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Abstract

The fast evolution of SARS-CoV-2 and other infectious viruses poses a grand challenge to

the rapid response in terms of viral tracking, diagnostics, and design and manufacture of mono-

clonal antibodies (mAbs) and vaccines, which are both time-consuming and costly. This under-

scores the need for efficient computational approaches. Recent advancements, like topological

deep learning (TDL), have introduced powerful tools for forecasting emerging dominant vari-

ants, yet they require deep mutational scanning (DMS) of viral surface proteins and associated

three-dimensional (3D) protein-protein interaction (PPI) complex structures. We propose an

AlphaFold 3 (AF3)-assisted multi-task topological Laplacian (MT-TopLap) strategy to address

this need. MT-TopLap combines deep learning with topological data analysis (TDA) models,

such as persistent Laplacians (PL) to extract detailed topological and geometric characteris-

tics of PPIs, thereby enhancing the prediction of DMS and binding free energy (BFE) changes

upon virus mutations. Validation with four experimental DMS datasets of SARS-CoV-2 spike

receptor-binding domain (RBD) and the human angiotensin-converting enzyme-2 (ACE2) com-

plexes indicates that our AF3 assisted MT-TopLap strategy maintains robust performance, with

only an average 1.1% decrease in Pearson correlation coefficients (PCC) and an average 9.3%

increase in root mean square errors (RMSE), compared with the use of experimental structures.

Additionally, AF3-assisted MT-TopLap achieved a PCC of 0.81 when tested with a SARS-CoV-

2 HK.3 variant DMS dataset, confirming its capability to accurately predict BFE changes and

adapt to new experimental data, thereby showcasing its potential for rapid and effective response

to fast viral evolution.

Keywords: Topological deep learning, deep mutational scanning, AlphaFold 3, protein-

protein interactions, SARS-CoV-2 variants.
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1 Introduction

According to the Centers for Disease Control and Prevention (CDC)[1], the effectiveness of

flu vaccines has been much lower than 50% over the past decade, mostly due to fast evolution of

flu viruses and the relatively slow process of vaccine design and manufacture. It takes about six

months for pharmaceutical makers to produce a flu vaccine, whereas, during this period, the flu

virus typically has undergone some crucial mutations at its surface protein. As such, it is extremely

valuable to predict the emerging dominant viral variants so that new vaccines can be designed and

put into manufacture before a viral variant becomes dominant. During the COVID-19 pandemic,

the emerging dominance of Omicron BA.2 [2] and BA.4/BA.5 [3] was accurately forecast nearly

two months in advance of the World Health Organization (WHO) announcement, offering a life-

saving early warning to society. These predictions were based on two natural selection mechanisms

of SARS-Cov-2 evolution, namely infectivity strengthening [4] and antibody resistance (or vaccine

breakthrough) [5]. Technically, the accurate forecasting of emerging dominant variants was achieved

via the integration of artificial intelligence (AI), topological deep learning (TDL), genotyping of viral

genomes extracted from patients, the deep mutational scanning (DMS) of SARS-CoV-2 receptor

binding domain (RBD) in complex with human angiotensin-converting enzyme 2 (ACE2), and the

three-dimensional (3D) RBD-ACE2 complex structure. Among these, the DMS experiments are

typically a bottleneck in response to fast evolving viruses [6, 7, 8]. Indeed, the earliest experimental

DMS on the SARS-CoV-2 spike protein RBD mutations was not available until September 2020,

nine months after the outbreak of the COVID-19 pandemic [7]. Additionally, during the global

spread of infectious viruses [9], rapid viral evolution poses significant challenges for experimental

DMS to keep pace.

Since experiments are time-consuming and high-cost, much effort has been given to the de-

velopment of effective computational methods for predicting mutational impacts on viral surface

protein and human receptor interactions or protein-protein interactions (PPIs) [10, 11, 12, 13, 14,

15, 16, 17, 18, 19]. Remarkably, the TDL approach predicted in-silico DMS of SARS-CoV-2 spike

RBD in May 2020 [4], four months earlier than the first experimental DMS [7]. This study identified

critical mutation sites at spike protein residue positions 452 and 501, which were predicted to result

in significantly more infectious SARS-CoV-2 variants [4]. These sites were subsequently confirmed

as key hotspots in several prevailing SARS-CoV-2 variants, including Alpha, Gamma, Delta, Beta,

Theta, Mu, Omicron, BA.2, BA.4, BA.5, and all later variants. Nonetheless, experimental DMS is

needed for highly accurate and reliable AI-based predictions, such as the aforementioned forecasting

of Omicron BA.2 and BA.4/BA.5’s emerging dominance [2, 3].

Introduced in 2017, TDL combines topological data analysis (TDA) with deep learning tech-

niques [20]. A significant factor in this success is persistent homology [21, 22], which was used to

generate topological fingerprints for predicting binding free energy (BFE) changes upon mutation

in PPIs complexes [19]. Notably, one of the earliest persistent homology models to integrate with

deep mutational scanning is TopNetmAb, which offered accurate predictions of BFE changes upon

mutations in the RBD and ACE2 complexes [4, 23].

However, persistent homology has limitations, such as the lack of description of non-topological

shape evolution in data. Recently, persistent Laplacian (PL) has been introduced to address these

limitations of existing TDA methods [24]. It extracts both topological and geometric information

to understand the shape and structure of complex and high-dimensional data. PL is deeply rooted
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in spectral theory and is part of the family of persistent topological Laplacians, like persistent sheaf

Laplacians [25] and persistent Mayer Laplacians [26]. The harmonic spectra of PL can fully recover

the Betti numbers of persistent homology [21, 22], a crucial tool in the early days of TDA.

PL has proven effective in scenarios where standard approaches struggle, and it enhances

situations where they perform well by providing harmonic and non-harmonic spectral features for

TDL models [3, 27, 28]. PL is also used in the latest integration between TDL and pre-trained

evolutionary scale modeling (ESM) transformer features [29] to predict mutation-induced protein

solubility changes, establishing a state-of-the-art method for predicting protein-protein binding free

energy (BFE) changes [30].

Apart from experimental DMS data, TDL or TopNetmAb also employs the SKEMPI 2.0

database [31], an experimental database for PPI BFE changes upon mutation. SKEMPI 2.0 is

used as training data with a multi-task deep learning approach that simultaneously learns single-

site mutational patterns with experimental BFE changes and DMS profiles with experimental

enrichment ratios. Our recent study on multi-task topological Laplacian (MT-TopLap) [32], a multi-

task deep learning model built by integrating persistent Laplacian, auxiliary, and pre-trained ESM-

2 transformer features, revealed a 5% and 21% improvement in root mean square error (RMSE)

compared to earlier topology-based models like TopLapNet [3] and non-topology-based models like

mCSM-PPI2 [33] when predicting BFE changes upon mutation.

Finally, one important factor in ensuring the success of TDL or MT-TopLap for DMS predic-

tions is the availability of high quality 3D structures of PPI complexes. MT-TopLap requires the 3D

structures of new viral variants to achieve accurate predictions. Such structures are typically not

available until many months later during pandemics. Without these structures, new experimental

DMS data cannot be utilized in TDL models. The rapid mutation rate of SARS-CoV-2 exacerbates

this issue, leading to a shortage of both DMS and 3D structural data for emerging SARS-CoV-2

variants. This lack of 3D structures directly poses a significant challenge for TDL and many other

machine learning methods, hindering the ability of in-silico DMS to keep pace with viral evolution.

The challenge of lacking 3D structures may be addressed by AlphaFold 3 (AF3), which rep-

resents a groundbreaking advancement in the field of computational biology, particularly in the

prediction of antibody-antigen or protein-protein interactions (PPIs). Developed by Google Deep-

Mind and Isomorphic Labs [34], AF3 builds upon the remarkable success of its predecessors by

introducing significant enhancements in protein structure prediction. One of the most notable fea-

tures of AF3 is its ability to accurately predict the structures of PPI complexes, including those

involving DNA, RNA, antibodies, and antigens. Accurate prediction of PPIs is essential for un-

derstanding the molecular mechanisms underlying various diseases, developing targeted therapies,

and advancing protein engineering efforts.

The capabilities of AF3 in predicting PPIs mark a substantial leap from previous iterations,

which primarily focused on predicting the 3D structures of individual proteins. In 2019, AlphaFold’s

[35] exceptional performance in predicting 58.1% of the test protein structures generated excitement

among researchers about the future of AI-driven protein structure prediction. DeepFragLib by

Wang et al. [36] then made a significant advancement in ab initio protein structure prediction.

The introduction of AlphaFold marked a transformative shift in how we model protein structures

and their interactions [35]. AlphaFold has since unlocked numerous possibilities in protein folding,

protein engineering, and design [37, 38, 39, 40, 41, 42, 43]. In October 2024, the Nobel Prize in
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Chemistry was awarded to David Baker, Demis Hassabis, and John Jumper for their revolutionary

contributions to AlphaFold.

In this work, we introduce AF3-assisted MT-TopLap to accurately predict the BFE changes

upon DMS mutations of SARS-CoV-2 RBD-ACE2 variants. Specifically, we leverage AF3’s pre-

dicted structures to extract persistent Laplacian features. As such, we can speed up in-silico DMS

predictions by bypassing the experimental determination of PPI complex structures. As a result,

the proposed AF3-assisted MT-TopLap can serve the need for a rapid response to fast viral evolu-

tion.

We validate our AF3-assisted MT-TopLap approach with four experimental RBD-ACE2 DMS

datasets of SARS-CoV-2 and its variants and show that AF3-assisted MT-TopLap maintains strong

performance in predicting BFE changes upon DMS mutations, with an average decrease of only

1.1% in Pearson correlation coefficient (PCC) and an average increase of only 9.3% in RMSE,

compared to the use of experimental RBD-ACE2 structures. Furthermore, we perform fine-tuning

validation of AF3-assisted MT-TopLap using an experimental RBD-ACE2 DMS dataset of SARS-

CoV-2 HK.3 [44]. AF3-assisted MT-TopLap achieves a PCC of 0.81 and RMSE of 1.10 for this

fine-tuning validation. Using AF3’s SARS-CoV-2 RBD-ACE2 complexes extends MT-TopLap’s

effectiveness in predicting viral mutation impacts, tracking virus evolution, forecasting emerging

dominant variants, and guiding the development of new vaccines.

2 Results

In this section, we assess the performance of AF3-assisted MT-TopLap in predicting four

SARS-CoV-2 RBD-ACE2 DMS datasets. MT-TopLap integrates persistent Laplacian, auxiliary,

and pre-trained transformer features to predict BFE changes upon RBD DMS mutations. Using al-

ternative AF3’s 3D RBD-ACE2 complex structures, we demonstrate that AF3-assisted MT-TopLap

can effectively predict the BFE changes upon RBD DMS mutations for SARS-CoV-2 evolution.

Specifically, we first collected four experimental RBD-ACE2 DMS datasets, each paired with an

experimental 3D SARS-CoV-2 RBD-ACE2 complex structure. Meanwhile, we also create alterna-

tive AF3 3D RBD-ACE2 complex structures from the AlphaFold 3 Server. We evaluate how these

alternative AF3 3D RBD-ACE2 complex structures impact our MT-TopLap model’s predictions of

BFE changes upon the DMS of RBD, which involves the systematic mutations of each RBD residue

into 19 other residues, resulting in thousands of mutations.

The four experimental DMS datasets comprise of two datasets from the original SARS-CoV-

2 RBD-ACE2 DMSs (6M0J-RBD-1, 6M0J-RBD-2) [7, 45], and datasets from the BA.1-ACE2

complex (7T9L-RBD) and BA.2-ACE2 complex (7XB0-RBD) [6]. Most of the experimental DMS

datasets were released during the COVID-19 pandemic to speed up the understanding of how RBD

mutations affect SARS-CoV-2 infectivity and antibody resistance. One of the first SARS-CoV-2

experimental datasets used a yeast-surface-display platform to measure the expression of folded

RBD protein and its binding to ACE2[7]. The per-barcode counts from these experiments were

used to create a functional score, in the form of log enrichment ratios to estimate the RBD-ACE2

binding affinity values[7]. Consequently, DMS became a crucial tool for examining the SARS-CoV-

2 RBD-ACE2 interaction and for designing vaccines and antibodies. Further details can be found

in the Supplementary Information.
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Figure 1: (a): Comparison of AF3-assisted MT-TopLap’s Pearson correlation coefficient (PCC) values for the 10-fold
cross-validation on four SARS-CoV-2 RBD-ACE2 DMS datasets with AF3 structures against experimental structures.
Higher PCC values indicate better results. (b): Comparison of AF3-assisted MT-TopLap’s root mean square error
(RMSE) for the 10-fold cross-validation on four SARS-CoV-2 RBD-ACE2 DMS datasets with AF3 structures against
experimental structures. Lower RMSE values indicate better results. (c): The AF3 structural predicted HK.3 RBD-
ACE2 complex and its predicted DMS data (top) by AF3-assisted MT-TopLap. DMS predictions are obtained by
performing a 10-fold cross-validation using the experimental DMS data (bottom). The x-axis labels represent the
RBD residues and its wild amino acid types. The y-axis labels represents the mutant amino acid types.
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Figures 1(a) and (b) show the comparative analysis of the performance of AF3-assisted MT-

TopLap for the four SARS-CoV-2 RBD-ACE2 DMS datasets. AF3-assisted MT-TopLap only

displayed an average decrease of 1.1% in PCC when compared to using Protein Data Bank (PDB)

structures. Nonetheless, the four SARS-CoV-2 RBD-ACE2 datasets displayed an average of 9.3%

increase in RMSE when validated with AF3-assisted MT-TopLap. AF3-assisted MT-TopLap also

achieved the best performance in the validation test for 7XB0-RBD with a PCC of 0.968, only

0.6% lower than the performance using PDB complexes. AF3-assisted MT-TopLap’s predicted

BFE changes for 7XB0-RBD obtained the lowest RMSE of 0.338 kcal/mol as compared to the

other three DMS datasets. This indicates that the AF3-assisted MT-TopLap is still highly effective

in predicting BFE changes caused by BA.2 RBD DMS mutations.

To enhance AF3-assisted MT-TopLap’s capabilities using experimental DMS data, we use

transfer learning to update AF3-assisted MT-TopLap by training it with latest experimental DMS

data. This process is particularly important for DMS in SARS-CoV-2 pandemic research, as experi-

mental DMS approaches can be slow and inefficient for tracking the rapid viral evolution. Recently,

transfer learning has been applied to fine-tune MT-TopLap to predict DMS in SARS-CoV-2 S pro-

tein RBD binding to ACE2 in various animal species like bats, cats, deer, and hamsters due to

RBD mutations[32]. This enabled MT-TopLap to identify potential RBD mutations that enhances

human-animal cross-transmission [32]. With AF3, we can finetune MT-TopLap with new experi-

mental DMS data even though high quality 3D SARS-CoV-2 RBD-ACE2 variants are unavailable

in PDB. To finetune AF3-assisted MT-TopLap, we collected a recent experimental DMS dataset

based on the SARS-CoV-2 HK.3 variant RBD-ACE2 complex[44], which does not have an avail-

able high quality 3D HK.3 RBD-human ACE2 complex in PDB (accessed PDB on 5th Oct 2024).

HK.3 is one of the XBB subvariants and is known for its “FLip” substitutions with mutations

S:L455F and S:F456L. Similarly, we use the AlphaFold Server to predict the 3D structure of HK.3

variant RBD-ACE2 complex. Figure 1(c) shows the RBD-ACE2 complex predicted by AF3, the

comparison between experimental BFE changes (converted from enrichment ratios) (Figure 1(c)

bottom), and predicted BFE changes induced by HK.3 RBD mutations (Figure 1(c) top). The

predicted BFE changes are obtained by performing a 10-fold cross-validation after MT-TopLap has

been pre-trained with the SARS-CoV-2 RBD-ACE2 datasets and the S8338 dataset. The patterns

of the predicted DMS is observed to resemble the patterns of the converted BFE changes with a

PCC of 0.81 and an RMSE of 1.10. On the whole, MT-TopLap’s prediction still reflects the overall

trend and this supports the use of latest experimental DMS data and AF3 structures to update

the MT-TopLap model.

3 Discussion

3.1 Analysis of BFE changes by structural regions

In this section, we analyze the results by categorizing the mutation residues based on their

structural regions. The relative accessible surface area (rASA) values are calculated based on the

definitions in Figure 2(a) and this categorizes each mutation residue into interior and surface struc-

tural regions depending on the rASA values monomeric and PPI states[46]. Mutated residues within

the binding interface significantly affect the BFE changes of the PPI and are further categorized

into support, core and rim regions[49]. Figure 2(b) illustrates the structural regions for the original
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Figure 2: (a): Definitions of structural regions based on relative ASA in monomer and complex [46]. (b): Structural
regions on the Spike protein RBD (PDBID: 6M0J [47]). Amino acids are assigned to the surface, interior, support,
rim, and core based on the rASA in monomer and complex. Structures are plotted by VMD [48]. (c): The 10-fold
cross-validations for the four AF3-assisted SARS-CoV-2 RBD-ACE2 datasets displayed an average PCC of 0.933
and the average RMSE of 0.570 (see Figure 1(a)-(b)). The combined prediction results for different residue region
types for four AF3-assisted SARS-CoV-2 RBD-ACE2 datasets according to Fig. 1(a) with PCCs of 0.947, 0.943, and
0.931 for the binding interfaces: support, core, and rim respectively. The average enrichment of the experimental
DMS data is compared. (d): The 10-fold cross-validations of deep mutational scanning on the HK.3 RBD-ACE2[44]
shows a PCC of 0.81 and a RMSE of 1.10. Prediction results for different residue region types according to Fig. 1(a)
with PCCs of 0.773, 0.839, and 0.815 for the binding interfaces: support, core, and rim, respectively. The average
enrichment of the experimental DMS data is compared.
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SARS-CoV-2 S protein RBD. This approach has been strongly validated in previous research as

effective for identifying protein interaction interfaces. The variability in rASA calculations enables

the dynamic classification of mutation residues in PPIs, even underscoring the viral adaptability in

SARS-CoV-2 RBD-ACE2 interactions.

Predicting BFE changes induced by DMS mutations within the binding interface is most vital

in assessing AF3-assisted MT-TopLap’s performance. In this study, experimental log enrichment

ratios were converted into binding free energies, albeit with errors. Some discrepancies were noted

in mutations occurring both inside and on the surface. Figure 2(c)-(d) illustrates the 10-fold cross-

validation performance of AF3-assisted MT-TopLap in the support, core, and rim regions of the

binding interface. In Figures 2(c) and (d), both the four SARS-CoV-2 RBD-ACE2 data and the

HK.3 RBD-ACE2 DMS data displayed high correlations in the support, rim, and core regions. This

indicates that AF3-assisted MT-TopLap performs well in predicting BFE changes upon mutations

in binding interface of PPIs. The high correlations for the HK.3 RBD-ACE2 DMS data also suggest

that finetuning MT-TopLap remains robust in predicting the binding interface of HK.3 RBD-ACE2

complex.

Next, we examine the results of AF3-assisted MT-TopLap for mutated residues beyond the

binding interface. Figure S2 highlights the average PCC of AF3-assisted MT-TopLap for predicted

BFE changes due to surface and interior mutations. Across the four DMS datasets, high correlations

were observed for surface and interior mutations (see Figure S2). However, the HK.3 RBD-ACE2

DMS dataset showed weaker PCCs, likely due to significant negative BFE changes (ranging from

-5 to 0) for surface and interior mutations, while predicted values ranged from -2 to 0. Thus, the

PCCs for surface and interior regions were down to 0.557 and 0.837 respectively. This finding

aligns with earlier studies where the TDL-DMS model also reported weaker correlations for surface

and interior mutations[50]. Nonetheless, AF3-assisted MT-TopLap performed well on the binding

interface of the protein-protein complex, which is most important for understanding mutational

impacts on PPI systems (see Figure 2).

3.2 Analysis of BFE changes by mutation types

The prediction results are also analyzed by categorizing over different mutation types. The

pattern of predicted BFE changes based on various mutation types is a crucial element in protein

design, particularly in the development of monoclonal antibodies (mAbs). Here, we assess how well

our predictions resemble the distribution in experimental data by examining the behavior of our

model for 20 distinct amino acid types across the four SARS-CoV-2 RBD-ACE2 DMS datasets.

Using AF3 structures, the prediction patterns remain closely aligned with the experimental

data, both in terms of average BFE changes upon mutation and their variance (see Figure 3). The

average of predicted BFE changes upon mutation exhibits primarily a negative change, as evidenced

by the predominance of negative range in the color bars. Additionally, the variance of the predicted

BFE changes are generally lower than the variance of the experimental values, as indicated by the

shift in the color bar range. This implies that while achieving highly accurate BFE changes upon

mutation is crucial, maintaining a level of diversity comparable to the experimental data remains

a challenging endeavor.

In terms of amino acid sizes, we categorize the 20 amino acids into charged, polar, hydrophobic,

and special-case groups. In Figure 3, we observe that mutations from charged or polar residues

9



Figure 3: A comparison of average experimental and predicted BFE changes following mutations associated with
different amino acid types for all the four SARS-CoV-2 RBD-ACE2 DMS datasets. The x-axis labels the residue
type of the original RBD amino acids, whereas the y-axis labels the residue type of the mutant. Note that there is
no amino acid MET (M) on RBD mutations. Top: Average BFE changes following mutation. Bottom: Variance of
BFE changes following mutation. Left: Experimental values. Right: Predicted values.
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to other types generally lead to the most positive BFE changes. This indicates increased stability

within the PPI systems, such as when mutating from K, E and T to other amino acid types. On

the other hand, higher instability is predicted for mutations from W to other residues as shown by

the deep blue squares. This analysis provides insights into the molecular dynamics and potential

mutation effects on SARS-CoV-2 RBD-ACE2 binding interface.

3.3 Tracking SARS-CoV-2 variants

Figure 4: The lineage of Omicron XBB and BA.2.86 subvariants. RBD mutation-induced BFE changes are predicted
with MT-TopLap after finetuning with HK.3 variant DMS dataset. RBD mutation-induced BFE changes (kcal/mol)
are marked from parent generations to children as well as mutations. ORI represents the original SARS-CoV-2 virus.

SARS-Cov-2 evolution is driven by two natural selection mechanisms, namely infectivity strength-

ening [4] and antibody resistance (or vaccine breakthrough) [5]. These mechanisms were used to

predict emerging dominant SARS-CoV-2 variants [2, 3].

In the results, we finetuned AF3-assisted MT-TopLap with the HK.3 variant DMS data. This

expanded AF3-assisted MT-TopLap’s training data but also enhanced its capabilities in tracking
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the recent evolutionary trajectories of SARS-CoV-2 virus. Figure 4 shows the annotation tree plots

of BA.2.10 and BA.2.86 subvariants. RBD mutations from parent generations to their children

are marked on the arrows and predicted binding free energy (BFE) changes (kcal/mol) induced

by the corresponding RBD mutations. BFE changes from parent generations to their children are

summed up by the BFE changes upon each RBD mutation. Positive BFE changes upon mutation

are colored blue while negative values are colored red.

The BA.2.10 brought about the XBB wave, a series of SARS-CoV-2 variants that emerged

from a recombination event between two Omicron subvariants, BA.2.10.1 and BA.2.75. The XBB

lineage was first reported in India during the summer of 2022. One of the most notable variants

within this lineage is XBB.1.5, also known as the “Kraken” subvariant. It was first detected in

the United States in October 2022. XBB.1.5 is highly transmissible and has shown significant

immune evasion capabilities, making it a concern for global health authorities. As a result of RBD

mutations, XBB.1.5 generated 24 subvariants (see Figure 4). Thereafter, the subvariant EG.5,

a descendant of XBB.1.9.2, was detected in early February 2023. EG.5 became a pre-dominant

subvariant in August 2023[44]. Notably, HK.3 is a descendant of EG.5.1 and is more transmissible

due to the mutations S:L455F and S:F456L.

Apart from the competing strains of BA.2.10, i.e., EG.5 and HK.3, a descendant of BA.2

known as BA.2.86, was detected in August 2023 and exhibits as many as 30 mutations. In Figure

4, BA.2 requires 13 RBD mutations to become BA.2.86. It was only until early 2024 that a BA.2.86

subvariant, JN.1, became a widely circulating variant in the United States. As of 28th June 2024,

both BA.2.86 and JN.1 are variants of interests (VOIs) under the WHO. As of 24th September

2024, JN.1 subvariants such as KP.2, KP.3 and LB.1 are circulating variants monitored by the

WHO.

Interestingly, the Q493E mutation has been observed to decrease BFE changes in all previous

SARS-CoV-2 variants[44]. However, in the current KP.3 variant, when Q493E is combined with

L455S and F456L mutations, the effect has reversed thus promoting an increase in BFE changes[44].

This is consistent with Figure 4 where a positive BFE change of 0.455 kcal/mol due to Q493E

mutation led to the KP.3 variant. However, Figure 4 also shows that there are other subvariants of

KP.2 (e.g. KP.2.10/17 and KP.2.13) which generated a higher BFE change but are currently not

monitored by the WHO. Likewise, LB.1 has a lower BFE change as compared to JN.1.11.1, and yet

it is a circulating variant monitored by the WHO. A recent study indicated that an epistatic drift

exist in the RBD mutational effects of the current SARS-CoV-2 virus evolution [44]. This suggests

that the mutational effects on KP.2, KP.3 and LB.1 are possibly influenced by new the antibody

resistance mechanism[5], which is beyond the scope of the present work.

4 Methods

Apart from the four experimental SARS-CoV-2 RBD-ACE2 DMS datasets used to validate

AF3-assisted MT-TopLap, the largest mutation-induced BFE changes database, SKEMPI 2.0[31]

is also used as multi-task training data.

As mentioned in the results section, AlphaFold Server was used to predict the 3D protein-

protein complexes for the four experimental SARS-CoV-2 RBD-ACE2 DMS data. Experimental

SARS-CoV-2 RBD-ACE2 DMS datasets used are SARS-CoV-2 DMS obtained from RBD-induced
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mutations for original SARS-CoV-2 RBD binding to ACE2[7, 45]. Additionally, mutational scan-

ning of BA.1 and BA.2 RBD binding to ACE2 is also included[6]. Comprehensive details about the

experimental SARS-CoV-2 RBD-ACE2 DMS datasets and the SKEMPI 2.0 database are available

in the Supporting Information.

4.1 AF3-assisted MT-TopLap for predicting BFE changes upon mutation

The multi-task topological Laplacian (MT-TopLap) model was built by integrating persis-

tent Laplacian, auxiliary and pre-trained transformer features to predict PPI BFE changes upon

mutation[32]. In this work, an AF3-assisted MT-TopLap is developed to predict BFE changes upon

mutation with AF3 generated PPI complex structures. As shown in Figure S1, the AF3 generated

3D SARS-CoV-2 RBD-ACE2 complex is used to generate persistent Laplacian features and aux-

iliary features. Persistent Laplacian features provide a topological representation, using element-

and site-specific atom sets to simplify the structural complexity of protein–protein complexes and

encode vital biological information into topological invariants. Previously, a major success for

applying persistent Laplacian features is the ability to use topological deep learning model to ac-

curately predict the dominance of Omicron BA.4 and BA.5 nearly two months before WHO made

the official announcement[3]. The ESM-2 pre-trained transformer is used to convert amino acid

sequence of the PPI into a pre-trained transformer embedding. All these features are concatenated

and fed into MT-TopLap to predict the BFE change upon mutation.

The deep neural network model in MT-TopLap’s architecture consists of six hidden layers with

15,000 neurons in each layer and generates an output channel for each dataset. For the validation

process, we perform dataset-level 10-fold cross-validation on four experimental SARS-CoV-2 RBD-

ACE2 datasets. The learning rate is set to 0.0001 and 500 epochs are used for the pre-training

while 200 epochs are used for the validation step. The output for each dataset is represented by

an individual output channel for training the experimental enrichment ratios (see Figure S1). For

the fine-tuning process, the weights and biases for the 2nd and third hidden layer are froze. Here,

the learning rate is set to 0.0001 and 200 epochs are used for fine-tuning. Details of the method

can be found in the literature [32]. Specific details for 10-fold cross-validations and the finetuning

performed in this work are given in the Supporting Information.

4.2 Persistent Laplacian Features

One of the main descriptors used in AF3-assisted MT-TopLap is the persistent Laplacian fea-

ture vectors. We now outline the key mathematical principles behind the persistent Laplacian

descriptors in AF3-assisted MT-TopLap. This involves describing the simplicial complex and per-

sistent Laplacian methods, emphasizing their importance in capturing harmonic and non-harmonic

spectral properties crucial for characterizing SARS-CoV-2 RBD-ACE2 interactions. Details about

the auxiliary, persistent homology and the ESM-2 transformer features can be found in the Sup-

porting Information.

To construct persistent Laplacian features for the RBD-ACE2 complex, we categorize the

atoms in the complex into specific site-based subsets. These include mutation site atoms Am,

atoms within a distance r of mutation site Amn(r), atoms from the RBD binding site ARBD(r),

and atoms from the ACE2 binding site AACE2(r). We also classify atoms into different element-
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specific subsets, such as {C, N, O}, Aele. These partitions are key for PPI model characterization, as

different atom combinations capture various interaction types. For instance, subsets AC∩ARBD(r)

and AC ∩ AACE2(r) form hydrophobic C-C RBD-ACE2 interactions, while AN ∩ ARBD(r) and

AO ∩ AACE2(r) result in hydrophilic N-O RBD-ACE2 interactions.

In order to characterize the RBD-ACE2 binding interactions, we also modify the standard

Euclidean distance matrix DE such that it excludes interactions between both atoms found in the

RBD or both in the ACE2. Specifically, for interactions between atoms Ai and Aj in sets A and

B, DI is defined as follows:

DI(Ai, Aj) =

{
∞, if Ai, Aj ∈ A or if Ai, Aj ∈ B
DE(Ai, Aj), otherwise.

(1)

where DE(·, ·) is the Euclidean distance between the two atoms.

For each site and element-specific subset, the 3D atom positions generate point clouds which

are then used to build simplicial complexes. A set of k + 1 atoms from a site/element-specific

subset forms k+1 independent points, denoted as S = {v0, v1, v2, · · · , vk}. The convex hull of k+1

affinely independent points forms a k-simplex: with a point being a 0-simplex, an edge being a 1-

simplex, a triangle being a 2-simplex, and a tetrahedron being a 3-simplex, while higher dimensions

form k-simplices. A simplicial complex is created from the aggregation of these finite simplices[51,

52, 53, 54]. There are various methods for constructing simplicial complexes. For generating our

persistent Laplacian-based features, we utilized the Vietoris-Rips complex for dimension 0 and

the Alpha complex for dimensions 1 and 2. The Vietoris-Rips (VR) complex forms simplices by

connecting subsets of points with diameters not exceeding a given threshold. On the other hand,

the Alpha complex is derived from Delaunay triangulation, constrained by a radius not exceeding

a specified threshold, which subdivides the convex hull of a point set into triangles.

For a simplicial complex K, a k-th chain ck is the formal sum of k-simplicies in K, i.e. ck =∑
i αiσ

k
i . A boundary operator ∂k : Ck → Ck−1 defined on a k-th chain ck is

∂kck =

k∑
i=0

αi∂kσ
k
i ,

such that the boundary of a boundary is empty, i.e. ∂k−1∂k = ∅. By defining the adjoint of ∂k, i.e.

∂∗
k : Ck−1 → Ck, we have ∂∗

k satisfying the inner product relation ⟨∂k(f), g⟩ = ⟨f, ∂∗
k(g)⟩, for every

f ∈ Ck, g ∈ Ck−1. Then the k-combinatorial Laplacian or the topological Laplacian is a linear

operator ∆k : Ck(K) → Ck(K)

∆k := ∂k+1∂
∗
k+1 + ∂∗

k∂k. (2)

In terms of matrix representations, we define Bk to be an m× n matrix representation of the

boundary operator under the standard bases {σk
i }ni=1 and {σk−1

j }mj=1 of Ck and Ck−1. Similarly,

the matrix representation of ∂∗
k is the transpose matrix B⊤

k , with respect to the same ordered

bases of the boundary operator ∂k. Hence, the k-combinatorial Laplacian exhibits an n×n matrix

representation Lk and is given by

Lk = Bk+1B
⊤
k+1 +B⊤

k Bk. (3)
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In the case k = 0, then L0 = B1B
⊤
1 since ∂0 is a zero map.

In our model, the eigenvalues of combinatorial Laplacian matrices are key topological features,

independent of orientation choice[55]. The multiplicity of zero eigenvalues of Lk corresponds to

the k-th Betti number βk, which describes the k-dimensional holes in a simplicial complex [56].

Specifically, β0, β1, and β2 represent the number of independent components, loops, and voids,

respectively. These Betti numbers provide critical insights into the fundamental structure of the

protein-protein interaction, identifying loops and voids within the PPI system.

Zero eigenvalues in the Laplacian matrix signify the harmonic spectra, representing stable fea-

tures like connected components and cycles that persist across different scales. Non-zero eigenvalues

represent the non-harmonic spectra, revealing more transient and intricate details of the molecular

shape and interactions that are not captured by Betti numbers alone. These non-harmonic spectra

offer additional homotopic shape information, crucial for a comprehensive understanding of the

biomolecular interaction dynamics.

One simplicial complex is insufficient to capture all topological information from a protein-

protein interaction structure. By integrating combinatorial Laplacian and multiscale filtration, we

track changes in harmonic and non-harmonic spectra by varying a filtration parameter such as

radii/diameter for the VR complex. For an oriented simplicial complex K, filtration generates a

nested sequence of simplicial complexes (Kt)
m
t=0:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K.

Persistent Laplacian (PL) produces a sequence of simplicial complexes as the filtration parameter in-

creases, allowing us to generate a sequence of combinatorial Laplacian matrices L0
k,Lk1,Lk2,L

3
k, · · · ,Ln

k ,

where Lt
k = Lk(Kt). By altering the filtration parameter and performing diagonalization on the

k-combinatorial Laplacian matrix, we can examine the topology and spectrum characteristics. The

eigenvalues of Lk(Kt) can be arranged in ascending order:

Spectra(Lt
k) = {(λ1)

t
k, (λ2)

t
k, · · · , (λn)

t
k},

where Lt
k is an n × n matrix. Additionally, the p-persistent k-combinatorial Laplacian can be

extended based on the boundary operator.

When generating features, we take both harmonic and non-harmonic spectra into account

for each persistent Laplacian in zero dimensions. Using filtration with the Rips complex and DI

distance, we generate 0-dimensional PL features ranging from 0Å to 6Å with a grid size of 0.5Å.

For non-harmonic spectra, we count the occurrences and compute seven statistical values: sum,

minimum, maximum, mean, standard deviation, variance, and the sum of squared eigenvalues.

This results in eight statistical values for each of the nine atomic pairs, producing a total of 72

features for a protein in zero dimensions. When concatenated for different dimensions of the wild

type and mutant, the total 0-dimensional PL-based feature size is 1872.

For one- and two-dimensional PL features, we use the Alpha complex with DE distance for

filtration. Due to the limited number of atoms in local protein structures that can form only a

few high-dimensional simplexes, we focus on the harmonic spectra of persistent Laplacians. This

captures topological invariants of high-dimensional interactions, providing a comprehensive view of

the molecular structure. Using GUDHI[57], the persistence of harmonic spectra is represented by
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persistent barcodes. We generate topological feature vectors by computing statistics of bar lengths,

births, and deaths, excluding bars shorter than 0.1Å as they lack clear physical significance. The

statistics computed include the sum, maximum, and mean of bar lengths; minimum and maximum

of bar birth values; and minimum and maximum of bar death values. Each set of point clouds

results in a seven-dimensional vector. These features are calculated for nine single atomic pairs and

one heavy atom pair, yielding 140 features for one- and two-dimensional PL vectors of a protein.

When combined for different dimensions of wild type, mutant, and their differences, the total

higher-dimensional PL-based feature size is 420.

The persistent Laplacian features generated in this manner provide a rich and detailed repre-

sentation of the RBD-ACE2 interactions, capturing both local and global structural features that

are critical for accurate modeling. These features enable us to perform critical analyses based on

the predicted BFE changes caused by RBD mutations, thereby leveraging the deep contextual in-

formation encoded in the RBD-ACE2 binding domain. By integrating harmonic and non-harmonic

spectra and considering different dimensions, we obtain a comprehensive understanding of the

topological and geometric characteristics of the SARS-CoV-2 RBD-ACE2 system, facilitating ac-

curate predictions and insights into its behavior and interactions. Further details about persistent

Laplacian methods and their applications are reported in [24].

5 Conclusion

Our ability to rapidly respond to viral evolution underpins the health and well-being of the

human race. A topological deep learning (TDL)-based approach has a proven track record in

forecasting emerging dominant SARS-CoV-2 variants, such as Omicron BA.2 [2] and BA.4/BA.5

[3], approximately two months in advance. However, such forecasting is often bottlenecked by

the lack of experimental deep mutational scanning (DMS) data and the three-dimensional (3D)

structures of protein-protein interaction (PPI) complexes for fast evolving viruses. We address

this challenge by leveraging AlphaFold 3 (AF3) to predict the PPI complexes. Specifically, we

propose an AF3-assisted multi-task topological Laplacian (MT-TopLap) model to predict DMS

data and forecast emerging viral variants. AF3-assisted MT-TopLap leverages TDL and persistent

Laplacians (PL) to capture both topological and geometric features of PPI complexes. It accurately

predicts both the DMS profiles and the binding free energy (BFE) changes of the PPI complexes

for viral variants. We validate the proposed AF3-assisted MT-TopLap strategy by using four

experimental DMS datasets on the SARS-CoV-2 spike receptor binding domain (RBD) bound to

the human angiotensin-converting enzyme 2 (ACE2). With 3D PPI complexes generated by AF3,

AF3-assisted MT-TopLap achieves robust predictive performance, showing minimal deviation from

results obtained using high-quality experimental 3D structures. Our model’s success extends to

new variants, including the SARS-CoV-2 HK.3 variant, where it achieved a Pearson correlation

coefficient (PCC) of 0.81. This highlights AF3-assisted MT-TopLap’s ability to adapt to emerging

viral data and respond effectively to fast viral evolution.
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Data Availability

The training data used in this work consists of the comprehensive four SARS-CoV-2 RBD-

ACE2 datasets which are readily available in

https://github.com/ExpectozJJ/MT-TopLap/tree/main/AF3 SARS-CoV-2. The AF3 SARS-CoV-

2 RBD-ACE2 complexes can also be downloaded from

https://github.com/ExpectozJJ/MT-TopLap/tree/main/AF3 SARS-CoV-2. The original PDB files

used in this work can be downloaded from the official Protein Databank:

https://www.rcsb.org/. The SKEMPI 2.0 database is also readily available from

https://life.bsc.es/pid/skempi2.

Code Availability

The codes for 10-fold cross-validation and finetuning tasks can be obtained from the follow-

ing source: https://github.com/ExpectozJJ/MT-TopLap/tree/main/AF3 SARS-CoV-2. Details

about the feature generation and MT-TopLap’s model architecture is available in Supporting In-

formation.
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