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ABSTRACT

In this study, we describe a web server that performs
computations on DNA melting, thus predicting the
localized separation of the two strands for sequences
providedby theusers. Theoutput typesare stitchpro-
files, melting curves, probability profiles, etc. Stitch
profile diagrams visualize the ensemble of alternat-
ive conformations that DNA can adopt with different
probabilities. For example, a stitch profile shows the
possible loop openings in terms of their locations,
sizes,probabilitiesand fluctuationsat agiven temper-
ature. Sequences with lengths up to several tens or
hundredsof kilobasepairs canbe analysed. The tools
are freely available at http://stitchprofiles.uio.no.

INTRODUCTION

Many software and web tools exist for computing various
aspects of melting of double-stranded DNA (1–7). The reper-
toire of output that they provide is limited to a few categories.
For example, in category comprises the plots of some quantity
along the chain describing the base-pair stabilities or states.
We report a web server that adds to the repertoire a recently
developed type of diagram called stitch profiles. A DNA stitch
profile indicates the multitude of possible conformations that a
partly melted DNA may adopt, and it shows what regions can
be base-paired or melted more specifically than the traditional
plots. The web server provides a new type of information that
may be useful in genomics (8,9), in studying the relationship
between the structure and the biological functions of DNA, in
comparison with the single-molecule techniques, and as a part
of the experimental techniques that utilize the melting and
the hybridization properties of DNA (3,5).

INPUT

When using the web server, a user must specify a DNA
sequence by either (i) uploading a text file with the sequence,

or (ii) retrieving the sequence from the NCBI GenBank using
its GI number, or (iii) typing the sequence (or copy/paste) into
a text box. In addition, the user has the option of specifying
a start position and a stop position in the sequence, which
allows for an analysis of the specified fragment only. In
order to reduce the load on the server, certain restrictions on
the sequence length are imposed, which is explained on
the website.

The following sections describe the four presently available
types of calculation on the server and their required input
besides the sequence. In addition to stitch profile calculations,
the three ‘usual’ types of melting profile can be performed:
melting curves, probability profiles and temperature profiles.
(They are sometimes known under different terms, such as
melting maps, melting profiles, stability maps and denatura-
tion maps.)

Stitch profiles

Stitch profile diagrams were introduced by Tøstesen et al. (10)
and a complete description of the methodology is given by E.
Tøstesen (submitted for publication). A stitch profile is a set of
‘stitches’, where each stitch spans a region of the sequence and
characterizes a possible conformation of that region. Figure 1
shows an example of how a stitch profile diagram can represent
three alternative DNA conformations. Each conformation cor-
responds to a row of stitches that are divided into the upper
and lower sides, where the upper-side stitches indicate single-
stranded (melted) regions and the lower-side stitches indicate
double-stranded (not melted) regions. The three rows of
stitches are then merged into the same stitch profile. The
regions spanned by the stitches can overlap each other, indic-
ating alternative conformations of a region. The horizontal
direction in a stitch profile diagram corresponds to sequence
position, while the vertical direction is being used for separ-
ating the overlapping stitches and for dividing the stitches into
the upper and lower sides. The upper-side stitches are further
distinguished as either ‘tails’ or ‘loops’, according to whether
they reach the end of the molecule or not, respectively. For
each stitch, the probability pv of that region of the molecule
being in that state is calculated (loop, tail or helical) while
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leaving the rest of the molecule unspecified. These probabil-
ities can be shown in the diagram by labelling or colouring the
stitches.

In order to calculate a stitch profile, three parameters are
required as input: the temperature T, a maximum depth Dmax

and a probability cut-off pc. Instead of the temperature,
however, a helicity q can be specified, whereupon the corres-
ponding temperature is calculated. The probability cut-off
determines how many stitches are included in the profile, as
stitches having probabilities below pc are excluded. The max-
imum depth Dmax determines the level of uncertainty in loc-
ating the positions of each stitch. This uncertainty is indicated
in the diagram by horizontal ‘fluctuation bars’ at both ends
of each stitch. A more detailed introduction to the concepts
and the methods of stitch profiles is given by E. Tøstesen
(submitted for publication).

Melting curves

A ‘melting curve’ is a plot of the helicity q as a function of T.
The helicity is the average total fraction of closed base pairs,
and it decreases from 1 to 0 over the melting range of tem-
peratures. For intermediate length sequences (103–104 bp),
the curve declines in a stepwise manner reflecting the domain
subtransitions (2,11). Experimentally, melting curves can be
measured using ultraviolet (UV) spectroscopy where the
absorption is related to the helicity. Plots of the derivative
�dq/dT as a function of T are also referred to as melting curves,
and they usually show a series of peaks located at the temper-
atures where the different domains melt. A melting curve can
be calculated as a first step in a sequence analysis to find the
range of temperatures where interesting melting events take
place. The server calculates q as the average of the base-pairing
probabilities, q ¼

P
i pbp ið Þ=N‚and plots it versus T. The user

must specify either a temperature interval (on the x-axis) or
the corresponding helicity interval (on the y-axis). The
temperature step size can be chosen specifically (default
1�C) or it can be determined automatically to limit the
computation time.

Probability profiles

A ‘probability profile’ depends on the temperature and is a
plot of the base-pairing probability pbp(i) versus sequence

position i. Plots of 1 � pbp(i) are also called probability pro-
files. A probability profile indicates on average the regions that
are base-paired and the regions that are melted at a specific
temperature T. This information can be used for identifying the
structural changes behind each peak in a melting curve. The
server can plot several probability profiles pbp(i) at different
temperatures in the same diagram, which can provide an over-
view of the melting process. The required input is either (i) a
list of one or more temperatures, or (ii) a list of helicities, from
which the corresponding temperatures are calculated.

Temperature profiles

For a given value p between 0 and 1, the corresponding ‘tem-
perature profile’ is a plot of the temperature Tp(i) at which the
i-th base-pairing probability pbp(i) equals p versus sequence
position i. As a special case, a ‘Tm profile’ is a temperature
profile with p = 0.5, i.e. a plot of the base-pair melting tem-
peratures Tm(i) versus i. Usually, a temperature profile has
plateaus for regions of the sequence that melt cooperatively.
A Tm profile provides the different melting temperatures of
these domains. Whereas a probability profile describes the
molecule at a single temperature only, a Tm profile summarizes
the behaviour over a range of temperatures. The server
can plot a temperature profile Tp(i) of the sequence at any
p-value chosen by the user (0.5 is default). The Tp(i)-
values are calculated by interpolation between a set of
probability profiles.

OUTPUT

The result of each of the four kinds of calculation is shown on a
results page as a PNG picture produced by using Gnuplot. For
those plots having sequence position on the horizontal axis,
the width of the picture increases with increasing sequence
length N, so as to keep a constant scale (pixels per kb). A link
leads the user to a text file with the numerical data behind the
graphics. From the results page of a stitch profile, it is possible
to submit a new pc-value that is greater than the original value,
which produces a new diagram containing fewer stitches.

This paper should be cited when using the results and the
data from the server. Refs [(10) and E. Tøstesen, submitted for
publication] can also be cited as appropriate.

Figure 1. (a) Three possible conformations of a 15 kb DNA. (b) Each conformation corresponds to a row of stitches. (c) The three rows of stitches are merged in a
single stitch profile diagram.

W574 Nucleic Acids Research, 2005, Vol. 33, Web Server issue



ALGORITHMS

All the results are based on the Poland–Scheraga model of DNA
melting (12) that considers two possible states of each base pair.
However, instead of Poland’s 1974 algorithm (13), we use
our more recent DNA melting algorithm (10). The algorithm
builds on the partition function approach of Yeramian et al.
(14), to which we added two main characteristics: all types
of probabilities are calculated by multiplying left-hand side
and right-hand side partition functions, which is faster (10);
and instead of using an approximation that was originally intro-
duced by Gotoh and Tagashira (15), we implement an exact
scheme for adding the nearest neighbour quantities (10). The
DNA melting algorithm calculates base-pairing probabilities
and certain block probabilities. The base-pairing probabilities
are used for obtaining the usual melting profiles using standard
methods. The block probabilities are used in a second algorithm
that calculates stitch profiles: it is a probability peak finding
algorithm (E. Tøstesen, submitted for publication), which
basically finds and groups the conformations that give rise
to the same probability peak, and distinguishes those conforma-
tions that belong to different probability peaks. The peak
finding algorithm is demanding for long sequences: the com-
putation time depends on both the sequence length N and
the temperature, and is believed to be O(N2), but this has not
been confirmed. However, typical examples of stitch profile
calculations on the server are 10 s for 3000 bp, 1 min for 10 kb
and 17 min for 48 kb.

Under the heading ‘Advanced options’, the user can change
some thermodynamic and algorithmic settings. Several sets of
empirical thermodynamic parameters can be used (11,15–18).
Currently, the recommended default is Blake and Delcourt’s
parameters (16) with Blossey and Carlon’s modified loop
entropy (11). For some parameter sets, it is possible to choose
the salt concentration (11,16,18). For the usual melting pro-
files, two versions of the DNA melting algorithm (10) can be
chosen: a slower version using the exact loop entropy factor
and a faster version using instead a multiexponential approx-
imation. For stitch profile calculations, only the faster version
is implemented.

THE MULTIEXPONENTIAL APPROXIMATION

It is established how a multiexponential approximation of the
loop entropy factor can reduce the computation time of melt-
ing algorithms (14,17). The exact loop entropy factor (11,12)
has a power law dependence on loop size: V(x) � x�a. In the
approximation, x�a is substituted by a sum of I exponential
functions:

x�a � const ·
XI

n¼1

Anexp �Bnxð Þ: 1

It is a curve-fitting problem to find the parameters An, Bn

and I and the obtained accuracy depends on the method (19).
We have devised a simple method in which the An, Bn and I
depend on the sequence length N and the exponent a through
the following formulas: I > 2 + ln 2N, Bn = en�I and

An ¼ e1�a I�nð Þ�
Xn�1

m¼1

Amexp 1�em�nð Þ: 2

Using this approximation, the computation time of a prob-
ability profile on the server is of the order O(I · N). Note that
this is not strictly ‘linear’, as has previously been stated (10),
but rather of the order O(Nlog N) because the number I grows
logarithmically with N.

FUTURE DEVELOPMENTS

The web server has been launched recently and the future
developments are expected. For example, a user will be
able to provide an email address in order to be notified auto-
matically when the results are ready. This will make compu-
tations on longer sequences possible. Another development
could be plots that highlight the difference between the melt-
ing behaviours of two different sequences or at different tem-
peratures, which would be useful in analysing mutations and
other perturbations. All the developments will be documented
on a ‘News’ page on the website.
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