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ABSTRACT

The standard workflow in gene expression profile
analysis to identify gene function is the clustering
by various metrics and techniques, and the following
analyses, such as sequence analyses of upstream
regions. A further challenging analysis is the infer-
ence of a gene regulatory network, and some compu-
tational methods have been intensively developed to
deduce the gene regulatory network. Here, we
describe our web server for inferring a framework of
regulatory networks from a large number of gene
expression profiles, based on graphical Gaussian
modeling (GGM) in combination with hierarchical
clustering (http://eureka.ims.u-tokyo.ac.jp/asian).
GGM is based on a simple mathematical structure,
which is the calculation of the inverse of the
correlation coefficient matrix between variables,
and therefore, our server can analyze a wide variety
of data within a reasonable computational time. The
server allows users to input the expression profiles,
and it outputs the dendrogram of genes by several
hierarchical clustering techniques, the cluster
number estimated by a stopping rule for hierarchical
clustering and the network between the clusters by
GGM, with the respective graphical presentations.
Thus, the ASIAN (Automatic System for Inferring
A Network) web server provides an initial basis
for inferring regulatory relationships, in that the clus-
tering serves as the first step toward identifying
the gene function.

INTRODUCTION

Monitoring of the expression of many genes under different
conditions is one of the usual approaches for investigating
gene relationships on a genomic scale. After preprocessing
the monitored profiles of gene expression, the genes are clas-
sified into some groups by various computational methods, as
the first step toward identifying the gene function (1). Based on
their classifications of genes, for example, the genes are alloc-
ated into functional categories, and searches for regulatory
sequences are performed in the upstream regions among the
genes belonging to each cluster. Thus, classification methods,
such as clustering, have been established as a prerequisite
for the identification of gene function from gene expression
profiles, and several web servers have been developed to
perform the clustering of profiles integrated from different
resources (2).

As a further challenging investigation, the network of regu-
latory relationships is inferred by various approaches directly
from the profiles. For example, the Boolean and Bayesian
networks have been successfully applied to infer the regulat-
ory network from the expression profiles (3,4). Indeed, since
those pioneer efforts, some improvements and modifications
have been reported in the application of Boolean and Bayesian
networks to the inference of regulatory networks. However,
since the two approaches require specific techniques and large
amounts of computational time, it would be difficult to
develop a web server based on the two approaches to analyze
large numbers of gene expression profiles.

Recently, we have developed an approach to infer a regu-
latory network, which is based on graphical Gaussian model-
ing (GGM) (5,6). GGM is one of the graphical models that
include the Boolean and Bayesian models (7). Among the
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graphical models, GGM is the simplest structure in a
mathematical sense; only the inverse of the correlation coef-
ficient between the variables is needed. GGM infers only the
undirected graph, instead of the directed graph showing the
causality in the Boolean and Bayesian models; therefore,
GGM can be easily applied to a wide variety of data. Since
straightforward applications of statistical theory to practical
data fail in some cases, GGM frequently fails when applied to
gene expression profiles. This is because the profiles fre-
quently share similar expression patterns, which indicate
that the correlation coefficient matrix between the genes is
not regular. Thus, we have devised a procedure, named
ASIAN (Automatic System for Inferring A Network), to
apply GGM to gene expression profiles, by a combination
of hierarchical clustering (5,6,8). First, the large number of
profiles is classified into groups, according to the usual ana-
lysis of profiles. To avoid the generation of a non-regular
correlation coefficient matrix from the expression profiles,
we adopted a stopping rule for hierarchical clustering.
Then, the relationship between the clusters is inferred by
GGM. Thus, our method provides a framework of gene regu-
latory relationships by inferring the relationship between the
clusters (6,9) and provides clues toward estimating the global
relationships between genes on a genomic scale.

In this paper, we describe our server for implementing the
ASIAN system. The previous version of the ASIAN web ser-
ver (10) has been improved to facilitate its utilization. The new
version provides a quick analysis by ASIAN, a step-by-step
analysis by ASIAN, and graphical presentations of the clus-
tering and the cluster boundary estimation.

ASIAN OVERVIEW

The ASIAN system is composed of four parts: (i) the calcu-
lation of a correlation coefficient matrix for the raw data, (ii)
the hierarchical clustering, (iii) the estimation of cluster
boundaries and (iv) the application of GGM to the clusters.
In the GGM, the network is inferred by the calculation of a
partial correlation coefficient matrix from the correlation coef-
ficient matrix, and the partial correlation coefficient matrix can
only be obtained if the correlation coefficient matrix is regular.
Since the gene expression profiles on a genomic scale often
include many profiles sharing similar expression patterns, the
correlation coefficient matrix is not always regular. Therefore,
the first three parts [(i)–(iii)] are prerequisite for analyzing the
redundant data, including many similar patterns of expression
profiles, by the last part (iv), the network inference by GGM.

Our server allows users to analyze expression profiles by
high-throughput network inference and by statistical calcula-
tions in ASIAN. On the front page, users can select either a
high-throughput analysis or a partial analysis. In the partial
analysis, the user can independently perform the four parts of
ASIAN. Thus, the present ASIAN web site is able to perform
network inferences and various statistical analyses in the
user’s interests.

ASIAN USAGE

The clickable button ‘ASIAN’ opens the analysis page
(Figure 1). Our server can analyze the uploaded data in two

ways: one is a batch process that can successively perform the
aforementioned four parts with the default parameters, and the
other is a process that can allow users to input the parameter
values in each analysis.

In the batch process, only two steps are needed. First, the
program runs by uploading the gene expression data to be
analyzed, and then the user selects one of two ways to receive
the results; one is an anonymous use to display the results
simultaneously with the processing, and the other is a signed
use to receive the results after finishing all of the processes,
through a web site that can be accessed by inputting the user’s
email address. The format of the expression data is assumed as
csv or tab-delimited text files. Immediately after receiving the
user’s data and selecting the method for receiving the results,
the server successively performs the four calculation parts
with the default values.

The server also allows users to select some parameters for
the network inference. In this case, after the above two steps,
the user inputs some parameters for each step. Furthermore,
apart from the high-throughput inference of the network, the
server can provide a step-by-step approach to ASIAN. The
user can select several continuous steps, such as parts (i) and
(ii), so that users can submit the expression data as input and
receive the correlation coefficient matrix and the clustering
results as output. The user can select one of the four types of
continuous steps in the box, and then the server performs the
checked steps. The default of the step is set to the four con-
tinuous parts. In the following, the details of each part will be
described.

For the calculation of the correlation coefficient matrix, the
user can select one type of correlation coefficient from three
different types: (i) the Pearson’s correlation coefficient (the
default type), which is a representative correlation coefficient
for a continuous variable, (ii) the Kendall’s rank correlation
coefficient, which is a representative one for a categorical
variable and (iii) the Eisen’s correlation coefficient for the
gene expression profile data (11). In general, the Pearson’s
correlation coefficient is suitable for data obtained from a
bivariate population according to the normal distribution,
while the Kendall’s rank correlation coefficient is for data
that are far from normal. The Eisen’s correlation coefficient
is devised to consider the experimental conditions by setting
the reference state as a term that corresponds to the average of
the Pearson’s correlation coefficient (11).

The user can select a pair of metric and clustering tech-
niques in the hierarchical clustering. Since the metrics and the
techniques in the clustering depend on the user’s data and
interests (12), the server allows users to select one metric
and technique pair from three metrics and seven techniques.
Three metrics, the Euclidian distance between a pair of
objects, the Euclidian distance between correlation coeffi-
cients and Eisen’s distance, especially for gene expression
analyses (11), are available in the present version of
ASIAN. Based on one of the metrics, the profiles are subjected
to a hierarchical clustering analysis by one of the seven tech-
niques: Single Linkage (nearest neighbor), Complete Linkage
(furthest neighbor), Unweighted Pair Group Method using
Arithmetic average (UPGMA), Unweighted Pair Group
Method using Centroid average (UPGMC), weighted pair
group method using arithmetic average (WPGMA), Weighted
Pair Group Method using Centroid average (WPGMC) and
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Figure 1. ASIAN web interface, through which expression profiles can be uploaded for hierarchical clustering with estimations of cluster number and network
inference between clusters.
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Ward’s method. The default metric and technique pair is the
Euclidian distance between correlation coefficients and the
UPGMA.

One of the remarkable features of our server is that it can
allow users to estimate the cluster number by a stopping rule
for the hierarchical clustering (5). In the cluster number
estimation, the variance inflation factor (VIF) is utilized as
a measure for the degree of separation between the clusters.
Empirically, 10.0 is used as a cut-off value of VIF in various
statistical analyses (13), and the cluster numbers estimated by
the empirical value have been quite consistent with the pre-
vious numbers, as assessed by visual inspection and consid-
eration of the biological function in the expression profile
analyses (6,9). Although the default value of VIF is set at
10.0, the user can set any VIF value in this system.

In the network inference, the average correlation coefficient
matrix is calculated from the average profiles calculated within
the members of each cluster. Then, the average correlation
coefficient matrix between the clusters is subjected to the
GGM (8). In the GGM, the covariance selection (14) is adop-
ted, and the server allows users to set the significance prob-
ability for the deviance in the modeling. The default
significance probability is set to 0.05.

ASIAN OUTPUTS

The results analyzed can be presented on the display imme-
diately after finishing each process, if the user selected the
anonymous use setting. If the user inputs their email address,
then an email notice with the ID number and the URL is sent to

A
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the user, when the analyses are completed. In the latter case,
the user can view the results analyzed on the user’s web site,
with security by the ID number and the email address. The
analyzed results are composed of the correlation coefficient
matrix, the dendrogram of hierarchical clustering with the
cluster boundary in both text and graphic forms, the average
correlation coefficient matrix and the network between clus-
ters in text and graphic forms. All of the above results are kept
in the user’s web site for 30 days after the analysis is com-
pleted. If the user wishes the analyzed results to be deleted or
to be kept for >30 days, then a request by email (asian@hgc.jp)
is acceptable.

Figure 2 shows the graphical presentation of the clustering
results with a cluster boundary and the network between the
clusters. Figure 2A shows an example of a dendrogram with
the cluster boundary estimated by the default value of VIF.
The cluster boundary is indicated by a red line on the dendro-
gram, and the members in the neighboring clusters are dis-
criminated by gene names colored in blue and red. Figure 2B
shows an example of the network inferred by the present
ASIAN web. In the default graph, the nodes that indicate
the clusters are connected at the edges, if the partial correlation
coefficient between the corresponding clusters is estimated as
non-zero by GGM. In the network graph, the positive and
negative partial correlation coefficients are discriminated by
the solid red and broken blue lines in the graph, respectively.
Furthermore, the user can set the threshold of the partial cor-
relation coefficient for visualizing the edges. When the partial
correlation coefficient between the clusters is greater than the
threshold defined by the user, the nodes are connected by the
edges between the corresponding clusters. This option facil-
itates the interpretation of the network, especially that of a
complex network with many edges and nodes.

COMPUTATIONAL PERFORMANCE

The server analyzed the expression data of 2467 genes meas-
ured under 79 conditions (11), in 20 min and 6 s, by a machine
comprising four CPUs with 900 MHz UltraSPARC III Cu and
a memory of 16 GB, under the Solaris8 operating system. In
addition, the server can automatically allocate the machine
memory for calculations in the present system; the largest
amount of data successfully analyzed in the preset machine
was composed of the profiles of 36 825 human genes measured
under 178 conditions (15). Thus, the performance of our
server is promising for inferring the network framework
from a large amount of data, within a reasonable amount of
computational time.

CONCLUSIONS

Our web server is one of the feasible servers for inferring the
framework of gene regulatory relationships from a large num-
ber of gene expression profiles, in addition to the clustering
concomitant with the estimation of cluster number. In particu-
lar, the visual presentation of the results provides an intuitive
means for understanding the putative relationships between
the regulators of the genes.
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estimation of the cluster boundary (red line). (B) Network graph between 34 clusters estimated by our server.
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