attention head, the query , 167 

key  and value  of each SNP are calculated based on 168 

,  and  respectively. The linear projection learnable 169 

parameters weight are matrices . 170 

. The output of  attention head will be: . The 171 

multi-head results were then concatenated and linear transferred with learnable weight 172 

 to get the final results. The feed-forward layer is composed of two 173 

fully connected (FC) layers in inverse order with an activation function Tahn in 174 

between.  175 

 176 

3.1.2.3 Inter-haplotype attention block. To exchange information across different 177 

haplotypes, an inter-haplotype attention block was used. To obtain a fixed-length 178 

haplotype representation, a weighted, multi-head pooling was first used to represent 179 

each haplotype. In each head,  weight distributions over tokens (SNPs) are calculated 180 

and different heads will encode haplotypes with different attention weights. Let 181 

 denote the output vector from the last layer of the local haplotype attention 182 

block, which will be the input of the multi-head pooling layer. For haplotype , for 183 

head , a linear transformation was first applied to convert the input vector into an 184 

attention score  and a value vector  with the weight  and . 185 
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The final output  is a weighted sum representing haplotype  in head  where 186 

.  187 

 188 

Similar to local haplotype attention blocks, inter-haplotype allows one haplotype to 189 

attend to another to model the haplotype-haplotype dependencies.  190 

 191 

 192 

 193 

 194 

Where  and , the output  was then flatted to 195 

generate a vector with dimension . Finally, the different heads for each haplotype 196 

were then concatenated and linear transformed  197 

where  and  will be added to the original token  vector to update the 198 

token. Figure 2 provides a schematic view of inter-haplotype block attention. 199 

 200 

3.2 Simulation dataset.  201 

The simulation datasets were achieved by re-sampling approaches with existing 202 

genotype data as reference panels, thereby retaining allele frequency and LD patterns 203 

(Wright et al., 2007). In the current study, the re-sampling based method Hapgen2 (Su 204 

et al., 2011) was applied with 1000Genomes (Auton & Salcedo, 2015) as a reference 205 

panel. In total, chromosome 20 of 1000 individuals was resampled and subjected to 206 
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the following analysis. The haplotype block was parsed based on the confidence 207 

interval method (Gabriel et al., 2002) by PLINK (Purcell et al., 2007).   208 

 209 

In our current study, we first simulate the expression of  of each haplotype block  210 

according to a linear combination of all SNPs in the haplotype block.  211 

                                                           212 

The phenotype was then simulated based on three epistasis models, which were 213 

originally proposed by Burton et al (2007). More specifically, model 1 reflects an 214 

epistasis model where the odds of disease increase multiplicatively within and 215 

between 2-way disease markers. Using  and  to denote the expression of haplotype 216 

 and ,  and  to denote the baseline and the factor of odd disease increase. Model1: 217 

 218 

In contrast, model 2 represents a disease model where the odds of disease only 219 

increase unless both loci have at least one disease-associated allele,  220 

  221 

Model 3 is similar to model 2, but renders a simpler threshold model as  222 

 223 

 224 

To simulate the simple epistasis model, two haplotype blocks will be randomly 225 

selected each time and the phenotype model 1, model 2 or model 3 will be simulated 226 

accordingly. To simulate the complex epistasis model, one dataset will contain 227 

multiple epistasis from different SNP pairs. Here, we use the ‘Combined Model 228 
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1+2+3’ as a complex epistasis model which contains three epistasis from the previous 229 

three basic models. 230 

 231 

3.3 Baseline models.  232 

To benchmark our model, we selected two state-of-the-art approaches for comparison 233 

with the current proposed framework, matrixEpistasis (Zhu and Fang, 2017) and 234 

GWAS_NN (Cui et al., 2022).  MatrixEpistasis represents a state-of-the-art method 235 

for exhaustive epistasis searching. In contrast, GWAS_NN is one of the few methods 236 

in the current field that tackles epistasis detection using neural networks, while also 237 

providing an interpretation for the observed results. The GWAS_NN model first 238 

learns the genetic block representations from all SNPs of a genetic block in a shallow 239 

layer and then learns the complex relationships between genetic blocks in a deep 240 

layer. These two baseline models exemplify the two main categories for epistasis 241 

detection: exhaustive searching and machine learning. Both baseline models were 242 

operated with the default settings unless indicated otherwise.  243 

 244 

3.4 Cohort description and statistical analysis. 245 

3.4.1 Cohort description. This research has been conducted using the UK Biobank 246 

Resource. A material transfer agreement was signed with UK Biobank that covers 247 

Research Tissue Bank (RTB) under projects 49731 and 59642.  The UK Biobank 248 

study began in 2006 and, by 2010, had recruited over 500,000 participants from the 249 

general UK population, aged 40 to 69 at the time of enrollment. The UK Biobank 250 

genetic data contains genotypes for 488,377 participants. These were assayed using 251 
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two different yet similar assays, Applied Biosystems UK BiLEVE Axiom Array by 252 

Affymetrix (Thermo Fisher Scientific) and Applied Biosystems UK Biobank Axiom 253 

Array. More detail on the assay and quality control can be found in the UK Biobank 254 

Genotyping and Quality Control 255 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/genotyping_qc.pdf.). Individuals 256 

included in the current study from UK Biobank have T2D and are of European 257 

descent. The UK The REC reference for UK Biobank is 16/NW/0274. 258 

 259 

3.4.2 Candidate genes selection. To test the potential application of HB-LT in a real-260 

world scenario, we applied HB-LT to pre-selected glycated haemoglobin associated 261 

genes. The candidate genes were first extracted from the DisGeNET database (Piñero, 262 

et al., 2015). In total, fourteen genes were extracted and their coordinates 263 

(chromosome, gene start position, and gene end position) were obtained using the 264 

BioMart Project martview tool (Supplemental material). Next, SNPs located in each 265 

gene ± 10 kbps were extracted in PLINK (Purcell et al., 2007). The thresholds set for 266 

quality control including, imputation quality, Hardy-Weinberg equilibrium, 267 

genotyping missing data across individuals, and genotyping missing rate were 0.8, 10-268 

10, 0.05, and 0.05 respectively. 269 

 270 

3.4.3 Covariants pre-filtering. The datasets were subjected to a PCA-based covariant 271 

pre-filtering stage to reduce the confounding effects before they feed into the HB-LT 272 

for potential epistasis signal mining. Four covariants, including sex, age of diabetes 273 

diagnosis, diabetes duration and population genetic structure were standardised 274 
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(Scikit-learn package) and subjected to PCA (Scikit-learn package) to reduce into a 2-275 

dimensional space. A  square was then applied to locate the most densely 276 

populated area and individuals within this area were selected and subjected to the 277 

following analysis. 278 

 279 

3.5 Software support. 280 

We conducted model-building and statistical analysis mainly using Python 3.9 281 

(https://www.python.org/) and additional packages including Pandas (2.2.2), Numpy 282 

(1.26.4), PyTorch (2.3.1), and Tensorflow (2.16.1). Other software includes R 4.2.2 283 

(https://www.r-project.org/), Hapgen2 284 

(https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/), PLINK 1.9 285 

(https://www.cog-genomics.org/plink/) and BioMart Project martview 286 

(https://mart.ensembl.org/). The figures in the current study were drawn by Matplotlib 287 

(3.8.2) and Plotly (5.22.0).  288 

 289 

3.6 Data availability statement.  290 

UK Biobank data are available to registered investigators under approved applications 291 

(http://www.ukbiobank.ac.uk). Other relevant data are available from the 292 

corresponding author upon request. The source code will be available shortly after the 293 

deposition.  294 

 295 

4. Results 296 

Long short-term memory (LSTM) selects potential phenotype-associated signals 297 

as stage 1 of the current model.  298 
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To pre-select potential phenotype-associated candidates from pools of haplotype 299 

blocks in the human genome while maintaining a feasible computational burden, it is 300 

essential to implement efficient filtering techniques. These techniques should be 301 

capable of learning the representations of haplotype blocks by considering all the 302 

SNPs within each block to the phenotype. Long short-term memory (LSTM) is a 303 

recurrent neural network that is capable of learning long-range dependency and can 304 

process sequences with variable lengths. It was widely used in datasets that process 305 

“sequential” properties, such as natural language translation, before the introduction of 306 

the Transformer model (Vaswani et al., 2017). Nevertheless, LSTMs still demonstrate 307 

several advantages, especially for small datasets such as haplotype blocks, making 308 

them a potentially effective technique for the filtering stage. 309 

 310 

In the current study, we evaluated three epistasis models (model 1, model 2, and 311 

model 3) as described by Burton et al. (2007), using chromosome 20 data from 1,000 312 

individuals. Single nucleotide polymorphisms (SNPs) were pre-organized into 313 

haplotype blocks using PLINK. Detailed descriptions of the dataset simulation and 314 

haplotype block parsing methods can be found in the Methods section. Each haplotype 315 

was tested individually by LSTM (n=10) and the root of mean square error was 316 

recorded each time. Figure 3 shows the LSTM performance of chromosome 20 with 2 317 

random haplotype blocks selected as epistasis signals of model 1, model 2 and model 318 

3 (from top to bottom) at one record. Multiple valleys can be observed in all three 319 

plots, indicating the presence of real epistasis signals. To quantify the performance of 320 

the model across multiple runs with different haplotype block sizes, we repeated this 321 
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process 10 times and recorded the ROC AUC each time. As shown in the figure, the 322 

LSTM can distinguish the epistasis signals from the background noise, achieving an 323 

area under the curve (AUC) close to 1 in all three simple epistasis models. 324 

Additionally, we conducted tests using the complex epistasis model to evaluate the 325 

LSTM's capability in distinguishing signals. This complex epistasis model 326 

encapsulates the combined effects of model 1, model 2, and model 3, which feature 327 

multiple epistatic interactions from different haplotype block pairs. Employing 328 

assessment criteria similar to those used for the simple epistasis model, Figure 3 329 

shows that the LSTM demonstrates robust performance in accurately identifying all 330 

haplotype blocks which contain complex epistasis signals. In short, in both simple and 331 

complex epistasis models, the LSTM is an effective tool for selecting potential 332 

candidates from large haplotype pools, significantly reducing the computational 333 

burden and increasing the calculation power for subsequent hierarchical transformer 334 

analysis. 335 

 336 

The hierarchical transformer encoder maps the haplotype block interactions 337 

with the complex epistasis model as stage 2 of the current study.  338 

After selecting the potential phenotype-associated haplotype block candidates, we 339 

applied a hierarchical transformer encoder and continued with the simulation datasets 340 

to assess its ability for epistasis signal detections. The hierarchical transformer 341 

encoder is a modified version of the hierarchical transformer that was originally 342 

proposed by Liu and Lapata (2019). The potential epistasis signals were quantified 343 

and visualised using the attention weights, which served as the main output of the 344 
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current hierarchical transformer encoder. "Attention," first introduced by Vaswani et 345 

al. (2017), is a mechanism in the transformer neural network that enables the model to 346 

dynamically weigh the importance of each element in an input sequence relative to the 347 

others. The attention weights, the main output of our current model, are computed 348 

using a scaled dot-product that quantifies this "relatedness" between pairs of haplotype 349 

blocks and SNPs (within haplotype block). Several studies (Ahmed, Aly and Liu, 350 

2024; Graça et al., 2024) have demonstrated these attention weights that learned by 351 

the model, at least partially, can be interpreted as the epistasis interactive scores 352 

between genetic regions.  353 

 354 

In the hierarchical transformer encoder, attention weights are initially mapped 355 

between each SNP within each haplotype block. Subsequently, a fixed-length 356 

representation of each haplotype is generated using multi-head pooling. Multi-head 357 

attention weights are then calculated between haplotypes. This updated information is 358 

incorporated into the original SNP embedding and processed through the feed-forward 359 

layer. For further details, please refer to the Methods section. Figure 4a illustrates the 360 

Root Mean Square Error (RMSE) and loss for both training and testing datasets, split 361 

in a ratio of 0.8:0.2, for a single record. The plots demonstrate a smooth training 362 

trajectory with no significant discrepancies between the training and testing datasets, 363 

indicating stable model performance and effective training without overfitting. 364 

Additionally, this process was repeated 10 times, each iteration using different pre-365 

selected simulated signals (Figure 4b). The model consistently demonstrated a robust 366 
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performance in phenotype predictions with mean RMSE lower than 0.012 for both 367 

training and testing datasets.  368 

 369 

More importantly, to evaluate whether the simulated complex epistasis signals 370 

(model1+2+3) can be at least partially captured by the cross-haplotype attention 371 

weights, which are the primary output of our current HB-LT model, we compared 372 

these weights with the ground truth matrix. We then plotted the ROC AUC curve 373 

(n=10), as shown in Figure 4c. The model achieved an average AUC of 0.83. In short, 374 

after the LSTM pre-selected the potential phenotype-associated haplotype blocks, the 375 

hierarchical transformer encoder demonstrated reasonable performance in 376 

distinguishing potential interaction/epistasis signals between haplotype blocks. 377 

 378 

HB-LT outperforms baseline models for both simple and complex epistasis 379 

models. 380 

Traditional exhaustive epistasis searching methods are often facing a challenge 381 

referred to as the “curse of dimensionality”.  The SNPs that are involved in the 382 

epistatic interactions might have low minor allele frequencies, however, the variants 383 

to be tested can be huge. As a result, detecting these interactions becomes challenging 384 

due to the reduced statistical power and the increased likelihood of both type 1 and 385 

type 2 errors. In the current study, we selected matrixEpistasis (Zhu and Fang, 2017) 386 

as one of the representatives for an exhaustive epistasis searching method against our 387 

current HB-LT model.  388 
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In contrast, we also tested two deep learning neural network baseline models, 389 

GWAS_NN (Cui et al., 2022) and LSTM with the vanilla transformer encoder, against 390 

our current HB-LT model. In GWAS_NN, the long sequence of SNPs was initially 391 

divided into different genetic blocks (SNPs layer). Fully connected multilayer 392 

perceptrons (MLPs) were then used to learn a fixed representation for each genetic 393 

block . Another set of MLPs was subsequently trained to learn the epistasis 394 

between these genetic blocks. Additionally, we also tested the LSTM with the vanilla 395 

transformer encoder against our HB-LT model to assess the potential advantages of 396 

the hierarchical transformer structure compared to the vanilla single SNP transformer 397 

structure for epistasis studies. 398 

 399 

A total of 6,156 haplotype blocks (60,501 SNPs) from chromosome 20 in the 400 

simulation datasets were analysed using three baseline models and the HB-LT model. 401 

These models were evaluated under both simple and complex epistasis conditions 402 

with recorded ROC AUC (n=10). Overall, all four models showed robust performance 403 

in identifying epistasis signals. MatrixEpistasis demonstrated a stable yet 404 

comparatively low performance, with an average of around 0.73 across both simple 405 

and complex epistasis models. This outcome likely reflects the reduced statistical 406 

power of exhaustive searching methods when handling large SNP datasets. In 407 

contrast, HB-LT exhibited the highest performance across both simple and complex 408 

models, although this advantage was less pronounced when dealing with complex 409 

models. The reason HB-LT has a larger ROC AUC than baseline models could mainly 410 

be because HB-LT employs multi-head pooling to utilise all SNPs for representing 411 
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haplotype blocks in a supervised manner. This approach not only reduces 412 

dimensionality compared to considering each SNP individually but also provides more 413 

informative representations than selecting a single SNP or using unsupervised 414 

methods such as PCA.  415 

 416 

 417 

Interaction discovery in a diabetes glycated haemoglobin study. 418 

To inspect how trustworthy our proposed framework is in a real-world scenario, 419 

experiments on real-world cohort, UK BioBank for glycated haemoglobin (HbA1c) 420 

are performed. Glycated haemoglobin (HbA1c) is the most common biomarker used 421 

to monitor glucose control in diabetes patients (WHO, 2011), which reflects the 422 

glycemic load ~ 3 months and traits such as hemoglobinopathies and alteration in 423 

intracellular glucose metabolism (Nathan, Turgeon and Regan, 2007). HbA1c levels 424 

are influenced by both environmental and genetic factors. Research studies (Snieder et 425 

al., 2001; Meigs et al., 2002) estimating the heritability of HbA1c in non-diabetic 426 

individuals report a range from 27% to 62%, providing strong evidence of a 427 

significant genetic component in HbA1c variability. Previous genome-wide 428 

association studies (GWAS) (Wheeler et al., 2017) have identified more than 100 429 

genetic variants to be associated with HbA1c. In this study, we re-examined the 430 

HbA1c-associated loci in the UK Biobank cohort to explore potential novel epistasis 431 

signals, both within and across haplotype blocks. To limit the potential confounding 432 

factors in our current study, patients were pre-filtered based on 4 covariants (age of 433 

diabetes diagnosis; diabetes duration; sex and population genetic structure) in UK 434 

Biobank to select individuals with similar characteristics and eliminate the potential 435 
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outliers. The clinical features of individuals from the UK Biobank used in the current 436 

study are shown in Table 1. The chosen datasets have 1277 individuals, with in total 437 

of 14 genes with 10kbp flanking regions added to both ends, 74 haplotype blocks and 438 

1821 SNPs. The haplotype blocks were parsed based on the confidence interval 439 

method (Gabriel et al., 2002). More details regarding individual covariants pre-440 

selection and haplotype block parsing can be referred to the Methods section.   441 

 442 

Cross-haplotype block epistasis  443 

Unlike the simulated datasets, the interacting haplotype blocks are not known in the 444 

real datasets. One of the common approaches to validate the proposed framework’s 445 

prediction and interpretation is to find previous works that report genes and epistatic 446 

relationships on the related disease. Afterwards, the objective is to map the framework 447 

haplotype block outputs to the target genes. In the UK Biobank, using HB-LT, we 448 

observed 7 pairwise interaction candidates. All interaction candidates of the HbA1c 449 

phenotype and their corresponding attention scores were listed in the first two 450 

columns of Table 2. The threshold is set as attention scores higher than 0.1. There are 451 

no standard ways to choose the attention threshold. For the future studies, researchers 452 

can set the threshold wherever they think that fits their hypothesis. 453 

We then investigate whether the interaction candidates discovered by HB-LT can be 454 

detected by other methods. Similarly to the simulation dataset section, we trained 455 

GWAS_NN and recorded the interaction scores for each interaction candidate in the 456 

third column in Table 2. Not all signals detected by HB-LT can also be mapped out by 457 

GWAS_NN as significant. This could potentially highlight that HB-LT can detect 458 
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novel signals which can be overlooked by other methods. Finally, We then check if 459 

any of the gene interactions have already been recorded in the previous studies, shown 460 

in the last column of Table 2.  461 

 462 

Within-haplotype SNP epistasis 463 

One of the key advantages of HB-LT compared to other multi-dimensional reduction 464 

methods is that it trains each SNP individually before pooling them into a fixed 465 

haplotype representation. This approach preserves the haplotype structure during the 466 

training process, allowing us to monitor not only potential cross-haplotype 467 

interactions but also SNP interactions within each haplotype block. Indeed, it is 468 

believed that SNPs within a functional region have a higher chance to interact with 469 

each other and influence the phenotype (Ma, Clark and Keinan, 2013). We listed all 470 

the within-haplotype SNP interaction candidates, gene names and attention scores in 471 

the first three columns of Table 3. By setting the threshold > 0.05, there are 16 within 472 

haplotype block pairwise SNP interactions observed. Similarly, we compared the 473 

within-haplotype pairwise SNP interaction results obtained from HB-LT with those 474 

identified using the previously published exhaustive search method, MatrixEpistasis 475 

and recorded the p-value in the last column of Table 3.  476 

 477 

In summary, leveraging pre-selected HbA1c-associated genes from the UK Biobank, 478 

we explore the potential real-world application of HB-LT. Future studies are essential 479 

to statistically and biologically validate our current findings. Additionally, further 480 
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investigation is warranted to assess the feasibility of HB-LT in hypothesis-free, large-481 

scale genetic datasets. 482 

 483 

5. Discussion 484 

The current existing approaches for detecting interactions in genetic study face several 485 

challenges including: (i) to reduce the “curse of dimensionality”, genes are typically 486 

represented as the most important SNPs while ignoring the potential effects of 487 

neighbouring SNPs. (ii) only restrictive forms of interactions are considered. (iii) 488 

while scalable methods like PCA have been proposed to reduce the multidimensional 489 

SNP data into a one-dimensional representation, these techniques often neglect 490 

important phenotype-related information. Additionally, such methods make it difficult 491 

to analyse the internal structure of each condensed multi-SNP unit in relation to the 492 

phenotype. Indeed, there is a need for a framework that integrates genetic block 493 

representation learning with the modelling of both intra- and inter-block interactions 494 

within an end-to-end model. Here, we proposed a deep learning genetic block 495 

detection method, Haplotype Block LSTM hierarchical Transformer (HB-LT). HB-LT 496 

can hierarchically encode genetic SNP sequences. In HB-LT, each SNPs in 497 

relationship to its surrounding SNPs within each genetic block were learned by a 498 

multi-attention head. Next, a pooling method is applied to get a fixed representation of 499 

each genetic block, cross genetic block relationships via an attention method were 500 

then mapped as opposed to concatenating dimensional condensed genetic units into 501 

flat sequences and then fed into the model. This approach enables the model to 502 

dynamically learn richer structural dependencies among SNPs within each genetic 503 
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block and effectively incorporate these insights into the inter-genetic block layer. In 504 

the experimental work, the results obtained from HB-LT were compared with both 505 

exhaustive searching (MatrixEpistasis) and deep learning methods (GWAS_NN). The 506 

current study shows that HB-LT exhibits a better performance for epistasis detections 507 

in both simple and complex epistasis models. Moreover, HB-LT was also tested on 508 

HbA1c in the UK Biobank to assess its application in a real-world scenario.  509 

 510 

The current proposed deep learning framework may have many attractive features, but 511 

it also has several shortcomings. First, it should be noted, that although the potential 512 

applications of attention weights in transformer as an indicator of epistasis have been 513 

studied and demonstrated in recent years (Reyes et al., 2022; Graça et al., 2024), these 514 

weights cannot be directly interpreted as measurements of epistasis levels in genetics. 515 

While these weights can highlight regions of interest in relation to the phenotype, the 516 

focus of attention mechanisms is on capturing token dependencies and relevant 517 

patterns in the dataset to improve outcome predictions, not necessarily to isolate or 518 

quantify specific genetic interactions. Moreover, the intricate relationship between 519 

statistical and biological epistasis adds an additional layer of complexity (Moore and 520 

Williams, 2005; Ebbert, Ridge, and Kauwe, 2015). The disparity between these two 521 

models of epistasis often obscures the biological relevance and implications of 522 

statistical findings, making it challenging to draw clear, meaningful conclusions about 523 

the underlying genetic mechanisms. Indeed, we view our proposed HB-LT framework 524 

as a tool for mining and filtering large datasets. Regions of interest identified by HB-525 

LT should be further investigated and validated through more targeted statistical 526 
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methods and potential complementary biological experiments. Second, the potential 527 

covariants, such as age and population genetic structure are not directly incorporated 528 

in the current model, instead, a PCA-based pre-filtering stage was applied to minimise 529 

the confounding effects. By implementing this approach, we minimised the risk of 530 

extraneous factors contaminating the HB-LT model outputs, making the results more 531 

straightforward to interpret. However, this adjustment means that the HB-LT model 532 

will not be applied to the full dataset size, potentially leading to a loss of information. 533 

Additionally, this change may introduce new complexities for future users. The 534 

challenge of how to incorporate potential covariates into the model remains an open 535 

question that needs to be addressed. Finally, the potential of whole-genome 536 

hypothesis-free epistasis studies to significantly enhance outcome prediction has been 537 

a topic of debate and scepticism for decades. Several studies (González-Camacho et 538 

al., 2012; Mäki-Tanila and Hill, 2014 and Wei et al., 2014) have demonstrated that 539 

despite the possible biological ubiquity of epistasis, the total genetic variance of 540 

polygenic traits is likely largely to be explained by the “additive top SNPs model”. 541 

However, other studies (Dudley and Johnson, 2009; Hu et al., 2011; Álvarez-Castro et 542 

al., 2012; Wang et al., 2012) conducted showed that the inclusion of epistatic effect 543 

networks for prediction improved prediction over the use of additive effects only. 544 

Indeed, we do not intend to propose HB-LT as a replacement for the “top SNPs 545 

approach”. This study is not aimed at comparing epistasis and non-epistasis models 546 

for outcome prediction. Instead, HB-LT serves as a complementary tool designed to 547 

uncover interactions that might otherwise be overlooked, potentially revealing novel 548 
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genetic structures underlying complex disease development and leading to the 549 

discovery of new markers. 550 

 551 

6. Conclusion 552 

For the past decades, Genome-wide Association Studies (GWAS) have successfully 553 

identified thousands of risk alleles for complex diseases. Despite this, it usually failed 554 

to capture the statistical epistasis i.e. interaction between SNPs, which is 555 

acknowledged as a fundamental factor for understanding complex disease genetic 556 

pathways. Traditional epistasis searching tools often suffer from computational burden 557 

and lack of calculation power. Moreover, it has become increasingly recognized that 558 

leveraging the combined effects of SNP groups within specific genetic blocks for 559 

epistasis searching can yield greater phenotypic variance than focusing on individual 560 

SNPs alone. However, to our best knowledge, there is yet a framework that has been 561 

proposed that can incorporate this hierarchical genetic structure to form an end-to-end 562 

model for epistasis searching. Here, we proposed HB-LT, which takes advantage of 563 

the haplotype block structure existing in the genome to reduce the dimensionality of 564 

SNP features and increase statistical power. Haplotype block is not the only way to 565 

measure SNP dependencies and grouping, the impact of different methods for 566 

epistasis study should be investigated in the future.  567 
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(Mean+-SD)  

Age of diabetes diagnosis  56.3+-3.0 

Duration (year) 4.0+-2.4 

Diastolic blood pressure  83.0+-5.1 

Systolic blood pressure 142.0+-8.8 
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Sex (Male: Female) 482:795 

 762 

Table 2. Cross-haplotype blocks attention in UK Biobank by two independent 763 

methods.  764 

Phenotype Genes Haplo 

Block* 

HB-LT 

Attention 

Scores 

(UK 

Biobank) 

GWAS_N

N 

Interactio

n Scores 

(UK 

Biobank) 

References 

HbA1c LOC1122

68412, 

KLF11, 

CYS1; 

GCK, 

LOC1053

75257, 

YKT6 

H2, H11 0.23 0.0012 Oishi and Manabe, 

2018 

 LOC1122

68412, 

KLF11, 

H2, H15 0.22 0.17 NA 
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CYS1; 

BLK 

 BLK, 

LOC1053

79241; 

NSMCE2 

H23, H30 0.13 0.09 NA 

 NSMCE2 H30, H31 0.30 0.23  

 CEL; 

KCNJ11  

H34, H41 0.13 0.19 NA 

 CEL; 

NCR3LG

1, 

KCNJ11 

H34, H40 0.12 0.19 NA 

 ABCC8; 

KCNJ11 

H40, H42 0.12 0.008 De Franco et al., 2020 

* Full length of each Haplotype block seen in Supplemental material.  765 

 766 

Table 3. Within haplotype block SNP attention in UK Biobank by both HB-LT and 767 

MatrixEpistasis.  768 

Phenotype Genes Pairwise Attention P-value (UK BioBank) 
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SNPs Scores 

(UK 

BioBank) 

HB-LT 

MatrixEpistasis  

HbA1c NA rs6756950, 

rs7420169 

0.11 0.00037 

 HNF4A rs736820, 

rs736824 

0.11 0.00046 

 GCK rs2908285, 

rs118180640 

0.09 0.00023 

 YKT6, 

GCK 

rs1814253, 

rs118180640 

 

0.07 0.00163 

 GCK, NA rs118180640

, 

rs758983 

 

0.07 0.00091 

 NEUROD

1, NA 

rs12053195

, 

rs6756950 

0.06 0.052 
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 NA, 

NEUROD1 

rs6756950, 

rs12052558 

 

0.05 0.002 

 NA, 

NEUROD1 

rs6756950, 

rs16867467 

 

0.05 0.0002 

 769 

  770 
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Figure Legend 771 

Figure 1. Pipeline of our within and cross haplotype block epistasis detection 772 

method (HB-LT). The haplotype dataset was first selected by Long short-term 773 

memory (LSTM) to obtain the potential phenotype-associated haplotype blocks 774 

(HBs). These candidates are then fed into the Hierarchical transformer encoder to 775 

obtain the within and cross-haplotype block attention weights, which could be 776 

subjected to the following analysis for potential epistasis signal discoveries.  777 

 778 

Figure 2.  The overall pipeline of the hierarchical haplotype transformer 779 

encoder.   780 

 781 

Figure 3. Long short-term memory (LSTM) selects potential phenotype-782 

associated haplotype block candidates on both simple and complex epistasis 783 

models using simulated datasets. Each haplotype block was independently trained 784 

and tested by the LSTM model. The root mean square error (RMSE) of the testing 785 

datasets was plotted along with the mean and standard deviation (SD). To evaluate the 786 

model’s performance with different haplotype block lengths, the process was repeated 787 

(n=10). For each iteration, the area under the curve (AUC) of the model's predictions 788 

was plotted against the ground truth. 789 

 790 

Figure 4. The hierarchical transformer encoder distinguishes epistasis signals in 791 

a complex epistasis model using simulated datasets. Pre-selected haplotype block 792 

candidates identified by the long short-term memory (LSTM) model were 793 
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subsequently processed by the hierarchical transformer encoder. (a) Training and 794 

testing loss, and root mean square error (RMSE) for a single record. (b) Box plot 795 

showing the RMSE for training and testing datasets (n=10). (c) The area under the 796 

curve (AUC) for the complex epistasis signals predicted by the hierarchical 797 

transformer encoder, compared to the ground truth. 798 

 799 

Figure 5. The comparison of HB-LT with state-of-art Epistasis searching 800 

methods, MatrixEpistasis (Zhu and Fang, 2017) and GWAS_NN (Cui et al., 801 

2022) in both simple and complex epistasis models with n=10. 802 

 803 

 804 
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