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Abstract

Structurally, the lateral load-bearing capacity mainly depends on reinforced concrete (RC)

walls. Determination of flexural strength and shear strength is mandatory when designing

reinforced concrete walls. Typically, these strengths are determined through theoretical for-

mulas and verified experimentally. However, theoretical formulas often have large errors

and testing is costly and time-consuming. Therefore, this study exploits machine learning

techniques, specifically the hybrid XGBoost model combined with optimization algorithms,

to predict the shear strength of RC walls based on model training from available experimen-

tal results. The study used the largest database of RC walls to date, consisting of 1057 sam-

ples with various cross-sectional shapes. Bayesian optimization (BO) algorithms, including

BO—Gaussian Process, BO—Random Forest, and Random Search methods, were used

to refine the XGBoost model architecture. The results show that Gaussian Process emerged

as the most efficient solution compared to other optimization algorithms, providing the low-

est Mean Square Error and achieving a prediction R2 of 0.998 for the training set, 0.972 for

the validation set and 0.984 for the test set, while BO—Random Forest and Random Search

performed as well on the training and test sets as Gaussian Process but significantly worse

on the validation set, specifically R2 on the validation set of BO—Random Forest and Ran-

dom Search were 0.970 and 0.969 respectively over the entire dataset including all cross-

sectional shapes of the RC wall. SHAP (Shapley Additive Explanations) technique was

used to clarify the predictive ability of the model and the importance of input variables. Fur-

thermore, the performance of the model was validated through comparative analysis with

benchmark models and current standards. Notably, the coefficient of variation (COV %) of

the XGBoost model is 13.27%, while traditional models often have COV % exceeding 50%.

1. Introduction

Reinforced concrete walls are important structural components, playing the role of supporting

horizontal loads in high-rise buildings due to their large horizontal stiffness. To ensure bearing
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capacity, RC walls are often designed focusing on "strong shear and weak bending". Therefore,

accurate prediction of damage modes, including lateral load capacity and deformation capacity

of reinforced concrete walls, is necessary during the structural design process, especially in

high-rise buildings, where seismic safety is of utmost importance. Although various design

codes use plane section assumptions to calculate flexural strength, the calculated values are

generally accurate and consistent across different codes [1–3]. Specifically, the bending and

shear resistance of load-bearing walls are determined according to current construction stan-

dards such as ACI 318–19 and EC-2. The mechanism of flexural capacity has been thoroughly

explained by flexure theory [4], while the shear provisions in the ACI code are relatively

straightforward [5]. Previous studies has shown that the provisions in ACI 318–19 have a low

safety factor and do not take into account high-strength concrete shear walls, while the provi-

sions in Eurocode are too conservative [6, 7].

In addition, some modern theories are also used to determine the shear strength of rein-

forced concrete walls such as: Modified Compression Field Theory (MCFT) [8], the Cyclic

Softened Membrane Model (CSMM) [9], and the Strut-and-Tie Model (STM) [2, 10].

Although these models provide reliable estimates, they often require the establishment of

Finite Element Method (FEM) or extensive theoretical calculations, resulting in low computa-

tional performance.

Recently, Machine Learning (ML) based models have demonstrated their effectiveness in

forecasting the shear strength of various structural elements such as beams [11–14] and con-

crete columns [15]. The use of data-driven models is quite appealing due to their relative sim-

plicity and ease of development compared to traditional models based on specific rules or

hypotheses [16]. Furthermore, AI models help users reduce the burden of performing complex

computational tasks. However, developing an accurate AI model also poses its own challenges.

These challenges include optimizing the hyperparameters of the AI algorithm, accurately ana-

lyzing the role of input variables in predicting wall shear strength, ensuring the stability of the

machine learning model, and validating the reliability of the collected data set. The purpose is

to provide a simple and convenient parametric model for users to apply when designing

detailed structural components. Recent studies have focused on using Machine Learning (ML)

models to predict the load-bearing capacity of reinforced concrete (RC) walls, and significant

findings have been published. According to Zhang et al. [17], The XBG and GB models are

among the most effective models in identifying damage modes of RC walls. Specifically, the

accuracy in predicting the type of damage of RC walls reaches 97%. Feng et al.[18] developed

an Extreme Gradient Boosting (XGBoost) algorithm to estimate the shear strength of squat RC

walls. The results demonstrated that the XGBoost model has great potential for reliably pre-

dicting shear strength, with an average prediction-to-test ratio of 1.0. Barkhordari et al. [19]

also uses some Deep Neural Network models to predict the failure mode of RC walls. The

research results show that the weighted average ensemble deep neural network model most

accurately predicts the failure mode of RC walls, with an accuracy reaching over 0.9. Gondia

et al. [20], used a genetic program to predict the shear strength of flanged squat RC walls, with

a dataset of 254 samples. The results of the study revealed an explicit formula for shear strength

using several mechanically guided derivatives, achieving high accuracy and demonstrating

good practical applicability of the model. Keshtegar et al. [21] developed a new hybrid

machine-learning model to predict the lateral strength of RC walls. Their results indicated that

the hybrid artificial intelligence model, developed using an artificial neural network (ANN)

optimized with an adaptive harmonic search (AHS) algorithm, achieved Outstanding perfor-

mance in predicting the lateral strength of RC walls, with an average prediction-to-experiment

ratio of 1.0. The combination of support vector regression (SVR) and response surface meth-

odology (RSM) provided reasonable predictions of the lateral strength of RC walls, with an
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average prediction-to-experiment ratio of 0.98 [22, 23]. Mangalathu et al. [24] investigated

safety margins in RC shear walls and the lack of models for rapid failure identification. They

used data from 393 shear wall experiments with varied geometries to develop prediction mod-

els. Eight machine learning methods were employed, including Naive Bayes, K-Nearest Neigh-

bors, Decision Tree, Random Forest, AdaBoost, XGBoost, LightGBM, and CatBoost. Random

Forest achieved 86% accuracy in failure mode prediction. Critical parameters influencing fail-

ure mode included wall aspect ratio, boundary element reinforcement, and wall length-to-

thickness ratio. They proposed an open-source data-driven classification model for potential

design applications. Barkhordari et al. [25] presented a new hybrid model based on ANN and

State-of-the-art population-based algorithms to predict the Shear strength of Squat Reinforced

Concrete (SRC). This study uses data from 434 experimental specimens, of only SRC wall type

to train and test the ML model and the results show that the hybrid ML model can achieve

high performance in calculating the shear strength of SRC wall.

From the analysis of the results obtained by applying machine learning (ML) to predict the

performance of RC walls, it is clear that ML models can predict both the failure mode (classifi-

cation algorithm) and the shear strength (regression algorithm) of RC walls. However, there

are some limitations, especially in predicting the shear strength of RC walls (regression algo-

rithm). These limitations include the small number of trained models, usually 1–2 models, and

the lack of diversity and generalizability in the collected data, such as considering only one

cross-sectional shape or focusing on a specific type of RC wall such as low RC walls, or using

only one parameter optimization algorithm for the machine learning model, without any com-

parison to confirm the reliability of the selected optimal parameter set. Furthermore, the

model architecture is often searched manually, which does not ensure the identification of

models with good parameters for RC wall research. Finally, current studies mainly evaluate the

sensitivity of input variables to model performance without specific analysis of the impact of

changing the values of input variables on the shear strength of RC walls.

2. Research significance

To address the limitations of previous studies, this paper proposes the following approach to

apply the ML model in predicting the shear strength of reinforced concrete walls:

1. The large dataset of RC walls collected and processed includes 1057 samples with three dif-

ferent cross-sectional shapes.

2. A detailed study was performed on the XGBoost model, with the parameter sets for the

XGBoost model determined through three different optimization methods.

3. The role of input variables is evaluated using SHAP values for the XGBoost model, provid-

ing an explanation of the model’s predictive ability.

4. The prediction ability of the XGBoost model is compared with standard design codes and

existing benchmark models.

By implementing this method, the study is expected to overcome the limitations of previous

studies and provide a more effective method to evaluate the shear capacity of RC walls.

3. Methodology

3.1. Data description

3.1.1. Distribution of cross-section types. Reliable data is always the most important

issue for machine learning models. In this study, a dataset of 1057 RC wall test samples was
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collected from previous literature. Data is collected from specific, reliable sources, including:

252 samples from Massone and Melo [26], 182 samples are from Ning and Li. [27], 22 samples

from Sato et al. [28], a sample from Park et al. [29], 4 samples from Teng and Chandra [30], a

sample from Wolschlag et al. [31], 21 samples belonged to Wang et al. [32], 4 samples belong

to Vallenas et al. [33], 129 samples from Hirosawa et al. [34], 7 specimens from Barda et al.

[35], 16 test results from Antebi et al. [36] and 418 samples were collected and processed from

an existing database [37]. There are a total of 1057 reinforced concrete walls in the data set, in

which the ratio between cross-section types is quite uniform, specifically including 456 walls

with rectangular cross-sections (Rectangular), 296 walls have barbell-shaped cross-sections

(Barbell) and 305 walls have flange cross-sections (Flanged). These informations are shown in

Fig 1.

3.1.2. Data statistics. Data statistics for the model are very important. From there, the

scope of application of the research will be better understood, at the same time, data statistics

also clearly show the general distribution of data, in order to evaluate the balance and reliabil-

ity of the training results. The RC wall tests in this database include four groups of input vari-

ables, which are geometric dimensions, reinforcement layout, material properties, and applied

loads. Specifically, the detailed input characteristics are wall height (symbol is X1, mm), wall

length (symbol is X2, mm), web thickness (symbol is X3, mm), flange thickness (symbol is X4,

mm), flange length (symbol is X5, mm), concrete compressive strength (symbol is X6, MPa),

web reinforcement content in the vertical direction (symbol is X7, %) and the yield strength of

the longitudinal web steel (symbol is X8, MPa), the web reinforcement content in the horizon-

tal direction (symbol is X9, %) and the yield strength of the web longitudinal steel (symbol is

X10, MPa), the longitudinal reinforcement content (symbol is X11, %) and the yield strength

(symbol is X12, MPa), and finally the same is the axial load (symbol is X13, kN). The output is

simply the shear strength of the wall (symbol is Y, kN). Descriptions and statistical properties

of the variables are given in Table 1 (Examples of S1 Table). All input data are normalized to

the range [0–1] to ensure features have equal importance in the machine learning model.

The important thing to note in the input data is that, for a rectangular cross-section, X4 = 0

and X3 = X5, while the cross-section of the Barbell cross-section has a ratio X5/X4� 3, the

Flange cross-section has a ratio X5/X4 >3.

Fig 1. Distribution of cross-section stypes.

https://doi.org/10.1371/journal.pone.0312531.g001
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Fig 2 shows the correlation matrix of the data set, which includes 13 input variables and 1

output variable. The matrix displays the correlation coefficients between each pair of variables,

where a correlation value of 1 represents a perfect positive correlation, -1 represents a perfect

negative correlation, and 0 represents no correlation. The correlation matrix helps us under-

stand the relationship between different variables and how they relate to each other. Initial

analysis shows that there are both positive and negative correlations between variables and

that pairs of highly correlated attributes are more interdependent. Specifically, the highest cor-

relation coefficient is 0.89 between the two variables X8 and X10, demonstrating a close rela-

tionship between these characteristics. Additionally, geometrical parameters and loads applied

to the wall have the highest correlation with output performance. Understanding the correla-

tion matrix can help determine which features are important to the resulting characterization

and which features are redundant, useful for further analysis and modeling.

3.2. Machine learning approaches

3.2.1. Extreme gradient boosting machine learning model (XGBoost model). In this

study, a supervised machine learning model called eXtreme Gradient Boosting (XGB) was

used to determine the shear strength of reinforced concrete walls. This is one of the most pow-

erful and popular machine learning methods, especially in prediction and classification prob-

lems. XGBoost focuses on building a sequence of weighted decision trees, also known as

boosted trees, in a gradient-boosting manner. It combines multiple single decision trees to cre-

ate a powerful prediction model. However, like most other decision tree-based models, the

XGB model does not have the ability to extrapolate predictions, meaning the model only pre-

dicts accurately within the range of input variables used to train the model. The general for-

mula of the XGB model is written as follows [38]:

fðxÞ ¼
Xk

i¼1

γi:hiðxÞ ð1Þ

Where f(x) is output model; γi is the learning rate and hi (x) is the simple tree of ith iteration

and k is the number of iterations.

Table 1. Features of shear strength database for RC walls.

Features Unit Min Max Mean Standard deviation

X1 mm 145 6401 1274.79 1022.53

X2 mm 254 3960 1319.46 755.07

X3 mm 10 360 97.57 62.29

X4 mm 0 360 59.78 73.65

X5 mm 30 3045 253.69 334.05

X6 MPa 10 130.8 31.29 17.04

X7 % 0 6.24 0.8 0.72

X8 MPa 0 792 395.79 115.53

X9 % 0 3.67 0.67 0.51

X10 MPa 0 792 396.57 117.57

X11 % 0 10.58 3.17 2.01

X12 MPa 208.9 980 443.48 140.63

X13 kN 0 2429 293.86 464.31

Y kN 15.35 3138.10 563.72 639.21

https://doi.org/10.1371/journal.pone.0312531.t001
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3.2.2. Optimization algorithms for machine learning models. To improve the perfor-

mance of machine learning models, robust optimization algorithms are proposed. There are

many types of optimization algorithms used to solve problems. Examples include gradient-

based algorithms, grid search algorithms, stochastic search, and discrete optimization such as

evolutionary algorithms or particle swarms. In this study, two typical optimization algorithms

are used: the Random Search algorithm [39] and the Bayesian algorithm [40]. In the Random

Search algorithm, the model’s hyperparameter set is randomly selected within the search range

in each iteration. This causes the algorithm to often find hyperparameter combinations better

than a similar method, Grid Search. Meanwhile, Bayesian optimization differs from Random

Search and Grid Search in that it takes into account past performance, while the other two

methods do not take this into account. The core idea of Bayesian optimization is to build a

probabilistic model of the objective function and use this model to select the most promising

points for evaluation. In that sense, Bayesian Optimization first finds a set of random parame-

ters and then evaluates the performance of this set of parameters. In the next step, the method

will try to change one of the parameters and compare the model performance to see if there is

any improvement. This method is especially useful in problems where the objective function is

discontinuous, has no derivative, or is noisy.

3.2.3. Performance indices of the model. To evaluate the performance of the established

models, statistical parameters, including Correlation coefficient (R2) [41], Root Mean Square

Error (RMSE) [42], and mean absolute error (MAE) [42], were used. Accordingly, RMSE

Fig 2. Correlation matrix of the features with data 1057samples.

https://doi.org/10.1371/journal.pone.0312531.g002
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evaluates the average error between the model’s prediction results and the experimental

results, then the smaller the RMSE value, the more accurate the prediction model. Meanwhile,

R2 ranges from -1 to 1, indicating a correlation between the actual value and the predicted

value, meaning the higher the R2 value, the better the model. The formulas of the parameters

are presented below:

Coefficient of determination (R2):

R2 ¼ 1 �

XN

j¼1

ðyj � yt;jÞ
2

XN

j¼1

ðyj � �yÞ2
ð2Þ

Root Mean Square Error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

j¼1

ðyj � yt;jÞ
2

v
u
u
t ð3Þ

Mean Absolute Error (MAE):

MAE ¼
1

N

XN

j¼1

jyj � yt;jj ð4Þ

where yj is the actual shear strength of the jth sample in the dataset; yt,j is the predicted shear

strength of the jth sample obtained from the ML model; �y is the mean value of the actual shear

strength of the data set; N is the total number of samples in the dataset.

4. Model implementation and prediction performance

In this study, Machine Learning models are developed based on the Python Scikit-Learn

library [43]. The entire data set is randomly divided into a training set that accounts for 80% of

the data and a testing set that accounts for 20% of the data. The training set is used to train and

fine-tune the prediction models, while the test set is used to evaluate the performance of the

models. One thing to note is that model hyperparameter tuning is performed using the

K-Folds cross-validation technique on the training set. This technique is intended to ensure

highly generalizable results when all data will appear in the training and validation sections

respectively. In this study, K = 10 is chosen, meaning that for each hyperparameter set, the

training data is divided into 10 subsets, 9 are used for training and the remaining 1 is used for

validation. This will be repeated 10 times and the model’s performance results will be averaged

over those 10 times.

4.1. Hyperparameter optimization of the XGBoost model

To find the best machine learning model, three optimization solutions are used to automati-

cally select the best set of hyperparameters for the XGBoost model: Bayesian with Gaussian

process (BO-GP), Bayesian with Forest-based. Random (BO-RF) and Random Search (RS).

There are 8 main hyperparameters of the model selected for optimization according to [6].

The optimization process will stop after the algorithm has performed at least 100 iterations,

without the optimal result changing.

The values and hyperparameters for the XGBoost model were optimized within the speci-

fied range using BO-GP, BO-RF, and RS methods. The optimal hyperparameters, along with
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the allowable value ranges, are shown in Table 2 (S1 Data). It is important to note that to avoid

overfitting during training and optimization, two techniques have been applied: (1) Subsample

and (2) K-fold CV. In which, the Subsample technique uses a certain proportion of input vari-

ables during training, which helps create simpler trees and avoid overfitting. Meanwhile, the

K-Fold technique is used on the training data set itself, allowing the model to be trained/vali-

dated during the optimization process, all single data fold in the training set is in turn fed into

training/validation, leading to training results that avoid overfitting. The hyperparameter opti-

mization process is shown in Fig 3. It can be seen that the optimization algorithms BO-GP and

BO-RF achieve convergence in about 350 iterations. Therefore, the number of iterations of the

RS algorithm is also chosen to be 350 for objective comparison.

4.2. Evaluation of hyperparameter optimization performance

The impact of optimized hyperparameters on the performance of machine learning models is

evaluated by comparing their performance with default parameters. The aggregated results for

Table 2. Hyperparameters for the XGBoost model.

Hyperparameter Meaning Range of values Optimal results

(BO-GP) (BO-RF) (RS)

’n_estimators’ Number of trees 100–1000 1000 912 823

’max_depth’ Maximum depth of each tree 3–9 3 3 3

’learning_rate’ Learning rate of stages 0.05–0.30 0.1399 0.1194 0.109

’booster’ Booster method ‘gbtree’, ‘dart’ ‘dart’ ‘gbtree’ ‘dart’

’gamma’ The minimum loss to create a tree’s nodes 0.01–0.50 0.5 0.485 0.3077

’subsample’ The subsampling ratio in the training set 0.60–0.90 0.6 0.697 0.727

’colsample_bytree’ Specifies the proportion of columns to be subsampled 0.60–0.90 0.9 0.747 0.799

’reg_lambda’ Weights used in L2 regularization 1–50 22 3 8

The optimal results show that all methods select a fairly large number of trees (from 823–1000 trees). The maximum depth of all trees is only 3 while the remaining

hyperparameters are chosen differently depending on each algorithm.

https://doi.org/10.1371/journal.pone.0312531.t002

Fig 3. Optimization process of BO algorithm.

https://doi.org/10.1371/journal.pone.0312531.g003
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the XGBoost model are illustrated in Fig 4 (S2 Data). The results indicate that hyperparameter

optimization has a significant impact on the training, validation, and testing performance of

the XGBoost model.

All three optimization methods provide better training performance than the model with

default hyperparameters, as demonstrated by the R2, RMSE, and MAE metrics on the training,

validation, and testing sets. The most pronounced changes are observed in the R2, RMSE, and

MAE values, on the training, validation, and testing sets, specifically with validated R2 values

of 0.956/0.972/0.970/0.969 for the default and optimized parameters by BO-GP, BO-RF, and

RS. From the results obtained on the three optimization methods, it is evident that the BO-GP

method is the method that gives higher model performance than the other two methods.

And it should be noted that the difference in results between the model with default hyper-

parameters and the optimized model is negligible on the training set, and sometimes the

default hyperparameters even yield results. slightly better than the optimized model. This high-

lights the powerful learning capabilities of the XGBoost model and its ability to fine-tune

hyperparameters to prevent overfitting when good training results are achieved.

In addition, the training results of the XGBoost model for the wall cross-section types are

presented in Fig 5. Fig 5, presents a scatter plot with a regression line that visually compares

the shear strength of reinforced concrete walls predicted by the optimized parameters of the

XGBoost model using the Gaussian Process method. Specifically, Fig 5a shows the regression

results for all cross-section types. Fig 5b–5d show the regression results for Rectangular, Bar-

bell and Flange cross-sections, respectively. The results show that most of the regression points

are close to the reference line, demonstrating the excellent performance of the XGB model. In

addition, the regression results of the model for Bar-shaped wall cross-sections appear to be

more accurate than other cross-section types. Specifically, the correlation coefficients on the

training and test sets were R2 = 0.999 and 0.975, respectively, while the Root Mean Square

Error RMSE = 10.891 kN and 93.604 kN.

5. The importance of variables to the model’s predictive ability

To evaluate the importance of input variables on the model’s predictive ability, the SHAP

(Shapley Additive Interpretation) [44] values technique was used. SHAP values are a technique

for interpreting the output of machine learning models. It uses a game theoretic approach to

measure each player’s contribution to the outcome. The XGBoost model optimized according

to the BO-GP solution is used as the main model to analyze the influence of input variables

according to SHAP theory. The absolute SHARP value can be used to determine the influence

Fig 4. Comparison of the learning results of the XGBoost model between the default parameters and the optimal parameters of the BO-GP, BO-RF and RS

models according to the criteria: (a)—R2; (b)—RMSE; (c)–MAE.

https://doi.org/10.1371/journal.pone.0312531.g004
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of each input characteristic on the model output value. Fig 6 illustrates the results of the SHAP

analysis and provides valuable insights into the influence of each input variable characteristic

in forecasting the shear strength of RC walls.

Based on the results, it can be inferred that the flange length (X5) and wall length (X2) are

the most important characteristics affecting the shear strength of reinforced concrete walls.

More specifically, when the flanged length value (X5) increases to the maximum value of this

variable (redpoint), the corresponding Shap value increases in the positive direction to more

than 500. This shows that the shear strength of the wall increases significantly in proportion to

the flanged length. Meanwhile, when the wall length value (X2) increases, the maximum Shap

value of this variable reaches about 1200, showing that the impact of this variable on the shear

Fig 5. The shear strength prediction results of the XGBoost model optimized by the Gaussian Process method for the following types of cross-

sections: (a)—all section; (b)—Rectangular section; (c)—Barbell section; (d)—Flanged section.

https://doi.org/10.1371/journal.pone.0312531.g005
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strength of the wall is even greater, that is, the longer the wall length, the higher the shear

strength value. Additionally, the axial load (X13) is also significant for the shear strength of RC

walls, but it has been overlooked in the prediction equations by ACI 318–19 (ACI 2019) and

Wood (1990).

Interestingly, the influence of longitudinal reinforcement (X11) is greater than that of hori-

zontal and vertical reinforcement (X9 and X7) in predicting shear strength. Notably, horizontal

reinforcement primarily acts as ties, enhancing cohesion and preventing instability of the ver-

tical bars. However, based on the results of the analysis in this study, other features, such as the

vertical reinforcement content and the intrinsic shear capacity of the concrete, show a more

significant contribution than the horizontal reinforcement in forming the shear resistance of

RC walls. This observation does not diminish the essential role of transverse reinforcement in

RC walls but highlights its relative influence compared to other factors, in this data set.

6. Compare the performance of the XGBoost model with current

design codes

To evaluate the performance of the ML model, three semi-empirical shear strength determina-

tion models based on mechanical theory are used for comparison to evaluate the prediction

accuracy of the XGBoost model. These are the models provided in ACI 318–19 (Chapter 11)

(ACI 2019) [45, p. 14], ASCE/SEI 43–05 (ASCE 2005) [46], and by Wood (1990) [47], is given

as follows:

• ACI 318–19:

Vn ¼ acl
ffiffiffiffi
fck

p
þ rhfyh

� �
Acv � 0:83

ffiffiffiffi
fck

p
Acw ð5Þ

Where: αc is the aspect ratio coefficient, αc = 0.25 when hw/lw� 1.5; αc = 0.17 when hw/lw�
2.0 and changes linearly between 0.25 and 0.17 for hw/lw between 1.5 and 2.0 (wall length–lw,

Fig 6. SHAP summary plot and the relative importance of each feature of the XGBoost model.

https://doi.org/10.1371/journal.pone.0312531.g006
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high wall–hw); λ is a coefficient of variation that reflects the properties of concrete and is

equal to 1.0 for normal strength concrete; Acv is the total area of the concrete limited by the

thickness of the web and the length of the section in the direction of the considered shear

force; and Acw is the total cross-sectional area of the wall;

• ASCE/SEI 43–05:

Vn ¼ vndtw ð6Þ

vn ¼ 0:69
ffiffiffiffi
fck

p
� 0:28

ffiffiffiffi
fck

p hw

lw
� 0:5

� �

þ
P

4lwtw
þ rsefyh � 1:66

ffiffiffiffi
fck

p
ð7Þ

rse ¼ Arv þ Brh ð8Þ

Where d = 0.6lw; ρse is the equivalent reinforcing ratio combining ρh and ρv with coefficients

A = 1; B = 0 for hw/lw� 0.5; A = − hw/lw + 1.5; B = hw/lw− 0.5 for 0.5� hw/lw� 1.5; and

A = 0; B = 1 for hw/lw� 1.5.

• Wood (1990):

0:5
ffiffiffiffi
fck

p
Acv � Vn ¼

Avf fyv
4
� 0:83

ffiffiffiffi
fck

p
Acv ð9Þ

Where Avf is the total area of shear reinforcement, reinforcement is arranged along the height

of the wall to improve shear strength; fck is the compressive strength of concrete, fyv—Strength

of vertical reinforcement in the web, Acw is the total cross-sectional area of the wall.

The three standard models and the XGBoost model were used to predict the shear strength

of walls for a dataset consisting of 1,057 samples, which included three different cross-section

types and a larger height-to-width aspect ratio of 1.5. The comparison results between the

XGBoost model and the standard models, as well as the practice code reference models, are

presented in and Fig 7 (S3 Data).

Fig 7. Results of predicting shear resistance using mechanical model and XGBoost model.

https://doi.org/10.1371/journal.pone.0312531.g007
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Comparisons are shown between the predicted shear strength ratios and the experimentally

obtained shear strengths for the samples in the database. The model evaluations include the

mean standard deviation (St.D), mean value (Mean), maximum value (Max.), minimum value

(Min.), and coefficient of variation (COV%) of the ratio between the predictions and the

experimental results.

The results from Fig 7 and Table 3 indicate that the prediction ratio of shear strength for

walls between models and experiments, according to current standard models, shows high

average errors and large variability. The XGBoost model is optimized according to the BO-GP

solution for excellent performance with a high Predicted-to-experiment ratio and lowest stan-

dard deviation. That demonstrates the accuracy and stability of the XGBoost model in predict-

ing the shear strength of RC walls.

Furthermore, the analytical results comparing the predicted wall shear strength ratio with

the experimental values on different specimens, shown in Fig 8 (S4 Data), show the mean pre-

dicted value and the standard deviation (St.D) prediction range of the model. The analysis

shows that walls with lower hw/lw ratios (�1.0) exhibit greater variation in prediction accuracy

than walls with higher hw/lw ratios (ranging from 1.0 to 3.5), indicating less consistency in pre-

dictions for smaller aspect ratios. This variation may be the result of complex interactions asso-

ciated with lower hw/lw ratios, which are less effectively captured by the model, while higher

ratios simplify predictions due to more uniform geometric and structural features. These find-

ings emphasize the importance of taking hw/lw ratio into account in shear wall design to

improve prediction reliability and ensure safety. Notably, the XGBoost model outperforms

conventional semi-empirical models, demonstrating superior predictive performance on both

low aspect ratio walls with hw/lw�1.5 and high aspect ratio walls with hw/lw >1.5. The

robustness and flexibility of the model make it an effective tool for predicting shear strength in

a variety of wall configurations.

7. Conclusions

The study utilized the XGBoost model to analyze a dataset comprising 1057 RC wall samples

with various cross-section types and aspect ratios (ratios >1.5, = 1.5,<1.5). Key findings from

this research are summarized as follows:

The optimization of the XGBoost model using Bayesian GP, RF, and RS methods demon-

strated the importance of hyperparameter tuning compared to default hyperparameters. All

three hyperparameter optimization models significantly improved performance over the

default model, with the GP method providing the best results. The XGBoost model, optimized

using the BO-GP method, achieved stable prediction performance across all cross-section

types and the combined dataset of the three cross-section types, with R2 scores on the test set

of 0.984/0.913/0.975/0.964 for all sections, Rectangular sections, Barbell sections, and Flanged

sections, respectively.

Table 3. Performance comparison between the ML model and the experimental and predictive scale-mechanical model.

Models Predicted to experiment ratio (Vpredicted/Vexp)

Min. Max. Mean St.D. COV (%)

ACI 318–19 0.151 4.742 0.980 0.614 62.64

ASCE/SEI 43–05 0.325 4.953 1.173 0.647 55.19

Wood 1990 0.166 4.830 0.764 0.506 66.15

XGBoost model 0.244 2.022 1.013 0.134 13.27

https://doi.org/10.1371/journal.pone.0312531.t003
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The SHAP value technique is used to explain the predictive ability of the XGBoost model

and analyze the role of input variables for all types of RC wall cross-sections. The results show

that the two input factors, flange length (bf) and wall length (lw), are the most important char-

acteristics affecting the shear strength of RC walls, for this dataset.

The optimized XGBoost model was also compared with existing standards and codes. The

results demonstrated that the XGBoost model significantly improved the predictive perfor-

mance compared with traditional design standards such as ACI 318–19, ASCE/SEI 43–05, and

Wood 1990. Furthermore, the study results showed that the XGBoost model was capable of

effectively predicting shear strength within the range of aspect ratios hw/lw >1.5. These find-

ings highlight the robustness of the XGBoost model in accurately predicting the shear strength

of reinforced concrete walls, emphasizing the advantages of advanced machine learning tech-

niques over traditional design methods. However, it should be noted that the XGBoost model

does not have extrapolation capabilities, so the model’s accuracy is only guaranteed within the

range of input variable values it was trained on. This can be improved by using a more general

training dataset and using machine learning models that are not limited in extrapolation

capabilities.

Fig 8. Shear strength predicted by mechanics—Based models: a) ACI 318–19; b) ASCE/SEI 43–05; c) Wood 1990; and d) XGBoost model

according to different aspect ratios (hw/lw ratios>1.5, = 1.5,<1.5).

https://doi.org/10.1371/journal.pone.0312531.g008
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