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How ecosystems respond to environmental perturbations is a fundamental question in ecology, made espe-
cially challenging due to the strong coupling between species and their environment. Here, we introduce a
theoretical framework for calculating the steady-state response of ecosystems to environmental perturbations in
generalized consumer-resource. Our construction is applicable to a wide class of systems, including models with
non-reciprocal interactions, cross-feeding, and non-linear growth/consumption rates. Within our framework, all
ecological variables are embedded into four distinct vector spaces and ecological interactions are represented by
geometric transformations between these spaces. We show that near a steady state, such geometric transforma-
tions directly map environmental perturbations – in resource availability and mortality rates – to shifts in niche
structure. We illustrate these ideas in a variety of settings including a minimal model for pH-induced toxicity in
bacterial denitrification. We end by discussing the biological implications of our framework. In particular, we
show that it is extremely difficult to distinguish cooperative and competitive interactions by measuring species’
responses to external perturbations.

One of the most challenging and interesting problems in
theoretical ecology is to develop methods for understanding
how ecosystems respond to environmental perturbations [1,
2]. This problem is especially acute in diverse ecosystems
where species and environment are often strongly coupled due
to environmental feedbacks. Characterizing how ecosystems
respond to changes in their environment has important prac-
tical and theoretical consequences. Practically, understanding
how ecosystems respond to changes in resource concentra-
tions is a fundamental concern of environmental science and
human health and disease [3, 4] . For example, how does per-
turbing the nitrification process affect water quality [5]? How
do changes in diet affect the composition and function of the
human gut microbiome [6, 7]?

From a theoretical vantage point, we know that one of the
most successful ways to investigate physical systems is to an-
alyze how they respond to perturbations [8, 9]. This is true for
both classical and quantum systems, where objects like static
and dynamic susceptibilities are a staple of theoretical treat-
ments of subjects as diverse as electromagnetism, thermody-
namics, and quantum field theory [10, 11]. For this reason,
the theory of linear response has become a pillar of modern
theoretical physics. In the context of ecology, techniques for
characterizing ecological responses have been largely limited
to asking how ecosystems respond to changes in the abun-
dances of species or resources [12–14]. However, we still
lack a framework for understanding how ecosystems respond
to environmental perturbations such as changes in resource
supplies or the mortality rates. From a mathematical point of
view, this amounts to asking how dynamical variables (i.e.,
species and resource abundances) respond to small changes in
external parameters characterizing the environment (i.e., re-
source supply rates and mortality rates).
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Here, we address this challenge in the context of general-
ized consumer-resource models, one of the most widely stud-
ied and influential theoretical models in ecology [15, 16].
Consumer-resource models (CRMs) have played a central role
in the development of modern ecology and underlie many of
the key intuitions and ideas of community ecology. CRMs
consist of consumers, or species, that grow by consuming
resources, while simultaneously modifying resource abun-
dances. A defining feature of CRMs is the idea of trophic
layer separation, namely that interactions between species are
primarily mediated by competition for resources rather than
direct interactions between species themselves. CRMs also
generally ignore the effect of stochasticity, assuming that eco-
logical selection and immigration from regional species pools
are the driving force of community ecology. Despite these
assumptions, recent work suggests CRMs can be used to de-
scribe a wide variety of laboratory experiments and naturally
occurring empirical patterns in diverse ecosystems [17–21].

Over the last few years, there has been a flurry of works an-
alyzing CRMs from the perspective of statistical physics [22–
26]. A key theoretical development in this regard has been the
realization that diverse ecosystems, where the number of re-
sources and species is large, can be analyzed using the cavity
method (and dynamical mean field theory) [24, 27–30].These
works have found that the key quantities that shape collective
ecosystem properties are susceptibilities that measure how
species and resource abundances change in response to small
environmental perturbations. This suggests that, just as in
physics, characterizing the response of systems to changes
in external parameters represents a powerful way of analyz-
ing complex ecosystems. Inspired by this observation, we de-
velop a perturbative framework for the steady state behavior
of generalized consumer-resource models. Here, we limit our-
selves our analysis to static perturbations and ask how steady-
state properties before and after environmental perturbations
are related. To do so, we derive explicit expressions for static
susceptibilities, namely functions that relate the magnitude the
external perturbations (e.g. a change in the carrying capacities
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of resources and death rates of species) to the changes in eco-
logically measurable variables such as species and resource
abundances.

Our framework can be used to analyze a wide class of sys-
tems, including models with non-reciprocal interactions [31],
microbial ecosystems with cross-feeding [32, 33], and non-
linear growth/consumption rates. Like in the cavity method,
a central role is played by generalized susceptibility matri-
ces that characterize how species and resource abundances
respond to environmental perturbations. We show that these
susceptibility matrices have a natural interpretation as maps
between four distinct vector spaces (resource abundances, re-
source fluxes, species abundances, species fluxes) and define
a (non-commutative) geometry that underlies CRMs. Further-
more, we show that this geometry has a natural mathemat-
ical representation in terms of a generalized “Einstein nota-
tion” that explicitly encodes the structure of these four vector
spaces.

The resulting framework is surprisingly mathematically
rich and provides intuitive geometric interpretations for under-
standing abstract ecological concepts such as niches, species
packing, and environmental feedbacks. In particular, we use
our perturbative framework to show that around any steady-
state, no matter how complex the ecological dynamics, the
underlying ecology can be captured by a simple MacArthur
CRMs with appropriately chosen parameters. A direct impli-
cation of this mapping is that it is extremely difficult to distin-
guish cooperative and competitive interactions by measuring
species’ responses to external perturbations. The reason for
this is that cooperative interactions can often be “absorbed”
into effective parameters in competitive models, and the val-
ues of the net species interaction parameters remain competi-
tive. Finally, we also argue that the response to external per-
turbations provides a natural framework for thinking about
niches as “collective modes” composed of many resources.

The paper is organized as follows. We start by introducing
the basic ideas behind our perturbative framework in the con-
text of Generalized MacArthur Consumer-Resource Models,
including variants with non-reciprocal interactions. We then
extend this construction to understand environmental pertur-
bations in generalized consumer-resource models, including
CRMs with non-linear growth and impact functions. We then
illustrate these ideas on two examples inspired by microbial
ecology: a model system of two microbes that interact via
cross-feeding and a comparison of the effect of changing pH
in specialist and generalist denitrifying bacterial communities.
We conclude by discussing the broader implications of this
framework for understanding ecological processes.

I. ANALYSIS OF MACARTHUR’S
CONSUMER-RESOURCE MODEL

In this section, we develop the basic formalism and geom-
etry of our linear response framework, focusing on a gener-
alization of MacArthur’s CRM with non-reciprocal interac-
tions.This simple setting is useful for introducing the natural
mathematical objects in our construction, namely the four vec-

tor spaces in which steady states live, as well the mappings be-
tween these spaces via susceptibility matrices. It also allows
us to introduce the Einstein notation used throughout the rest
of the text, as well as the basic geometry of these systems.
Throughout, we discuss how non-reciprocal interactions be-
tween species and resources affect the underlying geometry
of these vector spaces.

A. Dynamics and relation to Generalized Lotka-Volterra

In order to gain intuition and develop our formalism, it is
helpful to start by analyzing the generalization of MacArthur’s
CRM shown in Fig. 1a . In this model, the ecosystem is initial-
ized with a regional species pool of S species or consumers,
with abundances Ni, that can utilize M distinct resources,
with abundances Rα. Species are defined by their consumer
preferences, Ciα, which encode how a resource α contributes
to the growth rate of species i, impact vectors Eiα, which en-
code how the abundance of resource α is affected by species
i, and an intrinsic mortality rate mi for each species. In the
absence of consumers, the resource dynamics are described
by the Generalized Lotka-Volterra equations with resource-
resource interaction matrix Qαβ and effective external supply
rate (carrying capacity) Kα. Throughout, we assume that Qαβ

is full rank and invertible. These dynamics take the form of
the coupled ordinary differential equations

dNi

dt
= Ni

(∑
α

CiαRα −mi

)

dRα

dt
= Rα

Kα −
∑
β

QαβRβ

−
∑
j

EjαNjRα.

(1)

For the special case when Qαβ is the identity matrix and
Ciα = Eiα, this reduces to the usual MacArthur Consumer-
Resource Model that has been extensively studied in the eco-
logical literature [15].

To gain some intuition about these equations, it is helpful
to consider what happens when the resource dynamics reach
steady state. In this case, the species abundances fully de-
pend on the resources. Setting dRα

dt = 0, and substituting
into the first equation above gives the effective Generalized
Lotka-Volterra equations for the consumer species (see Ap-
pendix A):

dNi

dt
= Ni

Ki −
∑
j

AijNj

, (2)

where we have defined the effective species-species interac-
tion matrix

Aij =
∑
αβ

CiαQ
−1
αβEjβ (3)

and written the effective carrying capacity of a species as the
difference

Ki =
∑
α,β

CiαQ
−1
αβKβ −mi (4)
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FIG. 1. Ecological variables and interactions as geometric objects in four vector spaces. (a) Equation and schematic defining key
quantities in consumer-resource models with non-reciprocal interactions C ̸= E. The entries of the effective species-species interaction matrix
Aij = [CQ−1ET ]ij measure how species i responds to changes in species j. (b) There are four canonical vector spaces for ecological variables
and parameters: species abundances, resource abundances, resource fluxes (quantities with units of resource abundance per unit time), and
species fluxes (quantities with units of species abundance per unit time). Abundances are denoted with raised indices and fluxes with lowered
indices. Vectors can be mapped between spaces using the illustrated transformations. (c) Interpretation of transformed vectors. Non-native
(off-diagonal) transformations reveal previously hidden, ecologically relevant quantities, including the effective supply Kα and mortality burden
mi.

between the “naive” fitness (first term) and the mortality rate
mi. In the expressions above, all sums over resources are re-
stricted to non-extinct resources (Fig. 1a).

When Ciα = Eiα and Qαβ is the identity, this model re-
duces to MacArthur’s original model and the effective inter-
action matrix Aij defined in Eq. (3) is symmetric, indicating
that species interact reciprocally. In other words, how species
i influences species j is identical to how species j influences
species i. The system is also guaranteed to reach a unique
steady state that corresponds to a minimum of a constrained
optimization problem [34, 35]. For this reason, the MacArthur
CRM shares many properties with equilibrium systems.

In contrast, when the consumption matrix Ciα is different
from the impact matrix Eiα , the resulting species-species
interaction matrix in Eq. (3) is no longer symmetric (i.e.,
Aij ̸= Aji). This indicates that species no longer interact re-
ciprocally, a hallmark of nonequilibrium physics [36, 37]. As
a result, the dynamics no longer have any simple description
in terms of optimization and can even become chaotic when
Ciα and Eiα are sufficiently different [31].

B. Steady states

In what follows, we focus on steady-state solutions of gen-
eralized CRMs of the form described in Eq. (1). We assume
that these ecosystems reach a steady-state fixed point (i.e., are
not chaotic or periodic), and wish to characterize how the
steady-state resource and species abundances depend on en-
vironmental parameters such as the resource supply rates Kα

and species mortality rates mi. In this section, we derive sim-
ple equations for this dependence, which in turn motivate the
more general framework presented in the next section and the
rest of the paper.

Let us denote the number of surviving species and resources
at the steady state we wish to characterize as S∗ and M∗, re-
spectively. It follows from Eq. (1) that the steady-state abun-
dances of surviving species, N∗

j , and surviving resources, R∗
α,

satisfy the M∗ + S∗ linear equations

M∗∑
β=1

CiβR
∗
β = mi

M∗∑
β=1

QαβR
∗
β +

S∗∑
j=1

EjαN
∗
j = Kα,

(5)
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where the resource index α and the species index i index run
over the M∗ and S∗ surviving resources and species, respec-
tively.

Since we wish to characterize how the steady-state abun-
dances of surviving species and resources depend on environ-
mental perturbations, for notational simplicity we will adopt
the convention of dropping asterisks. Unless explicitly noted,
all steady-state equations should be assumed to exclusively
involve the M∗ resources and S∗ species that survive at the
fixed point. With this notational change, we can rewrite
Eq. (5) in matrix form as[

0 C
ET Q

][
N⃗

R⃗

]
=

[
m⃗

K⃗

]
, (6)

where C and E are S∗ × M∗ dimensional growth and im-
pact matrices (i.e., matrices restricted to surviving species and
resources), Q is the the M∗×M∗ dimensional resource inter-
action matrix, R⃗ and K⃗ are M∗ dimensional column vectors
of resource abundances and supply rates, respectively, and N⃗
and m⃗ are S∗ dimensional vectors of species abundances and
mortality rates, respectively.

As shown in Appendix B, a straightforward application of
the block-inversion formula for 2 × 2 matrices allows us to
solve this equation. In particular, one can show that[

0 C
ET Q

]−1

=

[
−I A−1C

Q−1ET I − P

][
A−1 0
0 Q−1

]
, (7)

where A is the S∗ × S∗ dimensional species-species inter-
action matrix for surviving species [defined in Eq. (3) but
now restricted to surviving species and resources] and P is
an M∗ ×M∗ dimensional “projection” matrix

P = Q−1ETA−1C. (8)

Using Eq. (3), it is easy to show that P satisfied the projection
equation P 2 = P . A projector is a linear operator that takes
a vector and projects it onto a linear subspace (see Fig. 2.).
When species interactions are non-reciprocal (C ̸= E or Q
is non-symmetric), P ̸= PT indicating that P is an oblique
projector. In contrast, for the MacArthur CRM (C = E and
Q symmetric), P = PT and P is an orthogonal projector.

We can now use the expression for the inverses to write
expressions for the steady-state species and resource abun-
dances. Using Eq. (5), we find that

N⃗ = A−1[CQ−1K⃗ − m⃗] = A−1K⃗

R⃗ = Q−1ETA−1m⃗+ (I − P )Q−1K⃗.
(9)

Comparing the first equation to Eqs. (2) and (4), we rec-
ognize it as just the steady-state condition for the effective
Lotka-Volterra equation, where the effective species carry-
ing capacity K⃗ captures both the naive fitness and the effect
of intrinsic mortality m⃗ typically ignored in the Generalized
Lotka-Volterra model. Furthermore, we see that in the sec-
ond equation, the quantity PQ−1K⃗ is the projection of the

resource supply vector onto a subspace defined by the con-
sumption and impact vectors of surviving species contained
in P .

These are our first hints that a more general mathematical
structure is encoded in the elements of this simple equation.
In Appendix D, we show that the matrix inverse appearing in
Eq. (7) also has a natural interpretation as a block suscepti-
bility matrix that encodes how the steady-state resource abun-
dances R⃗ and species abundances N⃗ change in response to
small perturbations in K⃗ and m⃗. We will use this observa-
tion when generalizing our results beyond the simple models
considered in Eq. (1).

C. Defining vector spaces

The formulae derived in the previous section link four
distinct types of quantities that appear in the dynamical
equations [see Eq. (1) and Fig. 1b]:

1. Quantities such as Rα that measure resource abun-
dances

2. Quantities such as Kα that measure fluxes per unit re-
source (i.e., quantities labeled by resources that have
units of inverse time)

3. Quantities such as Ni that measure species abundances

4. Quantities such as mi that measure fluxes per unit
species (i.e., quantities that are labeled by species and
have units of inverse time).

Each of these four types of quantities can be thought to de-
scribe one of four distinct vector spaces (Fig. 1b). Further-
more, closer inspection of Eq. (9) shows that each of these
quantities can be mapped between spaces using a combina-
tion of the matrices C, E, Q, Q−1, A, and A−1 (Fig. 1b). For
example, the first equation in Eq. (9) implies that the naive fit-
ness CQ−1K⃗ has the same units as m⃗, suggesting that CQ−1

maps vectors like K⃗ that live in resource flux space to vectors
like m⃗ in species flux space. Furthermore, since both sides
of this equation must have the same units, it also implies that
one can map back and forth between vectors living in species
flux and species abundance space using A and A−1, respec-
tively. Similarly, the second equation in Eq. (9) implies that
ETA−1 maps vectors like m⃗ that live in species flux space to
vectors like K⃗ in resource flux space. It also implies that one
can map between the resource flux and resource abundance
spaces using Q and Q−1.

In Fig. 1b, we graphically illustrate how different matrices
can be combined to map vectors between these four spaces.
As an example, using Fig. 1b, we see that the projector
P = Q−1ETA−1C, can be naturally decomposed into a se-
ries of linear transformations that cycle from resource abun-
dance space back to it, taking the route: resource abundance
→ species flux → species abundance → resource flux → re-
source abundance. We note that similar mappings have been
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found in the context of generalized susceptibilities in meta-
materials [38] and overparameterized regression [39]. Below,
we discuss how this mathematical structure allows us to give
intuitive geometric definitions of abstract ecological concepts
such as niches, species packing, and environmental feedbacks.

D. Generalized Einstein notation

Thus far, the mathematical notation we have employed does
not distinguish between the four natural spaces that charac-
terize the ecological steady states of Generalized MacArthur
CRMs. Nor does it reflect the structure of the transformations
between these spaces (Fig. 1b) . To rectify this, we introduce
generalized Einstein notation that better captures the under-
lying geometry. This new notation allows us to easily distin-
guish between spaces and can also be used to quickly perform
calculations without the need to use block matrix inversion
formulas (see Appendix E).

A key feature of our notation will be the introduction of
upper and lower indices (Fig. 1c). In particular, we use:

1. Upper Greek indices for quantities with units of re-
source abundance (e.g., Rα)

2. Lower Greek indices for quantities with units of re-
source flux (e.g., Kα )

3. Upper Latin indices for quantities with units of species
abundance (e.g., N i)

4. Lower Latin indices for quantities with units of species
flux (e.g., mi).

As in conventional Einstein notation, will also assume that
repeated upper and lower indices of the same kind are summed
over (surviving species or resources).

A key feature of the underlying mathematical structure il-
lustrated in Fig. 1b is that we can map vectors between these
four spaces using the matrices Q, A, C, and E [see also
Eqs. (5) and (9)]. All four of these matrices map abundances
(upper indices) to fluxes (lower indices). For this reason, they
must have two lower indices and take the form Qαβ , Eiα, Ciβ ,
and Aij . In contrast, the two matrices Q−1 and A−1 both
map fluxes to abundances. For this reason they must have
two upper indices. In index notation, Q−1 becomes Qαβ and
A−1 becomes Aij . In Fig. 1c, we graphically illustrate each
of the sixteen key ecological quantities as vectors that live in
these four spaces, along with a brief ecological interpretation
of each vector. We will use these 16 vectors to provide a geo-
metric interpretation of CRMs and identify emergent ecologi-
cal quantities that underlie ecosystem steady states. A detailed
discussion of these vectors and mappings is provided in Ap-
pendix C.

II. GEOMETRY OF NICHE AND SPECIES SPACE

A. Derivation of geometry

A powerful consequence of being able to map quantities
between the four vectors spaces outlined in the last section
is that it allows us to develop a simple geometric picture for
understanding ecological steady states (Figs. 2a-d). Our start-
ing point is Eq. (9) for the steady-state resource and species
abundances, which we can rewrite in Einstein notation as

N i = AijCiαQ
αβKβ −Aijmj

Rα = QαβEjαA
jkmk + (δαβ − Pα

β )Q
βγKγ .

(10)

In terms of vectors introduced in Fig. 1c and Eqs. (C1)-(C4),
these equations takes the compact form

N i = Ki −mi

Rα = mα + (δαβ − Pα
β )K

β .
(11)

Both of these equations have a beautiful ecological interpre-
tation. The first equation states that the steady-state species
abundances N i is the difference between two vectors: the
“naive abundance due to supply” Ki and the “mortality bur-
den” mi. By inspection, we see that Ki represents the abun-
dances that each species would reach when the only limitation
to species growth is the amount of supplied resources. How-
ever, the actual abundance is reduced by the mortality burden
mi, which captures the decrease in species abundances due to
non-zero mortality rates (i.e., mi ̸= 0 for any species). Note
that Ki and mi are emergent ecological quantities that do not
directly occur in our original model. Geometrically, this equa-
tion can be visualized in species space as shown in Fig. 2b.

The second equation in Eq. (11) states that the steady-
state resource abundance Rα also has two components: the
“mortality-induced leftover resources” mα, and the “unutiliz-
able resources”, (δαβ − Pα

β )K
β (see Fig. 2c-d). To develop an

intuition for these vectors, it is helpful to draw on some of the
ecological intuition developed above.

We first justify the interpretation of (δαβ − Pα
β )K

β as re-
sources that cannot be utilized by species currently living in
the ecosystem. Our starting point is the observation that Kβ

is simply the “effective supply” of resources, i.e., the steady-
state resource abundances in the absence of any consumers.
This can be seen by setting either the consumption or impact
vectors to zero, Ciα = 0 or Eiα = 0, in which case Eq. (11)
simplifies to Rα = Kβ = QαβKα.

Next, we observe that the projector Pα
β = Ei

βC
α
i acts on

resource vectors in two steps. First, it projects resource vec-
tors onto the subspace of ‘consumable resources” defined by
the row space of C (or the image of CT ). Next, Pα

β projects
the result onto the subspace of “impactable resources” de-
fined by the row space of E (or the image of ET ). The in-
teraction of these two steps defines the space of “utilizable
resources,” (which is a strict subspace of the impactable re-
sources). In other words, resouces may only be utilized by
the current community of species in the ecosystem if they are
both consumable by the species and this consumption impacts
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FIG. 2. Geometry of niche space. Geometric decomposition of the steady-state resource abundance vector for the Generalized MacArthur
Consumer-Resource Model (with Q = I). (a) Equations for dynamics and the steady-state abundances of surviving resource and species. (b)
The vector of steady-state species abundances N i is the difference of naive abundance due to supply Ki and the self-generated mortality burden
mi. (c) Geometry of steady-state resource abundances in models with (c) reciprocal interactions (C = E) and (d) and non-reciprocal interactions
(C ̸= E). The steady-state resource abundance vector Rα can be decomposed into a vector sum of unutilizable resources, (I − Pα

β )Kβ , and
mortality-induced leftover resources, mα

R. (e) Comparison between numerics and predictions of geometric framework for a 2 species, 2 resource
MacArthur Consumer-Resource Model model with reciprocal (C = E) and non-reciprocal (C ̸= E) interactions. (see Appendix I for details).

the abundance of the resources. For the case where inter-
actions are reciprocal, these two spaces coincide, and P β

α is
an orthogonal projector (Fig. 2c). For non-reciprocal interac-
tions, these spaces are distinct and P β

α is an oblique projector

(Fig. 2d), first orthogonally projecting resource vectors onto
the row space of C before projecting orthogonally off of this
space onto the row space of E. Since (δγα − P γ

α )P
β
γ = 0, this

implies that δγα − P γ
α is a projector onto the space orthogonal
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to the space of utilizable resoruces, i.e, the space of unutiliz-
able resources, justifying our naming convention.

Next, we turn to the “mortality-induced leftover resources”
mα. First, note that the vector mα lives in the image of P β

α ,
namely

Pα
β m

β = mα. (12)

For this reason, the vector mα is composed only of utiliz-
able resources (Figs. 2c-d). This allows us to interpret mα

as the contribution to the steady-state resource abundance of
resources that can be potentially utlized by the community but
are left unconsumed due to species mortality. This shows that
the unutilized niches in the ecosystem – realizable but unoc-
cupied – can be encoded in a single emergent vector quantity,
mα. Thus, the steady-state resource abundance vector Rα nat-
urally decomposes into a mortality-induced niche vector mα

and an unutilizable niche vector (δαβ − Pα
β )K

β (Figs. 2c-d).

B. Example: resource competition with reciprocal and
non-reciprocal interactions

To see the geometric picture in action, it is useful to con-
sider a concrete example. For ease of visualization, we fo-
cus on ecosystems consisting of 2 resources and 2 species
whose dynamics are described by Eq. (1) (see Figs. 2e-g).
We compare and contrast two different communities, one
where species interact reciprocally (C = E, Fig. 2f) and an-
other where species interactions are non-reciprocal (C ̸= E,
Fig. 2g). In both communities, resources are supplied at rates
K1 and K2 and species have mortality rates m1 and m2 (see
Appendix I for details). Both ecosystems also have iden-
tical consumer preference matrices C. The only difference
between the ecosystems are the impact vectors E (Fig. 2e,
bottom).

To analyze these communities, we ran simulations where
we numerically solved for the steady-state species and re-
source abundance vectors N i and Ri, evolving the dynam-
ics from arbitrarily chosen initial conditions (Figs. 2f-g, blue
box), and compared the steady-state values to predictions de-
rived from the analytic expressions in Eq. (11) (Fig. 2, green
box). As expected, the two results are in good agreement.
Our geometric picture also yields a natural decomposition
N i = Ki + mi of the steady-state abundance into the naive
abundances , Ki [Eq. (C2), Fig. 1], and the mortality bur-
den mi [Eq. (C4), Fig. 1’. As emphasized above, both of
these vectors are “emergent quantities” that depend strongly
on species consumer preferences and impact vectors. The
naive abundances Ki account for the fact that the effective
supply rate is shaped both by the amount of supplied resources
and resource consumption. The mortality burden mi incorpo-
rates not only the naive mortality rate, but also death due to
competition between species.

Notice that the geometric relationship between Ki and mi

is qualitatively different depending on whether species inter-
act in a non-reciprocal manner (Figs. 2e-g). For the com-
munity with reciprocal interactions, Ki and mi are collinear
whereas for the community with non-reciprocal interactions,

these are at an obtuse angle to each other. This is the geo-
metric manifestation of the fact that species that interact non-
reciprocally decouple growth rates from consumption. As we
will see in future examples, such obtuse angles turn out to
be a generic feature of non-reciprocity (see Appendix F). Fi-
nally, we note that for both communities (δαβ − Pα

β )K
β = 0

because all the resources are utilizable. As a result, the steady-
state resource abundance is given entirely by the mortality-
induced leftoever resources mα (see Figs. 2f-g).

C. Lessons from MacArthur Models

Combining the results from Sec. I, we arrive at the fol-
lowing lessons about steady states in MacArthur’s consumer-
resource models and how they can be interpreted geometri-
cally:

• There are four distinct kinds of steady-state quantities:
species and resource abundances and fluxes (Fig. 1a).
These quantities describe four distinct vector spaces
(Fig. 1b).

• Vectors in each space can mapped to any other space
through ecological susceptibilities – consumption C,
impact E, species interactions A and A−1, and resource
interactions Q and Q−1 – decomposed as in Fig. 1b.
Each of these 12 mapped vectors is an emergent eco-
logical quantity with a clear interpretation (Fig. 1c).

• Ecological steady states can be decomposed in terms of
4 of the 12 emergent vector quantities that summarize
the effects of ecological competition, niches, and mor-
tality, as shown in Eq. (11) and Figs. 2b-d.

• Relations between ecological quantities and suscepti-
bilities can be condensed using generalized Einstein no-
tation [Eqs. (C1)-(11)], further clarifying the geometry
underlying these relations.

III. CHARACTERIZING RESPONSES TO
ENVIRONMENTAL PERTURBATIONS IN GENERALIZED

CONSUMER-RESOURCE MODELS

Thus far, we have restricted our analysis to MacArthur’s
Consumer-Resource Model (and its generalization to non-
reciprocal interactions). This simple setting allowed us to
introduce our geometric framework and the steady-state eco-
logical quantities of interest. In this section, we extend our
analysis to understanding environmental perturbations in gen-
eralized CRMs.

A. Generalized Consumer-Resource Models

Generalized CRMs describe ecosystems containing S
species with abundances Ni, and M resources with abun-



8

FIG. 3. Universal geometry predicts sensitivity to environmental perturbations. (a) Near the steady state of any generalized consumer-
resource model, environmental perturbations in supply δ⃗K = K⃗′−K⃗ (pink) and mortality δ⃗m = m⃗′−m⃗ (blue) result in changes in the steady-state
resource and species abundances, δRα and δN i via effective interactions C, Q E, A and projector P . (b-c) To linear order, the steady-state
responses δ⃗R and δ⃗N have a geometrical decomposition in terms of the perturbations δK⃗ (pink) and δm⃗ (blue) analogous to the decomposition
for steady states in the MacArthur Consumer-Resource Model shown in Fig. 2.

dances Rα, whose dynamics takes the form

dNi

dt
= Ni

(
gi(R⃗)−mi

)
dRα

dt
= hα(K⃗)− qα(R⃗)− fα(R⃗, N⃗),

(13)

where gi(R⃗) is a function which describes how the growth rate
of species i depends on resource abundances, hα(K⃗) is the
rate at which resource α is supplied to the ecosystems, qα(R⃗)
encodes the resource dynamics in the absence of species, and
fα(R⃗, N⃗) describes the rate at which resource α is produced
or consumed by species in the ecosystems. Like in all CRMs,
competition between species is mediated by the resources
rather than through direct interactions. Mathematically, this
is just the statement that the growth rate functions gi(R⃗) are
only a function of the resource abundances and are indepen-
dent of species abundances. This strict trophic layer structure
is a hallmark of all CRMs.

We restrict ours analysis to ecosystem where the dynam-
ics reach a steady state, R⃗∗ and N⃗∗. We are interested
in characterizing the response of such a system to environ-
mental perturbations. That is, if we slightly change the re-
source supply rates Kα → Kα + δK̃α and the species mor-
tality mi → mi + δmi, how will the resulting steady states

change, i.e., Rα∗ → Rα∗ + δRα and N i∗ → N i∗ + δN i?
As in MacArthur’s CRM, we will focus on surviving species
and resources, dropping the asterisk ∗ indicating the survivors
from our notation for convenience.

The new steady state after perturbations must also satisfy
the steady-state equations,

0 = gi(R⃗+ δ⃗R)−mi − δmi

0 = hα(K⃗ + ⃗δK̃)− qα(R⃗+ δ⃗R)− fα(R⃗+ δ⃗R, N⃗ + δ⃗N).
(14)

To calculate the linear response, we can expand these equa-
tions to first order (noting that the zeroth-order terms are zero
since we are expanding about a steady state) to get

CiαδR
α = δmi

QαβδR
β + EiαδN

i = δKα,
(15)

where

Ciα =
∂gi
∂Rα

∣∣∣∣
R⃗∗

Eiα =
∂fα
∂N i

∣∣∣∣
R⃗∗,N⃗∗

Qαβ =
∂fα
∂Rβ

∣∣∣∣
R⃗∗,N⃗∗

+
∂qα
∂Rβ

∣∣∣∣
R⃗∗

,

(16)
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are the effective consumer preference matrix, effective impact
vector matrix, and effective resource-resource interaction ma-
trix, respectively and

δKα =
∑
β

∂hα

∂Kβ

∣∣∣∣
K⃗

δK̃β (17)

is the effective supply perturbation vector (note that through
an abuse of notation we denote the quantity on the left hand
side).

These equations are essentially identical to the steady-state
Eqs. (5) for MacArthur’s CRM, except that they characterize
environmental perturbations (δKα and δmi) and ecosystem
responses (δRα and δN i) rather than the steady states them-
selves. We can rewrite them in matrix form to obtain[

0 C
ET Q

][
δ⃗N

δ⃗R

]
=

[
δ⃗m

δ⃗K

]
, (18)

and then use standard block-inversion formulae to obtain a
solution for the ecosystem’s steady-state response to environ-
mental perturbations (full scheme illustrated in Fig. 3a),

δ⃗N = A−1[CQ−1δ⃗K − δ⃗m]

δ⃗R = Q−1ETA−1δ⃗m+ (1− P )Q−1δ⃗K,
(19)

where the species-species interactino matrix A = CQ−1ET

the generalized projector P = Q−1ETA−1C is defined using
the effective interactions in Eq. (16). Continuing the analogy
with MacArthur CRMs [Eq. (11)], these solutions can be writ-
ten more compactly in Einstein notation as

δN i = δKi − δmi

δRα = δmα + (δαβ − Pα
β )δK

β .
(20)

As expected, the solutions for the linear response are mathe-
matically identical to those for MacArthur’s CRM in Eq. (11),
but with the emergent effective perturbation vectors δKi,
δKα, δmα and δmi playing an analogous role to the vectors
Ki, Kα, mα and mi, respectively.

B. Geometry of linear response to environmental
perturbations

The mathematical equivalence between Eqs. (20) and (11)
implies that the geometric interpretation of Eq. (11) developed
in Sec. II also applies to generalized CRMs. However, while
the equations are mathematically identical, there is a concep-
tual difference in interpretation. In MacArthur CRMs, the ge-
ometry describes the actual abundances as a function of the

supply and mortality. In contrast, in generalized CRMs, the
geometry now describes changes in abundances as a function
of perturbations to supply and mortality. Geometrically, these
equations can be visualized in perturbed niche and species
spaces as shown in Figs. 3c-d.

As in MacArthur’s CRM, the change in steady-state re-
source abundances δRα is the sum of two components: the
“unutilizable supply perturbation” (δαβ − Pα

β )δK
β (Fig. 3c,

dashed pink) and the change in “mortality-induced lefto-
ever resources” δmα (blue). The first component describes
changes to the effective resource supply δKα in resources that
cannot be utilized by species in the ecosystem, whether due to
an inability to consume or impact. The second describes how
the abundances of utilizable resources is affected by changes
in species mortality δmi. The change in steady-state species
abundance δN i also decomposes into two quantities: the “ef-
fective supply perturbation” δKi, and the “effective mortality
perturbation” δmi (Fig. 3d, pink and blue respectively). The
first of these describes how species abundances change in the
absence of changes to the mortality rate (δmi = 0), while
the second describes the additional burden on species due to
changes in mortality. As before, the components δKi, δKα,
δmi and δma are emergent quantities that utilize the effective
consumer and impact vectors defined in Eq. (16) to propagate
the effect of the actual perturbations in resource supply δKα

and species mortality δmα.

IV. EXAMPLES OF GEOMETRY FOR COMPLEX
MODELS

A. pH sensitivity in bacterial denitrification

Our geometric formalism can also be used to analyze global
perturbations such as changes to the pH, salinity, or even the
introduction of new invasive species into ecosystems. To illus-
trate this, we focus on understanding the effect of pH changes
in denitrifying bacterial communities [40, 41]. Denitrification
is the process by which bacteria reduce nitrate to nitrite and
ultimately to nitrogen gas in order to extract energy (Fig. 4a).
Nitrate and nitrite can be used as resources for growth, while
the end product nitrogen usually diffuses away as a gas. Re-
cent experiments indicate that there are two distinct types of
denitrifying communities: communities of specialists where
each step of denitrification is performed by distinct species
(i.e., each species can utilize nitrate or nitrite but not both) and
communities consisting of generalists where each species can
use both nitrate and nitrite as an energy source [40]. These
same experiments show that reducing pH decreases growth
from consuming nitrite without affecting how species im-
pact/deplete it. The dynamics of these communities can be
summarized by equations of the form
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FIG. 4. Emergent geometry of pH sensitivity in bacterial denitrification. (a) Cartoon and equations for bacterial denitrification, containing
a chain of conversions from nitrate to nitrite to nitrogen (waste). Reducing pH increases toxicity and reduces growth r of species. The im-
pact/depletion of resources I is not affected by pH [40]. No species can use nitrogen. (b) Changes in species steady states upon perturbing the
pH for (d) an ecosystem of two generalists that can both consume nitrate and nitrite and (e) an ecosystem composed of two species specializing
on either nitrate or nitrite. (c) pH change ∆pH can be mapped to effective mortality (δm)eff and supply (δK)eff perturbations, to which our ge-
ometric formalism applies. (f–g) Geometry of denitrification: our theoretical predictions (decomposition into effective supply (pink) and mortality
(blue) components) agree with results from numerical simulations (d–e) for change in species abundances and explain why generalists are more
sensitive to pH perturbations than specialists.

dNi

dt
= Ni

[∑
α

(1− ℓ)riα max

(
0,

pH − pHmin

pHneutral − pHmin

)
Rα −mi

]
dRα

dt
= Kα −Rα −

∑
j

IjαNjRα +
∑
j,β

ℓDαβrjβ max

(
0,

pH − pHmin

pHneutral − pHmin

)
RβNj .

(21)

where α runs over the three types of resources: nitrate, ni-
trite, and nitrogen, riα are species’ growth preferences at neu-
tral pH, Ijα are the impact coefficients unchanged by pH, and
Dαβ is a cross-feeding matrix introduced in Sec. H encod-
ing the denitrification chain. The max function captures the
effect of changing pH, and enters only in the growth and pro-
duction terms containing riα, not the depletion (impact) terms

containing Iiα. For specialist bacterial species i, riα is non-
zero for either nitrites or nitrates whereas generalist species
have non-zero growth coefficients for both these metabolites
(Fig. 4).

We wanted to understand the differences between how gen-
eralist and specialist communities respond to pH changes of
the form pHneutral → pHneutral +∆pH. Following Sec. III A,
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near the steady state, R⃗∗ and N⃗∗, we can define generalized
interactions for species growth Ciα, impact Eiα, resource in-
teractions Qαβ , as well as the generalized projector Pα

β as in
Eq. (16). As shown in Appendix G, to linear order the pH
perturbation ∆pH can be written as effective perturbations to
resource supply δKeff

α and species mortality δmeff
i of the form

(Fig. 4c):

δmeff
i =

∑
α

(1− ℓ)riαR
∗
α

pHneutral − pHmin
∆pH

δKeff
α =

∑
j,β

ℓDαβrjβR
∗
βN

∗
j

pHneutral − pHmin
∆pH.

(22)

Notice that the effective perturbations depend on the steady-
state abundances . The change in species abundances, δN i,
and resource abundances, δRα, must satisfy Eq. (15) except
with the effective perturbations defined above,

CiαδR
α = δmeff

i

QαβδR
β + EiαδN

i = δKeff
α . (23)

To understand the effect of lowering pH, we simulated the
ecological dynamics of both specialist and generalist commu-
nities using Eq. (21). We first let the communities reach a
steady-state at neutral pH and then reduced the pH slightly
until a new a new steady state was reached (Fig. 4b) (see
Appendix I for details). We used these simulations to cal-
culate the change in the steady-state species and resource
abundances δN i and δRα at neutral and low pH. We then
compared the results with theoretical predictions made using
Eqs. (23) and (22) (Fig. 4f). As can be seen in Figs. 4d-g, our
theory agrees with results from numerical simulations.

As can be seen in Figs. 4d-g, generalist and specialist com-
munities respond qualitatively differently to changes in pH. In
the community of generalists, one of the two species experi-
ences a much larger change in steady-state abundance than the
other. In contrast, in the specialists community both species
experience a similar change in abundance. These results also
hold for randomly generated generalists and specialists (Fig.
S2). Our geometric framework also allows us to understand
the origin of this difference by decomposing δN i into changes
in the naive abundance, δKi, and changes in the mortality bur-
den, δmi (Figs. 4f-g, pink and blue respectively). In commu-
nities of generalists, both supply and mortality components
are acute angled, while in the community of specialists, they
are obtuse angled. As discussed previously, the angles be-
tween components are a consequence of non-reciprocity in
species-resource interactions. The more non-reciprocal the
effective interactions, the greater the angle between compo-
nents. Specialist communities divide labor and have greater
effective non-reciprocity. Further, the two components of the
pH sensitivity vector are somewhat negatively correlated for
generalists and positively correlated for specialists. The vec-
tor sum of these components is skewed towards one species
for generalist communities, but of similar magnitude for spe-
cialist communities. The two different orientations of δKi

(downward for generalists and upward for specialists) simply
reflect that the effective resource supply is increased for both

species in specialist communities whereas it is decreased due
to competition in generalist communities. This difference is
the primary driver of the greater sensitivity of generalist com-
munities to changes in pH. These results are consistent with
recent experimental observations on specialist and generalist
communities [40].

V. ADVANTAGES OF UNIVERSAL NICHE GEOMETRY

In addition to revealing the geometric structure of solutions
to generalized CRMs (Eq. (13)), our framework also reveals
several biological insights. In this section, we highlight a few
such selected insights which go beyond “solving the models”
or interpreting the terms.

Correspondence between simple and complex dynam-
ics: First, our framework shows a correspondence between
arbitrarily complex ecological models and equivalent simple
MacArthur models. Any complex ecological model with dy-
namics of the form of Eq. (13) is generally not solvable. But
around steady state, we show any such model can be approx-
imated by a simple MCRM whose linearized dynamics are
equivalent to the complex models. This resulting MCRM is
exactly solvable (its solutions being Eq. (19). This correspon-
dence between complex ecological dynamics and MCRMs
highlights why MCRMs, despite their simplifying assump-
tions, are the de facto general models of ecological dynamics.

Disentangling competition from cooperation: Second, a
powerful consequence of this correspondence is that it is al-
most impossible to learn the true biological processes underly-
ing the ecological dynamics of a community perturbed around
steady state. The latter is common practice in ecological ex-
periments and field studies. The reason it is hard to learn
the true mechanism is that there are infinitely many models
with different processes and dynamics that have the same lin-
earized behavior and thus map to the same effective MCRM.
A strong result of this is that it is impossible to disentangle
competition from cooperation using perturbation experiments
of community dynamics (Fig. 5a–d). Near steady state, a
community that coexists only due to cross-feeding will be-
have indistinguishably from a community that coexists purely
through nutrient competition (Fig. 5b and 5d). In the lan-
guage of effective interactions, both communities will have
effective species interaction matrices A that will be consistent
with competition (Aij > 0) and will mask any mutualisms.
Even though both interaction matrices have different decom-
positions (Appendix G), what is observed in the dynamics are
not the decompositions, but the full composite quantities.

Defining decoupled niches: Finally, another powerful con-
sequence of the steady-state equivalence between several eco-
logical models is that corresponding to every interacting eco-
logical system, there is an equivalent non-interacting system.
This is easiest to see the language of linearized niche geom-
etry. The benefit of the linear algebraic solutions is that one
can go the eigenbasis of the linear transformations we have
identified, which diagonalizes the interactions and therefore
decouples species from each other. In this way, one can rig-
orously see and define niches. Niches are eigenvectors of
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FIG. 5. Disentangling cooperation from competition in complex ecological models (a) Cartoon of dynamics of a non-linear cross-feeding
model seeded with 100 species and 51 resources, where only one resource is externally supplied and all others are cross-fed. (c) Cartoon
of equivalent competitive model where all resources are now supplied externally and there is no cross-feeding (see Appendix I) (b)–(d) We
simulate both models and compute the effective species interaction matrix Aij = [CQ−1ET ]ij (see Eqs. (G19) and G8) for surviving species in
both models near steady-state. Positive values (red) indicate competitive while negative (blue) indicate cooperative interactions. The interaction
matrix for both models is consistent with competition. The species interaction matrix for cross-feeding masks cooperation, even though the entire
community survives due to it.

ACQ−1, which represent combinations of resources, each of
which dominantly contributes to the abundance of exactly one
species. Each combination of resources is thus each species’
niche. People have long had the idea that when species are
generalists, it is complex combinations of resources that com-
prise niches, but thus far there have been no explicit way of
computing them. The inherent linear algebraic nature of our
framework provides a clear way to compute niches as eigen-
vectors of the effective transformations we have identified. In-
deed, this can be done for any complex ecological dynamics
(including community data) as long as we have enough sam-
ples to learn the matrix ACQ−1. Crucially, knowing niches
does not require knowing all the complex ecological dynamics
of a community.

VI. DISCUSSION

In this paper, we developed a theory for the steady-state re-
sponse of ecosystems subject to environmental perturbations.
Our theory characterizes the effect of perturbations in resource
supply and species mortality on changes in the steady-state
species and resource abundances. We show that our frame-

work applies to a variety of generalized consumer-resource
models, including models with nonlinear growth and impact
(see Appendix G). We also show how our theory can be ap-
plied to a wider class of environmental perturbations such as
pH changes by recasting such changes as effective perturba-
tions to resource supply and mortality. We conclude by show-
ing the explicit conceptual advantages that our theory offers
over simply simulating the underlying ecological models. For
this reason, our framework represents a powerful framework
for characterizing how ecosystems respond to environmental
perturbations.

The rich mathematical structure of our theory reveals a nat-
ural geometry that underlies consumer-resource models. Eco-
logical variables – species and resource abundances and fluxes
– live in four distinct vector spaces that are related by gener-
alized susceptibilities. This allows us to decompose the ef-
fect of environmental perturbations in terms of canonical vec-
tors whose geometric relationship encodes information about
competition and niche structure. These vectors represent nat-
ural “emergent” variables that characterize steady states and
linear response. These observations suggest that our geomet-
ric framework may be useful for defining coarse-grained col-
lective ecological modes [26, 42].
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Our theory focuses on describing how an ecosystem’s
steady state changes in response to environmental perturba-
tions. In the future, it will be interesting to see if our frame-
work can also provide geometric insight into dynamical phe-
nomena, e.g., the onset of instability and chaos in diverse
ecosystems with non-reciprocal interactions [31]. There is a
long history of explaining such dynamical phenomena using
geometry [43]. Recent work using DMFT to analyze chaos
in generalized Lotka-Voltera models suggests that abundant
species reach long-lived transients that share many properties
with steady states [30]. If this is also true in CRMs, then
it may be possible to adapt the geometric framework devel-
oped here to describe the dynamics of abundant species and
resources even in the chaotic phase.

We are also interested in extending our framework to ex-
plore the interplay between ecological and evolutionary dy-
namics. The introduction of a new mutant can be viewed
as a small perturbation to the environment of the remaining
species [44, 45]. For this reason, it maybe possible for some

types of eco-evolutionary dynamics (e.g., strong selection,
weak mutation) to be analyzed using the methods outlined
here. Finally, we note that the basic geometric and mathemat-
ical structure outlined here also seems to be present in other
complex systems that can be described using two distinct sets
of variables analogous to species and resources, including me-
chanical metamaterials [38] and linear regression [39]. This
suggests that many of the ideas presented here maybe appli-
cable to complex systems beyond ecological settings.
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A. Sanchez-Gorostiaga, D. Segrè, P. Mehta, and A. Sanchez,
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Appendix A: Relating the Generalized MacArthur
Consumer-Resource Model to Lotka Volterra

In this appendix, we will show that when resource dynam-
ics of a Generalized MCRM reach a steady state, the corre-
sponding steady-state species abundances can be obtained us-
ing an equivalent Generalized Lotka-Volterra (GLV) model.
This statement is always true for Generalized MCRMs at
steady state, regardless of the pace of resource dynamics rel-
ative to species dynamics. Setting resources to steady state,
dRα

dt = 0, we get the following equation in terms of steady-
state resource abundances R⃗∗:

0 = R∗
α

Kα −
∑
β

QαβR
∗
β

−
∑
j

EiαNjR
∗
α,

0 = Kα −
∑
β

QαβR
∗
β −

∑
j

EjαNj .

(A1)

Solving for R∗β and substituting into the species dynamics
Eq. (1), we get

dNi

dt
= Ni

∑
α

CiαQ
−1
αβ

Kα −
∑
j

EjαNj

−mi

,
(A2)

which can be rearranged to get the corresponding GLV equa-
tions for consumer species

dNi

dt
= Ni

Ki −
∑
j

AijNj

, (A3)

where we have defined the “effective” species-species inter-
action matrix

Aij =
∑
α,β

CiαQ
−1
αβEjβ (A4)

and written the effective carrying capacity of a species as the
difference

Ki =
∑
α,β

CiαQ
−1
αβKβ −mi (A5)

between the “naive” fitness (first term) and the mortality rate
mi.

Appendix B: Steady state Abundance and Resource Expressions

In this appendix, we will solve for the steady-state
species and resource abundances in Generalized MacArthur
Consumer-Resource Models (GMCRMs). For any number of
initially added species S and resources M , we will solve for
the abundances of the M∗ non-depleted resources and the S∗

surviving species using the linear equations

0 = C∗R⃗∗ − m⃗∗

0 = K⃗∗ −Q∗R⃗∗ − E∗T N⃗∗,
(B1)

where we have introduced the S∗-dimensional vectors of
species abundances of surviving species N⃗∗ and their cor-
responding mortality rates or maintenance costs m⃗∗, and
the M∗-dimensional vectors of resource abundances for non-
depleted resources R⃗∗ and their corresponding carrying ca-
pacities K⃗∗. In what follows, we will drop the ∗ for simplicity.
We can write this as a block matrix equation of the form[

0 C∗

E∗T Q

][
N⃗∗

R⃗∗

]
=

[
m⃗∗

K⃗∗

]
. (B2)

In what follows we will assume Q = I . A similar deriva-
tion can be done for a general Q, with solutions as in Eq.
(9) of the main text. To solve this equation, we use standard
block-diagonal formulas (using the Schur complement of the
lower diagonal matrix I),[

0 C∗

E∗T I

]−1

=

[
−(C∗E∗T )−1 (C∗E∗T )−1C∗

E∗T (C∗E∗T )−1 I − E∗T (C∗E∗T )−1C∗

]
.

(B3)
Note that since S∗ ≤ M∗, we know that (C∗E∗T ) is full
rank and therefore invertible. To simplify notation, notice
that E∗T (C∗E∗T )−1C∗ is a (oblique) projector onto the S∗-
dimensional subspace of the full M∗-dimensional resource
space spanned by the surviving species. To see this, we de-
fine

P∗ = E∗T (C∗E∗T )−1C∗, (B4)

which displays the projector property

P 2
∗ = P∗. (B5)

We can also define a “species-interaction” matrix

A∗ = C∗E∗T , (B6)

in terms of which we can write the projector as

P∗ = E∗TA∗−1C∗. (B7)

In terms of these new matrices, we have[
0 C∗

E∗T I

]−1

=

[
−A∗−1 A∗−1C∗

E∗TA∗−1 I − P∗

]
, (B8)

which gives the required steady-state species and resource
abundances N∗ and R∗, respectively, as[

N⃗∗

R⃗∗

]
=

[
−A∗−1m⃗∗ +A∗−1C∗K⃗∗

E∗TA∗−1m⃗∗ + (I − P∗)K⃗
∗

]
. (B9)

Appendix C: Operators in Einstein Notation

The transformations in Fig. 1b allow us to “transport” vec-
tors between these four vector spaces. For example, the re-
source abundance vector Rα has three natural counterparts in
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resource flux space, species flux space, and species abundance
space given by

Rα = QαβR
β

Ri = CiβR
β

Ri = AijRj = AijCjβR
β .

(C1)

One can perform similar constructions for the resource supply
rates Kα,

Kα = QαβKβ

Ki = CiαK
α = CiαQ

αβKβ

Ki = AijKj = AijCjαQ
αβKβ ,

(C2)

the steady-state species abundances N i,

Ni = AijN
j

Nα = EjαN
j

Nα = QαβNβ = QαβEjβN
j ,

(C3)

and the species mortality rates mi,

mi = Aijmj

mα = Ejαm
j = EjαA

jkmk

mα = Qαβmβ = QαβEjβm
j = Eα

j m
j .

(C4)

Collectively, Eqs. (C1)-(C4) define sixteen vectors provid-
ing a complete characterization of the ecological steady-state
properties of Generalized MacArthur CRMs. In Fig. 1c, we
graphically illustrate each of these vectors, along with a brief
ecological interpretation.

Appendix D: Susceptibilities of Generalized MacArthur CRMs

Using Appendix B, we can also calculate the matrix form of
the susceptibilities, as we show in this appendix. For Q = I ,
we see by differentiating Eq. (B2), we get[

0 C∗

E∗T I

][∂N⃗∗

∂m⃗∗
∂N⃗∗

∂K⃗∗

∂R⃗∗

∂m⃗∗
∂R⃗∗

∂K⃗∗

]
=

[
I 0
0 I

]
(D1)

so that we have[
∂N⃗∗

∂m⃗∗
∂N⃗∗

∂K⃗∗

∂R⃗∗

∂m⃗∗
∂R⃗∗

∂K⃗∗

]
=

[
−A∗−1 A∗−1C∗

E∗TA∗−1 I − P∗

]
. (D2)

This also allows us to write the steady-state abundances in
terms of the susceptibilities as[

N∗

R∗

]
=

[
∂N⃗∗

∂m⃗∗
∂N⃗∗

∂K⃗∗

∂R⃗∗

∂m⃗∗
∂R⃗∗

∂K⃗∗

][
m∗

K∗

]
=

[
∂N⃗∗

∂m⃗∗m
∗ + ∂N⃗∗

∂K⃗∗K
∗

∂R⃗∗

∂m⃗∗m
∗ + ∂R⃗∗

∂K⃗∗K
∗

]
.

(D3)
Thus, we see that each of the terms in the steady-state ex-

pression in Eq. (B9) involves these susceptibilities, and these
susceptibilites contain all the relavant ecological interactions.

Appendix E: Calculating steady states of Generalized
MacArthur CRMs using Einstein notation

As shown in the main text, we can also express all ecolog-
ical quantities in Einstein notation. In this appendix, we will
demonstrate how to solve the GMCRMs steady-state condi-
tions, written in Einstein notation as

0 = CiβR
β −mi

0 = Kα −QαβR
β − EjαN

j ,
(E1)

to obtain the steady-state expression in Eq. (11), again written
in Einstein notation as

N i = Ki −mi

Rα = mα + (δαβ − Pα
β )K

β .
(E2)

First, we derive the steady-state species abundances N i

from the steady-state conditions,

EjαN
j = Kα −QαβR

β

QγαEjαN
j = QγαKα −QγαQαβR

β

Eγ
j N

j = Kγ −Rγ

CkγE
γ
j N

j = CkγK
γ − CkγR

γ

CkγE
γ
j N

j = CkγK
γ −mk

AkjN
j = Kk −mk

AikAkjN
j = AikKk −Aikmk

N i = Ki −mi.

(E3)

Using this result, we can then derive the steady-state re-
sources abundances Rα from the steady-state conditions.
Starting from the third line in the previous derivation,

Rα = Kα − Eα
j N

j

= Kα − Eα
j (K

j −mj)

= mα +Kα − Eα
j A

jkCjβK
β

= mα +Kα − Eα
j C

j
βK

β

= mα +
(
δαβ − Pα

β

)
Kβ

(E4)

Appendix F: Calculating angles between geometric components

In this appendix, we will calculate the angle between the
components of steady-state resource and species abundances
in Generalized MacArthur Consumer-Resource Models (GM-
CRMs). Specifically, we will show that the magnitude of the
angle depends on the degree of non-reciprocity in the eco-
logical interactions. Due to the mathematical equivalence be-
tween steady-state abundances in GMCRMs and sensitivity
to perturbations in Generalized Consumer-Resource Models,
the angles derived here also generalize to those models, albeit
they reflect the non-reciprocity in the generalized interactions
described in the main text.
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We will start by noting the steady-state expressions for
species and resources in GMCRMs,

N⃗ = A−1[CQ−1K⃗ − m⃗]

R⃗ = Q−1[ETA−1m⃗+ (1− P )K⃗].
(F1)

It will suffice to show the angle between the two components
of the steady-state abundances first. Consider the case when
m⃗ and K⃗ are of equal magnitude, as is the case throughout our
manuscript. Relaxing this assumption will generally change
the expression for the angles, requiring us to incorporate rela-
tive changes in mortality and supply.

When mortality and supply are comparable, the cosine of
the angle θN between the two components of the steady-state
species abundance vector will be proportional to the inner
product of the equivalent vector components as

cos θN ∝ ⟨A−1|A−1CQ−1⟩, (F2)

where the full expression for cos θN will also involve the
norms of the matrices involved. By straightforward inspec-
tion, we can see that θN is close to zero when the inner prod-
uct is close to 1, which corresponds to the matrices A−1 and
Q−1 being approximately diagonal. Note that these matrices
are the generalized metrics from our geometric theory. With
increasing non-reciprocity, both metrics A−1 and Q−1 will
increasingly gain asymmetric off-diagonal entries. This will
decrease the inner product, and thus increase the angle θN as
per Eq. (F2).

Similarly, the angle θR between the two components of the
steady-state resource abundance vector will be

cos θR ∝ ⟨Q−1ETA−1|(I − ETA−1CQ−1⟩. (F3)

Similar to θN , this angle also increases as the metrics A−1

and Q−1 become increasingly asymmetric. Due to the math-
ematical equivalence between the steady-state expressions
in GMCRMs and linear response expressions in generalized
nonlinear consumer-resource models, the geometric intuition
presented here is preserved. Thus, the angle between geo-
metric components generically indicates the extent of non-
reciprocity in an ecosystem.

Appendix G: Calculating linear response for common variants
of consumer-resource models

In this appendix, we will calculate the generalized ecolog-
ical interactions for common variants of consumer-resource
models. We will focus on models where all interactions are re-
source mediated [as in Eq. (13)], since this is where our niche
geometry is valid.

1. Linear Resource Model

For reference:

Ciα =
∂gi
∂Rα

∣∣∣∣
R⃗∗

Eiα =
∂fα
∂N i

∣∣∣∣
R⃗∗,N⃗∗

Qαβ =
∂fα
∂Rβ

∣∣∣∣
R⃗∗,N⃗∗

+
∂qα
∂Rβ

∣∣∣∣
R⃗∗

,

(G1)

dNi

dt
= Ni

(
gi(R⃗)−mi

)
dRα

dt
= hα(K⃗)− qα(R⃗)− fα(R⃗, N⃗),

(G2)

We start with the linear resource model with

dNi

dt
= Nigi

(∑
α

wiαciαRα −mi

)
dRα

dt
= Kα − ωRα −

∑
j

NjejαRα

(G3)

For future, reference it will be helpful to define the
community-level functional impact

fα =
∑
i

eiαN
∗
i , (G4)

or in Einstein notation

fα = eiαN
i. (G5)

We can also define the effective degradation rate for resource
α as

ωeff
α = ω + fα. (G6)

Notice this rate only depends on the average population rate
through the functional content fα. For this model we have the
following generalized interaction matrices:

Ciα = giwiαciα

Eiα = eiαR
∗
α

Qαβ = (ω + fα)δαβ = ωeff
α δαβ .

(G7)

As a result, we have

Aij = [CQ−1E]ij =
∑
α

giwiαciαejαR
∗
α

ωeff
α

(G8)

P β
α = [ETA−1CQ−1]αβ =

1

ωeff
β

∑
jk

R∗
αejα[A

−1]jkgkwkβckβ

(G9)

Notice that the metric in resource space Qαβ and the pseudo-
metric for the species space Aij only depend on the com-
munity population through the effective degradation rates
ωeff
α = ω + fα and hence its functional content fα. For the

same reason, this is also true of the projector P encoding the
metabolic niches occupied by the species in the ecosystem.
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2. Microbial Consumer-Resource Model

dNi

dt
= Nigi

(∑
α

(1− lα)wαciαRα −mi

)
dRα

dt
= Kα − ωRα −

∑
j

NjcjαRα +
∑
βj

lβ
wα

wβ
DαβcjβRβNj

(G10)
Once again the community functional content of resource α
as

fα =
∑
j

cjαN
∗
j (G11)

and

ωeff
α = ω + fα. (G12)

It is also helpful to define a production flux due to cross feed-
ing of resource α by species i which is just

κcf
iα =

∑
β

lβ
wα

wβ
DαβR

∗
βciβ (G13)

and the effective depletion rate of resource α by species i:

κeff
iα = −ciαR

∗
α + κcf

iα. (G14)

Straightforward calculation and inspection gives

Ciα = giwα(1− lα)ciα

Eiα = −κeff
iα

Qαβ = (ω + fα)δαβ − lβ
wα

wβ
Dαβfβ .

(G15)

Notice, by definition Ciα is just the marginal growth rate of
species i if one varies resource α, so we will denote it

∆giα ≡ Ciα = giwα(1− lα)ciα. (G16)

Furthermore, we can define the total production flux of re-
source α due to crossfeeding as

κcf
α =

∑
j

κcf
jαN

∗
j =

∑
β

lβ
wα

wβ
DαβR

∗
βfβ . (G17)

Notice that we can define how this cross-feeding flux changes
as we change R∗

β which we can write as

∆κcf
αβ = lβ

wα

wβ
Dαβfβ . (G18)

With these definitions we have

Qαβ = ωeff
α δαβ −∆κcf

αβ

Aij = [CQ−1E]ij = −
∑
αβ

∆giα[Q
−1]αβκ

eff
jβ

P β
α = [ETA−1CQ−1]αβ = −

∑
jkγ

κeff
αj [A−1]jk∆gkγ [Q

−1]γβ .

(G19)

Once again notice that the only dependence of the pseudo-
metrics Q, A, and the projector P on the species abundances
are through ωeff

α and the total gene content fα.
Appendix H: Linear response of the microbial

consumer-resource model

The microbial consumer-resource model has been success-
fully used to understand a wide variety of experimental ob-
servations in microbial ecology [17, 23, 32]. The model de-
scribes the secretion of metabolic byproducts by microbes and
was introduced to incorporate the important role played by
cross-feeding in microbial ecosystems (Fig. S1a) . The model
dynamics take the form of a generalized CRM with equations

dNi

dt
= Ni

[
M∗∑
α=1

(1− ℓ)riαRα −mi

]
dRα

dt
= Kα −Rα −

S∗∑
j=1

IjαNjRα +
∑
j,β

ℓDαβrjβRβNj ,

(H1)
where the cross-feeding matrix Dαβ encodes the conversion
of resources β to metabolic byproducts α, the parameter ℓ
encodes the fraction of consumed resources that “leak” as
byproducts, and the consumer and impact preferences are en-
coded by the matrices riα and Ijα, respectively.

For visualization purposes, here we focus on a simple cross-
feeding community with 2 species and 3 resources shown in
Fig. S1a. We are interested in understanding how this com-
munity responds to changes in resource supply and mortality
rates (i.e., if we make the change Kα → Kα + δKα and the
species mortality mi → mi + δmi). We measure the ecosys-
tem’s response in two complementary ways: (i) by simulat-
ing the dynamics in unperturbed and perturbed environmental
conditions (Figs. S1b-c), and (ii) by calculating the changes
δNi and δRα directly using Eq. (20) (Figs. S1d-e). As shown
in Fig. S1f, our analytic predictions can correctly predict the
changes in steady states, even for relatively large perturbations
of up to ≈ 10%.

Our theory also geometrically decomposes the changes
in steady states into contributions from supply and mortal-
ity perturbations (Figs. S1d-e, pink and blue respectively).
The species sensitivity δN i is the vector difference between
the effective supply perturbation δKi (pink) and the effec-
tive mortality perturbation δmi (blue). Notably, these vec-
tors are roughly orthogonal to each other, suggesting supply
and mortality perturbations have qualitatively different effects
on both species. In the absence of mortality, changes in both
species abundances are positively correlated. But the effect
of mortality lowers this correlation by acting in opposite di-
rections on both species. Finally, we note that δRα has only
one component, δmα, since all resources are utilizable [i.e.,
(δαβ − Pα

β )δK
β = 0] (see Fig. S1e).

1. Bacterial denitrification

We start with the bacterial denitrification model summa-
rized as
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FIG. S1. Decomposing niches in microbial cross-feeding. (a) Example of dynamics and geometry in a non-linear cross-feeding model with 2
species and 3 resources (with R3 being waste). We perturb the supply (K1,K2) to (K′

1,K
′
2) and mortality (m1,m2) to (m′

1,m
′
2), and simulate

the dynamics to calculate the change in the steady-state (b) species abundances δ⃗N and (c) resource abundances δ⃗R. (d-e) Comparison between
results of simulations (red and green vectors) and theoretical predictions (blue and pink vectors). (f) Plot of the prediction error of our geometric
formalism as a function of the relative perturbation size δK/K. Predictions agree with simulations for perturbations up to ≈ 10%.

dNi

dt
= Ni

[∑
α

(1− ℓ)riα max

(
0,

pH − pHmin

pHneutral − pHmin

)
Rα −mi

]
dRα

dt
= Kα − ωRα −

∑
j

IjαNjRα +
∑
j,β

ℓDαβrjβ max

(
0,

pH − pHmin

pHneutral − pHmin

)
RβNj .

(H2)

For this model, we have the following generalized interac-
tions near a steady state (N⃗∗, R⃗∗)

Ciα =
∑
α

(1− ℓ)riαχpH

Eiα = −IiαR
∗
α +

∑
β

ℓDαβriβχpHR
∗
β

Qαβ = −ω −
∑
j

IjαN
∗
j +

∑
j

ℓDαβrjβχpHN
∗
j ,

(H3)

where χpH = max
(
0,

pH−pHmin
pHneutral−pHmin

)
. We then have the fol-

lowing generalized linear response equations

CiαδR
α = δmeff

i

QαβδR
β + EiαδN

i = δKeff
α ,

(H4)
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with the following effective perturbations

δmeff
i =

∑
α

(1− ℓ)riαR
∗
α

pHneutral − pHmin
∆pH

δKeff
α =

∑
j,β

ℓDαβrjβR
∗
βN

∗
j

pHneutral − pHmin
∆pH.

(H5)

This linear response is very similar to cross-feeding in the
Microbial Consumer-Resource Model, but with new effective
perturbations δmeff

i and δKeff
α described by Eq. (H5). Thus

the pH change ∆pH can be decomposed into effective pertur-
bations in both the mortality and supply.

Notably, which of the two components dominates depends
primarily on the leakage ℓ, resulting in two distinct regimes.
At low leakage ℓ ≪ 1, pH changes act chiefly as mortality
changes since δmeff

i ≫ δKeff
α . At large leakage ℓ ≈ 1, pH

changes act chiefly as supply changes δmeff
i ≪ δKeff

α . As
the leakage smoothly increases from 0 to 1, the effective pH
perturbations also smoothly shift from mortality-dominated to
supply-dominated.

Appendix I: Simulations and Methods

1. MacArthur Consumer-Resource Model

To simulate the examples in Fig. 2, we simulated dynam-
ics according to the MacArthur Consumer-Resource Model
(MCRM) according to Eqns. (1), with two species and two
resources (S = 2 and M = 2 respectively) and Q = I .
We simulated two cases: the reciprocal case wth C = E
and the non-reciprocal case with C ̸= E. Both resources
were supplied at rates K1 = K2 = 2, both species experi-
enced mortality at rates m1 = m2 = 0.1. For C = E (Fig.
2f), both species were generalists but better at different re-
sources. Species 1 had consumption preferences C11 = 0.3
and C12 = 0.2, while species 2 had preferences C21 = 0.1
and C22 = 0.4. For C ̸= E (Fig. 2g), species 1 had con-
sumption preferences C11 = 0.5 and C12 = 0.4 and impacts
E11 = 0.16 and E12 = 0.01, while species 2 had prefer-
ences C21 = 0.4 and C22 = 0.6 and impacts E21 = 0.62
and E22 = 0.72. In all cases, we numerically simulated the
dynamics and obtained the steady-state species and resource
abundance vectors (Fig. 2, blue boxes). To obtain the ge-
ometric components from theory (Fig. 2, green boxes), we
computed the two vector components by plugging in the pa-
rameters into the solutions in Eqns. (9). We plotted the vector
components as well as their vector sum (which represents the
predicted steady-state abundance vectors).

2. Microbial cross-feeding

To simulate the examples in Fig. S1, we simulated dynam-
ics according to the Microbial consumer-resource model with
cross-feeding according to Eqns. (H1), with two species and
three resources (S = 2 and M = 3 respectively) and leakage

ℓ = 0.7. Resources 1 was only supplied externally, while re-
sources 2 and 3 could be produced through cross-feeding, as
shown in the cross-feeding network in Fig. S1a. We supplied
resources 1 and 2 at rates K1 = K2 = 20, both species experi-
enced mortality at rates m1 = m2 = 1. No species could con-
sume resource 3 (waste) for growth. Both species were spe-
cialists with consumption preferences r11 = 0.9 and r12 = 0,
while species 2 had preferences r21 = 0 and r22 = 1. We
assumed that the impacts I = C. Starting from random initial
conditions with both species and resources present, we numer-
ically simulated the dynamics and obtained the steady-state
species and resource abundance vectors (Fig. S1b–c). We then
perturbed the environment, namely the resource supply and
species mortality rates to K1 = 20.05,K2 = 19.95,m1 =
0.95,m2 = 0.95 and simulated the dynamics to the new
steady state with random initial conditions (Fig. S1b–c). Us-
ing these two steady states (before and after the environmental
perturbations), we calculated the species and resource sensi-
tivities, i.e., the change in steady-state species and resource
abundances δN⃗ and δR⃗ (Fig. S1d–e). To obtain the geomet-
ric components of these sensitivities from theory (Fig. S1d–
e), we computed the two vector components by plugging in
the parameters into the solutions in Eqns. (19). We plotted
the vector components as well as their vector sum (which rep-
resents the predicted species and resource sensitivities). For
species, we used a single two-dimensional plane representing
the changes in abundances of both species. For resources, we
split them into occupied (resources 1 and 2) and unoccupied
(resource 3, waste) niches. To calculate the prediction error as
a function of relative perturbation size, we repeated this anal-
ysis by changing the relative size of the environmental pertur-
bations to m and K, and calculating the absolute value of the
relative error in predicted δN⃗ .

3. Comparing competitive and cooperative models

To simulate the examples in Fig. 5, we simulated dynamics
according to Microbial consumer-resource model. For coop-
eration, we used the Microbial consumer-resource model with
cross-feeding and leakage ℓ = 0, while for competition we
used zero leakage, ℓ = 0. It is easily seen that at zero leak-
age, the model with cross-feeding becomes equivalent to the
competitive Linear Resource model with ciα = eiα. Thus the
former models cooperation while the latter models competi-
tion. We numerically the cooperative model using the Com-
munity Simulator [? ] using the following parameters: bi-
nary sampling, mean consumption rate 10 with standard de-
viation 5, fraction of secretion flux to the same resource type
fs = 0.9 and to waste fw = 0.05, with external resource
supply. We simulated the competitive version using custom
numerical code (Community Simulator has a known bug for
no leakage ℓ = 0). For the sake of comparison between both
models, we used the same randomly generated consumption
preferences, mortality rates, and species initial conditions for
each simulation. We simulated the model with 100 species
and 51 resources (with the last being a waste, unusable re-
source). In the cooperative model, we supplied only one re-
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FIG. S2. Generalists differ from specialists in sensitivity to pH perturbations. Scatter plot of the sensitivity of two species — both generalists
(blue) or both specialists (red) — from simulations of the denitrification model with small pH perturbations. Both specialists tend to cluster around
the center of this plot — indicating that they both have similar sensitivity to pH changes. With two generalists, one of them often shows a much
larger sensitivity to pH changes (indicated by concentrating near the extremes). Note that the top-left and bottom-right of the plot contains several
nearly overlapping points corresponding to generalists. This observation that the generalist points are often far from the center indicates the skew
in their sensitivities — indicating that one of the generalists is usually much more sensitive than the other.

source externally at rate K = 100, while all others were gen-
erated through cross-feeding. In the competitive model, all re-
sources except the waste were supplied at equal rates Kα = 2.
The total resource supply flux was the same for both models.
We simulated both models to steady state, and used the steady
state abundances to compute the effective species interaction
matrices Aij according to the expressions in Eq. (G19) for
cooperation and Eq. (G8) for competition. These were com-
puted for the surviving species only, which could be different
in the case of cooperation and competition, even with the same
consumption preferences of all species. Similar results were
obtained for different random instantiations. One representa-
tive example for each case is shown in Fig. 5.

4. Bacterial denitrification

To simulate the examples in Fig. 4, we simulated dynam-
ics according to the bacterial denitrification model according
to Eqns. (21), with two species and three resources: repre-
senting nitrate, nitrite and nitrogen respectively (S = 2 and
M = 3) and leakage ℓ = 0.7. We set neutral pH to 7, and
minimum pH to 1. We supplied only nitrate (R1) at rates
K1 = 20, while the supply for other resources was only via
cross-feeding (i.e., K2 = K3 = 0). Both species had mor-
tality rates m1 = m2 = 1. The denitrification matrix resem-
bled the chain in Fig. 4a, with the only non-zero entries being
D21 = 1 and D32 = 1. Like in cross-feeding, neither species
could consume the waste resource and had consumption pref-

erences r13 = r23 = 0. Both species could consume the other
two resources with comparable preferences when they were
generalists. When specialists, both species instead strongly
preferred one of the two resources and only weakly consumed
the other (Fig. S2a). We obtained similar results with more
strict requirements where specialists could only consume one
of the two resources (Fig. S2b; “strict” specialists). In all
cases, the consumption and impact coefficients were identical,
i.e., riα = Iiα. To calculate the simulated and theoretically
predicted species sensitivities to changing pH, we followed
an analogous procedure to the microbial cross-feeding case in
Fig. 4, where instead of changing the supply and mortality
rates of resources and species, we performed a “global pertur-
bation” to the pH decreasing it by ∆pH = 0.05, from neutral
pH of 7. We simulated the steady states pre and post pH per-
turbation, and computed the changes in steady-state species
abundances. We then calculated the predicted changes using
Eqns. (23) and (22), and plotted them against the simulated
changes in Fig. 4d–g (results shown for strict specialists). We
repeated this procedure for both generalists and specialists.
To gain a statistical understanding of the sensitivities of gen-
eralists and specialists, we repeated this simulation procedure
to compute the species sensitivities δN1 and δN2 for 50 ran-
domly generated sets of generalists and specialists each. In
each set, species 1 and 2 had diagonal consumption prefer-
ences r11 and r22 picked as Gaussian random variables with
mean 0.6 and standard deviation 0.1. The off-diagonal pref-
erences r12 and r21 were set to zero mean in the case of spe-
cialists and mean 0.6 in the case of generalists, with standard
deviation 0.05. These results are plotted in Fig. S2.
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model species interactions A resource interactions Q projector P

Generalized consumer-resource
model (linear response) −B + C∗Q−1E∗T δαβ + ∂fα

∂Rβ

E∗TA−1C∗Q−1

(only defined when B = 0)
MacArthur model (C = E) C∗C∗T δαβ C∗T (C∗C∗T )−1C∗

MacArthur model (C ̸= E) C∗E∗T δαβ E∗T (C∗E∗T )−1C∗

Externally supplied resources
∑

α

giwiαciαejαR∗
α

ωeff
α

ωeff
α
ω

δαβ

∑
jk

R∗
αejα[A−1]jkgkwkβckβ

ωeff
β

Microbial cross-feeding model ω−1 ∑
α,β ∆giα[Q

−1]αβκ
eff
jβ

ωeff
α
ω

δαβ −∆κcf
αβ

−
∑

jkγ κ
eff
αj [A

−1]jk∆gkγ [Q
−1]γβ

Bacterial denitrification
∑

α,β(1− ℓ)riα[Q
−1]αβEjβ −ω −

∑
j IjαN

∗
j +∆κcf

αβ

∑
jkγ Ejα(A

−1)jkCkγ(Q
−1)γβ

TABLE I. Effective geometric objects in a variety of consumer-resource models. Expressions defining the generalized metrics in species
space Aij and resource space Qαβ , along with the projector Pα

β encoding the metabolic niches occupied by species in the ecosystem, across a
variety of consumer-resource models (see Appendix G for exact definitions of all models).
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