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Abstract: 
Purpose 
The Clinical Genome Resource (ClinGen) Gene Curation Expert Panels (GCEPs) have 
historically focused on specific organ systems or phenotypes; thus, the ClinGen Syndromic 
Disorders GCEP (SD-GCEP) was formed to address an unmet need. 
Methods 
The SD-GCEP applied ClinGen’s framework to evaluate the clinical validity of genes associated 
with rare syndromic disorders. 111 Gene-Disease Relationships (GDRs) associated with 100 
genes spanning the clinical spectrum of syndromic disorders were curated. 
Results 
From April 2020 through March 2024, 38 precurations were performed on genes with multiple 
disease relationships and were reviewed to determine if the disorders were part of a spectrum 
or distinct entities. 14 genes were lumped into a single disease entity and 24 were split into 
separate entities, of which 11 were curated by the SD-GCEP. A full review of 111 GDRs for 100 
genes followed, with 78 classified as Definitive, 9 as Strong, 15 as Moderate, and 9 as Limited 
highlighting where further data are needed. All diseases involved two or more organ systems, 
while the majority (88/111 GDRs, 79.2%) had five or more organ systems affected. 
Conclusion 
The SD-GCEP addresses a critical gap in gene curation efforts, enabling inclusion of genes for 
syndromic disorders in clinical testing and contributing to keeping pace with the rapid discovery 
of new genetic syndromes. 
 
Introduction: 

Syndromic disorders are complex conditions involving multiple organs or body systems 
and are highly enriched among infants with structural birth defects. Combined, genetic disorders 
and congenital malformations represent the leading cause of infant mortality in the US, 
responsible for 20% of deaths,1,2 and have a large health economic burden in children and 
adults.3 Syndromic disorders are one of the largest and fastest growing categories of disorders 
with multiple new syndromes published every month.4 To ensure the clinical validity of genetic 
testing for syndromic disorders, it is critical to rigorously evaluate the underlying evidence and 
classify the validity of purported gene-disease relationships (GDRs). 

GDR validity curation is an essential first step for accurate and consistent clinical 
interpretation across variant triage, classification, and reporting.5 The American College of 
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Medical Genetics and Genomics (ACMG) recommends that diagnostic gene panels include only 
GDRs that meet the Clinical Genome Resource’s (ClinGen) criteria for Definitive, Strong, or 
Moderate evidence. GDRs with a classification of Limited should typically only be assessed as 
part of exploratory exome or genome analysis, while GDRs classified as Disputed or Refuted 
are not appropriate for diagnostic testing.6 For variant classification,7 variants found in genes 
with only a Moderate GDR should not exceed a classification of likely pathogenic, and variants 
in genes with Limited evidence should not be classified above a variant of uncertain 
significance.6 

The Clinical Genome Resource (ClinGen), a National Institutes of Health (NIH) National 
Human Genome Research Institute (NHGRI)-funded initiative, is building an authoritative central 
resource to define the clinical relevance of genes and variants for use in precision medicine and 
research.8 To achieve this goal, ClinGen has developed an evidence-based gene-disease 
validity curation framework that allows semiquantitative assessment of the strength of evidence 
underlying GDRs which is then translated into seven qualitative classifications. Four 
classification categories indicate evidence supporting a GDR (Definitive, Strong, Moderate, and 
Limited) while two categories indicate contradictory evidence (Disputed, Refuted). A Strong 
classification has the same level of evidence as a Definitive classification, but less than three 
years have passed between publications documenting human genetic evidence. No Known 
Disease Relationship indicates the GDR is not supported by human genetic evidence. Curated 
evidence is reviewed by gene curation expert panels (GCEPs), with appropriate clinical and 
laboratory expertise, and the resultant classification confirmed or adjusted based on expert 
insight.9 

ClinGen GCEPs have historically focused on a specific organ system or phenotype. The 
challenge of the growing number of syndromic disorders published each year not covered by 
these curation efforts provided an opportunity for a GCEP to take a different approach to 
address this unmet need. The ClinGen Syndromic Disorders Gene Curation Expert Panel (SD-
GCEP; https://clinicalgenome.org/affiliation/40060) was therefore established in March 2020 to 
classify the clinical validity of GDRs involving multiple body systems not under evaluation by 
another GCEP and is co-funded by the National Institute of Child Health and Human 
Development (NICHD) and National Institute of Neurological Disorders and Stroke (NINDS). 
The SD-GCEP is currently composed of 46 expert and biocurator members (and 25 former 
members) across 41 institutions and 6 continents. The GCEP meets twice a month plus 
additional quarterly meetings to accommodate as many time zones as possible. Here, we 
describe the work of the SD-GCEP, providing the community with outcomes and updates from 
the group.  
 
 
Methods: 
Membership 

The membership of the SD-GCEP is composed of medical geneticists, genetic 
counselors, clinical molecular geneticists, variant scientists, and basic scientists, as well as staff 
biocurators from ClinGen. These members are largely volunteers from academic institutes, 
clinical laboratories, and organizations that provide online gene-level resources. Initial 
membership was solicited through invitation or self-nomination. New members can volunteer 
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through ClinGen’s Community Curation Database (https://ccdb.clinicalgenome.org/apply) or by 
reaching out to the SD-GCEP coordinator directly (https://clinicalgenome.org/affiliation/40060).  
 
Identifying Relevant Genes 

Five approaches have been used during the existence of the SD-GCEP to identify 
relevant GDRs for curation. Approach 1 was to identify syndromic GDRs most frequently tested 
in clinical laboratories, prioritized by the number of tests in the Genetic Testing Registry (GTR)10 
and the number of pathogenic or likely pathogenic variants in the gene in ClinVar. Approach 2 
identified GDRs detected through clinical genome or exome sequencing performed by 
diagnostic laboratories within the membership of the SD-GCEP, utilizing and building upon the 
curation efforts performed as part of this testing. Approach 3 identified new GDRs from research 
consortia including NHGRI’s Centers of Mendelian Genomics and GREGoR consortium, again 
utilizing existing internal efforts. Approach 4 included any GDRs requested by other GCEPs for 
phenotypes requiring the broad expertise of the SD-GCEP. Most recently, Approach 5 was used 
to capture additional syndromic GDRs that have been curated by groups not using the ClinGen 
framework by first searching the Gene Curation Coalition (GenCC) database 
(https://search.thegencc.org/) for disease assertions with “syndrome” in name, then prioritizing 
Strong or Definitive classifications given these are often included on gene panels. The genes 
from all approaches were reviewed to ensure the disease assertions were syndromic in nature, 
rather than pertaining to a single organ system, and the final list reviewed and approved by the 
SD-GCEP chairs.  
 
Precuration for Genes with Multiple Disease Assertions 

ClinGen’s precuration is the process of evaluating available information for GDRs to 
determine the disease entity and mode of inheritance to be curated.11 When evaluating genes 
with multiple disease assertions listed within ontologies such as Online Mendelian Inheritance in 
Man  (OMIM),12 Orphanet,13 Mondo Disease Ontology (Mondo),14 or the literature, the SD-
GCEP refers to ClinGen’s Lumping and Splitting guidelines15 to precurate the gene. ‘Lumping’ 
involves combining two or more conditions into a single disease entity, while ‘splitting’ involves 
separating disease assertions into distinct entities. To inform this decision, the molecular 
mechanism, phenotypic variability within and across families, and the mode of inheritance are 
reviewed for each disease assertion, and the decision to lump or split is then voted on by the 
expert panel. Following ClinGen’s guidelines, disorders are generally lumped into a single entity 
when the underlying molecular mechanism is consistent, and the clinical features represent a 
spectrum of the same condition. When there is insufficient data on the molecular mechanism or 
uncertainty on the phenotypic spectrum, disadvantages of splitting include dilution of evidence 
across multiple GDRs and underweighting of the final curation strength. The expert panel 
decides on the most appropriate name for the entity to be curated by applying the dyadic 
naming convention(s) for lumped conditions, which are defined by the ClinGen Guidance and 
Recommendations for Monogenic Disease Nomenclature.16 The naming decisions are 
communicated to OMIM, Mondo, and Orphanet for consideration of inclusion in ontology.   
 
Curation and Expert Panel Review 
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The SD-GCEP evaluates the clinical validity of GDRs according to ClinGen’s gene 
curation workflow,9 and curation is performed by SD-GCEP curators using ClinGen’s Gene 
Curation Interface (GCI)17. Genetic and experimental data, either supporting or disputing the 
validity of the disease relationship, are examined and classified using the current standard 
operating procedures document (for this study, versions 7 to 10 depending on the date of 
curation (https://clinicalgenome.org/docs/?doc-type=curation-activity-procedures&curation-
procedure=gene-disease-validity)) by a SD-GCEP biocurator. On average, two biocurators each 
present one curation per meeting on either the biweekly or quarterly video conference call. The 
final decision is voted on and approved by the members in attendance at the meeting, including 
both biocurators and experts. Curators submit evidence summaries for approval by the chairs 
which are then published to the ClinGen website for broad community access. 
 
SD-GCEP Specific Guidelines 

Many GCEPs adopt internal modifications to the ClinGen Gene-Disease Validity 
Standard Operating Procedures in places where there is a degree of subjectivity. In addition to 
the formal guidelines, and to help with consistency, the SD-GCEP has created a comprehensive 
“SD-GCEP Scoring Guidance and Specifications Document” and a short form that includes 
additional guidance and detailed information specific to the SD-GCEP, including where to look 
for data and how to score them (Supplemental Material). Of note, considering human genetic 
evidence, the SD-GCEP specifically downgrades loss-of-function variants for homozygosity and 
if consanguinity cannot be ruled out, because these individuals are likely have multiple 
homozygous variants due to runs of homozygosity, and it may be unclear which homozygous 
variants are causative18 (Table 1). Due to the rarity of many syndromic phenotypes meaning the 
number of unique pathogenic variants can be limited, the SD-GCEP allows scoring of multiple 
observations of the same variant when de novo occurrence is proven. Each observation is 
awarded the default score for the variant type as well as the upgrade for de novo status. 
Recurrently occurring variants that present with a highly specific phenotype and are known to 
act via a dominant mechanism are upgraded (Table 1). In considering experimental evidence, 
non-human animal models are thoroughly evaluated to determine whether the phenotype 
appropriately recapitulates the syndromic human disease. Models that lack reproducibility of 
multiple human phenotypes are downgraded to 1 point, instead of the default 2 points (Table 1). 
Models where a human disease variant has been knocked-in are considered for the maximum 4 
points. Morpholino-mediated knock-down models are downgraded to 1 point, unless re-
expression of the wild-type allele demonstrates rescue of the phenotype.19  
 
Results:  
Assessing Gene-Disease Validity Across Syndromic Disorders 

In the first four years, from April 2020 through March 2024, the SD-GCEP performed 38 
precurations and 111 curations of GDRs involving 100 genes. For precurations, 14 genes with 
multiple assertions were lumped and curated as a single entity and 24 were split. For curations, 
78 GDRs were classified as Definitive, 9 as Strong, 15 as Moderate, and 9 as Limited (Figure 
1A+B). For the 111 GDRs, 60 had an autosomal recessive (AR) mode of inheritance, 45 were 
autosomal dominant (AD), three were X-linked recessive, two were X-linked dominant, and one 
had an unclear mode of inheritance (Figure 1C). The unclear mode of inheritance is associated 
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with the GDR for UNC13A and congenital nervous system disorder, which was curated by the 
SD-GCEP in 2021. At the time, three variants including missense and stop-gained variants had 
been reported in association with a neurodevelopmental syndrome characterized by variable 
features of developmental delay, seizures, microcephaly, and myopathy/movement disorders.20–

22 Based on the limited number of reported cases, a distinct mode of inheritance, mechanism of 
disease, and phenotypic spectrum could not be determined,therefore the classification remains 
limited and provisional until further evidence is published. 

The 38 GDR curations from the most frequently tested genes in clinical laboratories 
were more often classified as Definitive (“Approach 1”: 33 Definitive, 1 Strong, 2 Moderate, 2 
Limited). This was similar to the distribution seen for the 48 GDR curations identified through 
clinical genomic sequencing performed by diagnostic laboratories by the membership of the SD-
GCEP (“Approach 2”: 33 Definitive, 4 Strong, 6 Moderate, 5 Limited). A broader distribution was 
seen for the 14 GDR curations from within a research setting (“Approach 3”: 5 Definitive, 3 
Strong, 4 Moderate, 2 Limited). Seven GDR curations came from collaboration with other 
GCEPs (Approach 4”: 4 Definitive, 3 Moderate), and 4 GDR curations came from the more 
recently designed gene list looking at Strong and Definitive GDRs in the GenCC that have not 
yet been curated by ClinGen (“Approach “5: 3 Definitive, 1 Strong) (Figure 1D). It was an open 
question whether GDRs without animal models would have sufficient evidence to reach 
classifications necessary to be included in diagnostic testing panels (Moderate or above); 
however, of the curations for which there were no animal models available to score, 8 were 
classified as Definitive, 4 as Strong, 4 as Moderate, and only 4 as Limited (Figure 2A). For 
example, the GDR for ARSL and X-linked chondrodysplasia punctata 1 is well defined in the 
literature, with variants in at least 50 probands in seven publications scored in this curation 23–29, 
maxing out the genetic evidence at 12 points and reaching a Definitive classification, but has no 
model organism. Overall, the presence of an animal model did correlate with the curation 
classification. 86.1% of curations classified as Definitive, 55.6% of curations classified as 
Strong, 66.7% of curations classified as Moderate, and 55.6% of curations classified as Limited 
had an animal model scored. Mouse models were the predominant model organism scored, 
while zebrafish, Xenopus, Drosophila, C. elegans, and other models have also been scored 
(Figure 2B). 82% of all curations had animal models counted as experimental data (Figure 2C). 
 
Phenotypic Diversity in Syndromic Disorders 
GDRs curated by the SD-GCEP are syndromic in nature, demonstrated by the diseases 
involved affecting more than one organ system. The number of HPO terms under each of the 23 
top-level terms by organ system (direct descendants of “Phenotypic abnormality, 
“HPO:0000118”) for each of the disease assertions for GDRs under curation was counted 
(Figure 3). All of the 23 different organ systems were affected in at least one of the curated 
GDRs. Of the 111 GDRs curated, a median of 8 organ systems were affected per disease. All 
diseases involved two or more organ systems, while the majority (88/111 GDRs, 79.2%) had 
five or more organ systems affected (Figure 3). The most commonly involved organ systems 
included the nervous system, head and neck, eye, and the skeletal system.  
 
Collaboration Between GCEPs  
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The overlapping phenotypic features between syndromic disorders and other disease areas 
necessitated communication and collaboration between the SD-GCEP and other GCEPs. 
Genes are transferred to different GCEPs based on the specific expertise needed. For example, 
if a disease assertion is more syndromic than a GCEP is comfortable reviewing, they may 
transfer the gene to be curated by the SD-GCEP. Conversely, if a disease assertion originally 
thought to be syndromic mostly affects one organ system, it will be transferred to another GCEP 
if there is a specific GCEP for that disease area. Transfer to a more suitable GCEP also 
happened when new GCEPs were started after the SD-GCEP planned GDR lists were 
composed. Over the past four years, the SD-GCEP has collaborated and exchanged genes with 
eight GCEPs: Cerebral Palsy, Congenital Myopathies, Craniofacial Malformations, 
Glomerulopathy, Intellectual Disability and Autism, Kidney Cystic and Ciliopathy Disorders, 
Retina, and Severe Combined Immune Deficiency and Combined Immune Deficiency GCEPs 
(Figure 4). Through this collaboration, 10 genes have been shared between the SD-GCEP and 
another GCEP (USP7, NFIX, GATAD2B, ASHL1, SMO, LMX1B, IKBKG, INPP5E, CPLANE1, 
TCTN2). For example, the GDR CPLANE1 and Joubert syndrome 17 was shared between the 
SD-GCEP from the Kidney Cystic and Ciliopathy Disorders (KCCD) GCEP due to overlapping 
phenotypes. The KCCD GCEP has curated several forms of Joubert syndrome because of the 
renal manifestations; however, patients with Joubert syndrome 17 and variants in CPLANE1 
were not found to have kidney involvement,30 so the SD-GCEP and KCCD GCEPs shared the 
curation and both are acknowledged as contributors on the ClinGen website.  
Additionally, eight genes have been transferred from the SD-GCEP to another GCEP (KMT2E, 
MED13, TANC2, MKKS, MUSK, DOK7, GFPT, CHRND), and nine genes have been transferred 
from another GCEP to the SD-GCEP (HCCS, MYO5A, BCOR, EP300, SOX3, PNPLA6, NKX2-
1, C19ORF12, ZNF423).  
 
Discussion: 

The SD-GCEP was created to address a gap in evaluating the clinical validity of GDRs 
involving multiple body systems and not under the purview of existing GCEPs. Additionally, the 
work of the SD-GCEP highlights the strength of the ClinGen framework. Not every expert has 
expertise in every syndrome, but the efforts of these “expert generalists” combined with the 
ClinGen Framework led to consistent gene-disease classifications across a wide range of 
conditions. Accurate GDR classifications are necessary for reporting, since ACMG recommends 
that diagnostic gene panels include all GDRs that meet criteria for Definitive, Strong, or 
Moderate evidence as defined by ClinGen.6 

The SD-GCEP also highlights the importance of collaborating with other GCEPs. These 
collaborations are necessary for the best-informed gene-disease classifications. For example, 
the Craniofacial Malformations GCEP performed a precuration on the gene SMO and 
recommended keeping the disease assertions for Curry-Jones syndrome and Pallister-Hall-like 
syndrome as split. Curry-Jones syndrome is a syndromic craniosynostosis, so the Craniofacial 
Malformations GCEP curated that assertion, but referred the Pallister-Hall-like syndrome 
assertion to be curated under the expertise of the SD-GCEP since it involves multiple body 
systems. Similarly, the SD-GCEP forwarded the MKKS gene to be curated under the expertise 
of the Retina GCEP due to the retinal phenotypes present. The SD-GCEP has also collaborated 
with the Primary Immune Regulatory Disorders (PIRD) GCEP, where the PIRD GCEP 
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performed a secondary curation of RAB27A and Griscelli syndrome type 2, a rare autosomal 
recessive disease characterized by cutaneous hypopigmentation, immunodeficiency, and 
hemophagocytic lymphohistiocytosis31, adding additional phenotypic information on 
immunodeficiency to the evidence summary. Effective communication and collaboration 
between GCEPs is optimal for accurate gene-disease classifications. 

Lumping multiple disease assertions after a precuration adds to the challenge of naming 
the curated disease entity. Rare diseases, including many syndromic disorders, are commonly 
named after clinicians and patients. This approach does not provide information about the 
expected clinical features as a result of variation within the gene of interest. The SD-GCEP 
follows dyadic naming convention as defined by the ClinGen’s guidance and recommendations 
for monogenic disease nomenclature for GDRs that reach a classification of Moderate, Strong, 
or Definitive.16 The new label for the entity contains the HGNC gene symbol with the related 
phenotype. Out of the 14 lumped curations, seven have required the creation of a new name 
and identifier for the disease entity. These discussions are held in collaboration with relevant 
ClinGen expert panels, and OMIM and Mondo nomenclature expert members of the SD-GCEP. 
For example, there were six disease assertions associated with the gene PNPLA6. During the 
precuration, the GCEP decided to lump the assertions cerebellar ataxia and spastic paraplegia 
into the term “PNPLA6-related spastic paraplegia with or without ataxia” and lump the terms 
Boucher-Neuhauser syndrome, Gordon Holmes syndrome, Laurence-Moon syndrome, and 
Oliver-McFarlane syndrome into the term “retinal dystrophy-ataxia-pituitary hormone 
abnormality-hypogonadism syndrome.” The GCEP worked closely with Mondo to have these 
new terms created (MONDO:0100149, MONDO:0100155). 

Conversely, splitting multiple disease assertions during the precuration phase poses a 
challenge at the variant curation level. Gene curation and variant curation are closely connected 
because the final clinical validity classification can impact the expected variant classification. 
One way that the GDR classification is impacted is through splitting disease assertions into 
separate entities based on the present data. For the 38 genes associated with multiple 
conditions precurated by the SD-GCEP, 66% (25/38) have been curated as split entities with 
two or more separate entities. For example, the ENPP1 gene has three gene-disease 
assertions for arterial calcification generalized of infancy 1; hypophosphatemic rickets 
autosomal recessive 2; and hypopigmentation-punctate palmoplantar keratoderma syndrome or 
Cole disease. A precuration identified that biallelic loss-of-function is the underlying mechanism 
of pathogenicity for all entities. However, based on the differences in inheritance pattern and 
clinical phenotype found in hypopigmentation-punctate palmoplantar keratoderma syndrome, 
the SD-GCEP decided to split this entity and lump arterial calcification generalized of infancy 1, 
and hypophosphatemic rickets autosomal recessive 2 as one disease entity. The final clinical 
validity classification for the lumped entity was Definitive while the split entity only reached 
Limited classification. Although splitting is justified utilizing a framework that examines the 
molecular mechanism, phenotypic spectrum, and inheritance patterns of the asserted disease 
entities, it may result in a reduction in the final evidence scores because the case reports and 
functional evidence are restricted to a specific condition rather than a broader “lumped” entity.15 
If the final classification is Limited, No evidence, Disputed, or Refuted, it can reflect a lack of 
sufficient evidence supporting the syndrome and therefore potentially reducing the diagnosis 
rate.6 The SD-GCEP recognizes this limitation and plans to reconcile the problem by 
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reevaluating these GDRs as defined by the ClinGen Standard Gene-Disease Relationship 
Recuration Procedure.32 Reevaluation of these curations every 2-3 years allows the 
consideration of new data and the possibility of upgrading the classification. 

Moving forward, the ClinGen SD-GCEP will continue to evaluate the clinical validity of 
GDRs, prioritizing genes listed as Strong or Definitive for a syndrome in GenCC and those 
recommended by our expert panel members. The GCEP will begin re-curating genes previously 
classified as Strong, Moderate, or Limited whilst continuing to collaborate with other relevant 
GCEPs. By defining the clinical validity of GDRs involved in syndromic disorders, the SD-GCEP 
enables the incorporation of more clinically relevant genes in genetic testing panels and 
provides a critical resource to the community to improve diagnostic rates and patient outcomes. 
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Tables and Figures: 

Table 1. SD-GCEP scoring guidance. 

 

Scenario Recommended Score 

Genetic Evidence 

 
Predicted or proven null 

variants Other variant types 

Variant observed in individual 
with expected phenotype for 
the disease 

1.5 points (suggested 
ClinGen default points) 

0.1 (suggested ClinGen 
default points) 

Variant homozygosity and/or 
parental consanguinity 

-0.5 points for each 
(2.5 or 2.0 points total for 
proband) 

Score each variant at 0.05 
(0.1 points total for proband) 

De novo occurrence of 
variant (each recurrent de 
novo can be scored at full 
strength) 

+0.5 points (suggested 
ClinGen upgrade) 

+0.4 points (suggested 
ClinGen upgrade) 

Recurrent AD variants with 
highly specific phenotype 

+0.25 points +0.15 points 

Variant not predicted to 
cause a true loss of function -1.0 points N/A 

Mechanism of disease is 
unknown or hasn’t been 
properly established 

-0.5 points 0.1 (suggested ClinGen 
default points) 

Variant located in hotspot or N/A +0.15 points 
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functional domain 

Functional modeling of 
variants: can consider 
increasing score for structural 
and 3D modeling (but not for 
in silico predictors alone) 

N/A 

+0.15 points (if the modeling 
is for specific amino acids 
(e.g, Cys) that are known to 
be important to protein 
structure) 

Experimental Evidence 

Animal model recapitulates 
syndromic human disease 

2 points (suggested ClinGen default points) 

Transgenic model that 
overexpresses variant of 
interest, with recapitulation of 
syndromic phenotype 

+1 points  

Animal model where human 
pathogenic variant is knocked 
in, with recapitulation of 
syndromic phenotype 

+2 points maximum 

Knockdown animal model, 
without demonstration of 
rescue by WT allele 

-1 point 

Knockdown animal model, 
with rescue by non-human 
WT allele 

-0.5 points 

Animal model that lacks 
reproducibility of multiple 
phenotypes associated with 
human disease  

-1 point 
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Figure 1. Precurations and curations performed from April 2020 - March 2024. (A) 
Summary of lumping and splitting decisions for the 38 precurations performed to date. (B) 
Summary of the final classifications for the 111 approved GDR classifications to date. (C) 
Summary of mode of inheritance of the 111 approved GDRs to date. (D) Summary of final 
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classifications for GDRs across the five curation approaches. Approach 1 (38 genes - GDRs 
most frequently tested in clinical laboratories): 33 Definitive, 1 Strong, 2 Moderate, 2 Limited; 
Approach 2 (47 genes - GDRs through clinical genome or exome sequencing performed by 
diagnostic laboratories within the membership of the SD-GCEP): 33 Definitive, 4 Strong, 6 
Moderate, 5 Limited; Approach 3 (14 genes - new GDRs from research consortia including 
NHGRI’s Centers of Mendelian Genomics and GREGoR consortium): 5 Definitive, 3 Strong, 4 
Moderate, 2 Limited; Approach 4 (7 genes - GDRs requested by other GCEPs for phenotypes 
requiring the broad expertise of the SD-GCEP): 4 Definitive, 3 Moderate; Approach 5 (4 genes 
as of March 2024 - syndromic GDRs in GenCC with Strong or Definitive classifications not 
curated by other GCEPs): 3 Definitive, 1 Strong. 
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Figure 2. SD-GCEP Curation Evidence. (A) The number of points awarded for genetic and 
experimental evidence for each gene represented by the bar height (blue = genetic evidence; 
green = experimental evidence). GDRs where no animal model was available are starred. (B) 
The majority of genes (82%) had an animal model with 92% of sufficient quality and overlap with
the human phenotype to be scored in the ClinGen curation framework. (C) Mouse models were 
the predominant model organism scored. 
 

Figure 3. GDRs curated are highly syndromic in nature. HPO higher order terms 
representing the phenotypic features associated with each disease assertion were graphed by 
counting the number of HPO terms under each higher order term. For terms that were lumped, 
HPO terms for all of the assertions were combined and counted. All diseases involved two or 

 

ith 
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more organ systems, while the majority (88/111 GDRs, 79.2%) had five or more organ systems 
affected. 
 

Figure 4. Exchange and collaboration on GDR curations between SD-GCEP 
and other GCEPs to date. 
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