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ABSTRACT

MULTIPRED is a web-based computational system
for the prediction of peptide binding to multiple mole-
cules (proteins) belonging to human leukocyte anti-
gens (HLA) class | A2, A3 and class Il DR supertypes.
It uses hidden Markov models and artificial neural
network methods as predictive engines. A novel
data representation method enables MULTIPRED to
predict peptides that promiscuously bind multiple
HLA alleles within one HLA supertype. Extensive test-
ing was performed for validation of the prediction
models. Testing results show that MULTIPRED is
both sensitive and specific and it has good predictive
ability (area under the receiver operating character-
istic curve Aroc > 0.80). MULTIPRED can be used for
the mapping of promiscuous T-cell epitopes as well as
the regions of high concentration of these targets—
termed T-cell epitope hotspots. MULTIPRED is avail-
able at http://antigen.i2r.a-star.edu.sg/multipred/.

INTRODUCTION

T-cells of the human immune system recognize antigens
as short peptide fragments (T-cell epitopes) derived from
the degradation of proteins. Major histocompatibility complex
(MHC) proteins play a vital role in the initiation and regulation
of immune responses (1—4). Their primary function is to bind
and subsequently present antigenic peptides on the cell surface
for recognition by T-cells of the immune system. The recog-
nition of T-cell epitopes is critical for the immune response to
infectious, autoimmune, allergic and neoplastic disease. T-cell
epitopes are important for the development of peptide-based
vaccines (5). There is a great diversity of human leukocyte

antigens (HLAs; human MHC) genes with some 2000 known
variants characterized to date (6). HLA proteins share 3D
structure with main differences observed in residues that
form the peptide-binding groove. HLA proteins that have
small differences in their peptide-binding grooves and share
similar peptide-binding specificities are grouped into HLA
supertypes (7,8). Promiscuous peptides—those that bind
more than one HLA variant—are prime targets for vaccine
and immunotherapy development because they are relevant
to higher proportions of the human population. Because of
the large number of HLA proteins, experimental approaches
for identifying T-cell epitopes (from overlapping peptides that
span the length of protein antigens) are time-consuming and
costly, and thus not applicable for large-scale screening.
Computer modeling methods can help to simulate the biolo-
gical process of antigen presentation, minimize the number
of experiments required, enable a systematic scanning for
candidate MHC-binding peptides and thus speed up vaccine
development (9).

MULTIPRED is a web-based system for the prediction of
peptides that bind multiple HLA alleles. Current implementa-
tion can predict peptides that bind HLA proteins belonging
to supertypes A2 and A3 (HLA class I) as well as DR (HLA
class II) and in future will be extended to other supertypes.
The predictive engines implemented in MULTIPRED are
hidden Markov models (HMMs) and artificial neural net-
works (ANNs). A novel data representation method enables
MULTIPRED to predict peptides that bind to multiple HLA
alleles belonging to one HLA supertype by a single prediction
model per supertype.

SYSTEM DESCRIPTION

The predominant length of peptides that bind HLA-A2 and
-A3 (class I) proteins is nine amino acids (10). HLA-DR
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(class II) proteins bind longer peptides through the core bind-
ing region, which is nine amino acids long (11). The training
data comprise 3050 9mer peptide sequences (664 binders
and 2386 non-binders) related to 15 variants of the HLA-A2
supertype, 2216 9mer peptide sequences (680 binders and
1536 non-binders) related to eight variants of the HLA-A3
supertype and 2396 9mer peptides (448 binders and 1948 non-
binders) related to six HLA-DR variants. These data are mainly
from three sources, the MHCPEP database (12), published
articles and a set of HLA non-binding peptides (V. Brusic,
unpublished data). For both training and prediction the data
representation includes both the peptide and its binding envir-
onment (HLA contact residues). This ‘virtual peptide’ repres-
entation comprises both peptide residues and the environment
for each residue of the 9mer peptides (13,14). To simplify the
data representation and eliminate redundant information, for
each HLA supertype, we considered only those contact resi-
dues that vary across various HLA variants and discarded the
residues, which are conserved.

In MULTIPRED, a three-layer backpropagation network
with sigmoid activation functions was built for HLA-A2
and -A3 supertype and a four-layer backpropagation network
with a hyperbolic tangent sigmoid activation function bet-
ween the two hidden layers and a sigmoid activation function
between the second hidden layer and the output for HLA-
DR supertype. Various techniques, including optimization
of ANN architecture and balancing datasets, were explored
to improve the prediction accuracy of the ANN models (14).
MULTIPRED also has a first-order HMM as an alternative
prediction engine (13). The user can select either the ANN or
the HMM model for prediction—both methods have been
optimized and show similar performance. The Agroc is >0.8
in all cases, indicating good prediction capability [see (13,14)
for details on HLA-A2 models, (15) for HLA -A3 models, and
V. Brusic, A. Sette, G. L. Zhang, K. N. Srinivasan, J. T. August
and V. Brusic, manuscript in preparation for HLA-DR models.

In addition to individual 9mer predictions, MULTIPRED
also predicts immunological hotspots (regions of high con-
centration of 9mer promiscuous binders). We have develo-
ped two scoring schemes to identify immunological hotspots
within antigens for HLA classes I and II supertype. The
scheme for HLA class I supertype is based on high-scoring
individual 9mers within a window of 30 amino acids (15) and
the scheme for HLA class II supertype is based on average
scores of individual 9mers within a window of 15 amino acids.
The selection of window lengths was based on a trial-and-error
process. Window lengths of 15, 20, 25 and 30, were explored
and the results were compared with the representative experi-
mental results. The window length 30 was found to suit class
I predictions and window length 15 to class II predictions. The
lengths outside these ranges are considered too short or too
long as targets for experimental validation. The prediction
performance of MULTIPRED for HLA-A2 and -A3 hotspots
was validated using experimental results from a systematic
study of human papillomavirus type 16 E6 (P03126) and
E7 (P03129) proteins (16). The prediction performance of
MULTIPRED for HLA-DR hotspots was validated using
experimental results from systematic binding studies of over-
lapping peptides from Myelin Oligodendrocyte glycoprotein
(MOG) (CAA88109), bee venom protein (1POC) and hepatitis
C virus 1B protein (AAB00216).
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USING THE SYSTEM

The web interface of MULTIPRED uses a set of graphical user
interface forms with a combination of Perl, CGI and C back-
ground programs. Development of MULTIPRED was carried
out in SunOS 5.9 UNIX environment. The functions provided
by MULTIPRED include (i) running predictions, (ii) model
building, (iii) prediction accuracy evaluation and (iv) identi-
fying consensus predictions among up to three sets of predic-
tions on the same input protein sequence.

To predict peptides binding to a supertype, users must first
select ‘Run prediction’. The required input is the selection of
supertype and prediction method (pre-defined ANN or HMM).
Alternatively, users can select a pre-defined model (built
by model building function). By selecting the ‘Submit’ button
users get to a sequence input page where the required input is
a protein sequence and its name. The length of the input
sequence must be between 9 and 2000 amino acids. If the
input sequence contains symbols other than amino acids (space
and carriage returns are allowed) or if the sequence is outside
the length limits, an error message will be displayed. The input
can either be a protein sequence or a list of peptides. The
default selection on the webpage is ‘Protein sequence’,
which means the input sequence is treated as one single protein
sequence and carriage returns are ignored. If users changed the
sequence type to ‘a list of peptide sequences’, then sequences
divided by carriage returns are treated as separate peptides.
The processing steps and result pages for the two types of
inputs are different. The detailed description on processing
steps involved when the input sequence is a protein sequence
or a list of peptides are available at http://antigen.i2r.a-star.
edu.sg/multipred/HTML/faq.html#Q3 and http://antigen.i2r.
a-star.edu.sg/multipred/ HTML/faq.htm1#Q4, respectively. The
9mer binding scores range from 1 to 9 (Figure 1A), with scores
4-9 referring to predicted binders (8 or 9 referring to high, 6 or
7 to moderate, and 4 or 5 to low confidence of peptide bind-
ing). Scores 1-3 refer to predicted non-binders. MULTIPRED
saves the prediction result and the users may note down the ID
number of the saved jobs for the comparison of prediction
results generated by different prediction models (Figure 1A).
Two scoring schemes to identify immunological hotspots
within antigens were developed for HLA classes I and II
supertype. The scheme for HLA class I supertypes is based
on high-scoring individual 9mers within a window of 30 amino
acids (15). In the result table (Figure 1A), ‘Sum’ is the sum
total of the individual binding scores of a peptide to the
MHC proteins, ‘Score 1° is the top 1 ‘Sum’ in a 30mer window
(A 30mer window comprises 22 consecutive 9mer peptides).
‘Score 2’ is the average of the top 2 ‘Sum’ in a 30mer window.
Similarly, ‘Score 3’, ‘Score 4’ and ‘Score 5’ are the average of
the top 3, 4 and 5 ‘Sum’, respectively, in a 30mer window. To
show the user a clear view of the binding capacity of an input
protein, Scores 1-5 of all 30mer peptides of the input protein
can be displayed as graphs, in which x-axis represents the
starting position of a 30mer window and the y-axis represents
Score 1 (2/3/4/5) of the 30mer window. For example, in
Figure 1B, which is the graph of Score 4 of the protein E6,
the first three 30mer windows (starting at positions 1, 2 or 3)
are 36.82 and the next two windows (starting at positions 4 or
5) have scores 39.50. The following 13 30mer windows (start-
ing at positions 6-19) have scores >42, the recommended
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threshold for Score 4 for HLA-A2 ANN models (Figure 1A),
indicating a predicted hotspot, which corresponds to an experi-
mentally determined HLA-A2 hotspot in E6 protein (16). To
locate the individual 9mers with top binding scores in each
30mer window, the ‘align’ function can be used. Figure 1C

shows an example of the alignment view of the top four
9mers in each 30mer window. The user can also identify
hotspots at a certain threshold by using the ‘Get hotspots’
function (Figure 1D). The default values on the web page
are the recommended thresholds for Score 4. In a HLA-DR
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A-0201 A-0202 A-0203 A-0204 A-0205 A-0206 A-0207 A-0209
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247 N.02| 4494 | 4292 4222 3950 3782
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ALIGNMENT VIEW OF THE PREDICTED BINDING TO HLA classI1AY using ANN
Sequence Sum Position
NHQERTANFQDPQERPRELPQLCTELQTITI 1-30
ELPQLCTEL 44.94 18-26
QLCTELQTT 40.89 21-29
ANFQDPQER 31.32 T-156
ERPRELPQL 30.13 14-22
HQERTANFQDPQERPRELPQLCTELQTTIH 2-31
ELPQLCTEL 44.94 18-26
QLCTELQTT 40.89 21-29
ANFQDPQER 31.32 7-15
ERPRELPQL 30.13 14-22
QERTANFQDPQERPRELPQLCTELQTTIHD 3-32
ELPQLCTEL 44.94 18-26
QLCTELQTT 40.89 21-29
ANFQDPQER 31.32 T-15
ERPRELPQL 30.13 14-22
ERTANFQDPQERPRELPQLCTELQTTIHDI 4-33
ELPQLCTEL 44.94 18-26
QLCTELQTT 40.89 21-29
ELQTTIHDI 40.84 25-33
ANFQDPQER 31.32 7T-15
RTANFQDPQERPRELPQLCTELQTTIHDII 5-34
ELPQLCTEL 44.94 18-26
QLCTELQTT 40.89 21-29
ELQTTIEDI  40.84 25-33
ANFQDPQER 31.32 T-15
TANFQDPQERPRELPQLCTELQTTIHDIIL 6-35
ELPQLCTEL 44.94 18-26
QTITIHDIIL 42.50 27-35
QLCTELQTT 40.89 21-29
ELQTITIHDI 40.84 25-33
ANFQDPQERPRELFPQLCTELQITIHDIILE T-36
ELPQLCTEL 44.94 18-26

QITIHDIIL  42.50 27-35

D I

™ In the below table, "Sum® is the sum of the scores in a given row, “Scoret” is the top 1 sum score in 30-mer region, “ScoreZ” is the average of the top 2 sum score in 30-mer
region, "Score3" is the average of the top 3 sum score in 30-mer region, "Scored" is the average ofthe top 4 sum score in 30-mer region and "Score5” is the average ofthe top 5
sum score in 30-mer region.

.2 Hotspots predicted by A1 Iethod at Threshold <7 for score4

Protein Sequence Name : EB
Protein Sequence Length : 158

Position Peptides Scorel’ Score2' Score3’ Scored’ Scores’
6-35 TAMFODPQERPRELPOLCTELOTTIHDIIL .44.9*5 43.72 4278 4229 4010
7-36" ANFQDPQERPRELPOLCTELQTTIHDIILE 44.94 4372 42,78 4229 (4010
B8-37" MFODPOERPRELPQLCTELQTTIHDIILEC 44.94 43.72 4278 4229 (4012
9-38° FODPOERPRELPOLCTELQTTIHDIILECY 44.94 4372 4278 4231 4201
10-39' | QDPQERPRELPQLCTELQTTIHDIILECVY 44.94 43.72 42.78 42‘.31 4201
11-40' |DPQERPRELPQLCTELOTTIHDIILECVYC 44.94 43.72 4278 4231 4201
12-41' | PQERPRELPOLCTELQTTIHDIILECVYCK 44.94 4372 42.78 42.31 4201
13-42° |QERPRRLPQLCTELOTTIHDIILECVYCKQ 4494 4372 4278 4231 [42.01
14-43' |ERPRELPQLCTELQTTIHDIILECVYCKQQ 44.94 43.72 4278 4231 4201
15-44' RPRELPQLCTELQTTIHDIILECVYCEQQL 44.94 43.72 4278 4231 4201
16-45' |PRELPQLCTELQTTIHDIILECVYCKQQLL 44.94 4372 42.94 4243 4212
17-46' |RELPOLCTELOTTIHDIILECVYCKOOLLR 44.94 (4372 (4294 4243 [4212
18-47' KLPQLCTELQTTIHDIILECVYCKQQLLER 4494 43.72 42.94 42.43 4212

Predicted hotspots sorted by position:
Position | Sequences scored’ Length
6-47"  |[TAMFQDPQERPRKLPQLCTELQTTIHDIILECWYCKQQLLRR 4233 |42

Predicted hotspots sorted by scored:
Rank Position Sequences scored’ Length
.1 6-47' TAMFODPQERPRELPQLCTELQTTIHDIILECVYCKQQLLRR 4233 |42

Figure 1. An example of the output pages of MULTIPRED when the input is a single protein sequence. The input protein sequence is a human papillomavirus type 16
E6, the prediction method used is ANN and the HLA supertype of interest is HLA-A2. (A) The main result page. The input sequence is truncated into overlapping
9mers for the prediction of binding scores to multiple HLA-A2 variants, 0201, #0202, *0203, #0204, *0205, *0206, *0207 and *0209. The red ovals are added by the
authors for the clarity of viewing. (B) Example graph of Score 4. (C) Alignment view of the top four 9mers in the 30mer windows. (D) The prediction hotspot region is
6-47 at threshold 42.



WI176 Nucleic Acids Research, 2005, Vol. 33, Web Server issue
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Mote: Inthe table, the binding scores range form 1 fo 9, with scores 4-9 referring to predicted MHC binders {High binders: 8-9; Moderate hinders: 6-7, Low binders: 4-5). Scores
of 1-3 refer to predicted non-binders.

Sequence Name : HCV

ResultID : 3480

* For a peplide, "Sum” is the sum total of the individual binding scores of the peptide to the MHC molecules.

Other Display formats of prediction result: Alignment View | Sortthe Resull | Plot Sum Value |
Fﬂm‘ Doy | Molecules . ’;
A-0301 A-0302 A-1101 [A-1102 A-3101 A-3301 A-6801

1 | msTnPKEFRKTKRN 743 16381 675" 675 678 16657 (624 4c.68
2 | KEFRKTKRNTLRRP | B84 | 588 --—-'_53? [(é'sé
3 | TKRNTLRRPQDVRF | 530 | 289 | 333 | 333 | 446 | 404 | 239 (2574
4 [ TLRRPQDVRFPGGG | 530 | 289 [ 333 [333 [ 445 | 404 [ 230 2574
5 | QDVRFPGGGQNVGG | 423 | 180 | 238 | 238 | 367 | 271 | 154 [1871
6 | PGGGQIVGGVWLLP | 469 | 193 | 258 | 258 | 400 | 310 | 1.79 [20867
7 | omMGGWLLPRRGP | 573 | 324 | 380 | 380 | 502 | 444 | 267 [28.70
8 | wiLPRRGPRLGVR [JB210l| 447 | 486 | 486 | 581 | 538 | 400 (3580
9 | RRGPRLGVRATRKT [/6821 495 | 546 | 546 | 594 | 583 | 460 [38.56

-
o

|

I

|

|

|

|

|

|

|

[ | RLGVRATRKTSERS |B62| 495 | 546 | 546 | 594 | 563 | 480 (3856
| 11 | ATRKTSERSQPRGR | m--—-- 587 (4511
| 12 | SERSQPRGRRGPIP [ 567 376 [ 417 [ 417 [ 509 |4r1 ['315 [30.72
[ 13 | GPRGRRGPIPKARQ | 551 | 3.40 | 383 | 383 | 480 | 422 | 287 2826
[ 14 | RQPIPKARQPEGRA | 514 | 249 [ 300 | 3.00 | 474 | 390 | 204 [2431
| 15 | KARQPEGRAWAGPG | 424 | 201 | 245 | 245 | 381 | 302 | 161 [19.59
[ 16 [ PEGRTWAGPGYPWP | 519 [ 281 | 334 | 334 | 4983 [ 412 [ 240 [2613
[ 17 [ waorovPwpLyoNE [JBIB3Y | 366 | 425 [ 425 [ 570 [ 507 [ 310 [3208
I

. Niimansmi vemsimmaminis | mrms [ asn [aar [ iar Tean T das [ ann lasas

B THE PREDICTED BINDING TO clas<!AZ using AN
Peptide Sequence Name : HCY
Sorted Result
R.Tm Position Peptides | Ndecuies Sum’

|A-0301 |A-0302 A-1101 A-1102 A-3101 A-3301 A-6801

(1 [ 1 | msTNPKEFRKTKRN [7.13 16381 6767 6751 678 6851 6241 46.68
"2 | 11 [ aTRcTSERsQPRGR [ 7.05 6106 651 651 663 G4 | 587 4511
e

2 | KEFRKTKRNTLRRP [684"| 588 646 616 661 642" | 555 (4362
"4 | 10 | RLGVRATRKTSERS [[6521| 495 | 546 | 546 | 594 | 563 | 460 (3856
"6 | 9 | RRGPRLGVRATRKT [6562/| 495 | 546 | 546 | 594 | 563 | 460 [38.56
'8 | 8 | WLLPRRGPRLGVR 821 | 447 | 486 | 486 | 581 | 530 | 4.00 (3560

7 | 23 | PTDPRRRSRNLGKV [6128" | 442 | 497 | 497 | 6559 | 621 | 401 (3546
| 8 | 24 | RRRSRNLGKVIDTL |'B.20 | 442 | 497 | 497 | 558 | 521 | 401 [3546
| 8 | 22 |RRPSWGPTDPRRRSR | BAD | 414 | 457 | 457 | 568 | 519 | 359 [3385
7 [32.06

13111

(10 | 17 [waaPoYPwPLYGNE [BIB3Y| 366 | 425 [ 425 [ 570 [ 507 [ 310 |
ETRERT: |YPWPLYGNEGMGWA [581 [ 360 [i'éé'"[ 405 | 560 | 491 | 300

12 | 12 | SERSQPRGRRGPIP | 567 | 376 | 417 | 417 | 508 | 471 | 315 [30.72
13 | 7 | GWGGWLLPRRGP | 673 | 3.24 | 380 | 3.80 | 444 | 267 [2870
14 | 13 | QPRGRROPIPKARG | 551 | 340 | 3.83 | 383 422 [ 287 [28.26
1 36 | LPGCSFSIFLLALL | 571 | 303 | 381 | 3861 (429 [ 247 (2753
16 | 37 | SFSIFLLALLSCLT | 634 | 304 | 351 | 381 | 416 | 255 (26565
(17 | 20 |GMGWAGWLLSPRGS | 536 | 284 | 338 | 3.38 (424 [ 241 (2661
18 | 16 | PEGRTWAQPGYPWP | 518 | 281 | 334 | 334 [412 [ 240 [2613
(19 | 32 | LAHGVRVLEDGVNY | 558 | 276 | 348 | 348 385 | 246 [2599
20 | 33 | VRVLEDGYNYATGN | 558 | 276 | 3.48 | 3.48 | 385 | 248 (2599
(21 [ 3 | TKRNTLRRPQDVRF | 530 | 280 | 333 | 333 | 446 | 404 [ 239 [2574
122 | 4 | TLRRPQDVRFPGGG | 530 | 288 | 333 | 333 | 446 | 404 | 239 [2574
23 | 26 | IDTLTCGFADLMGY | 538 | 257 [ 321 | 321 [ 443 | 384 [ 218 [2483
|24 | 27 | TCOGFADLMGYIPLY | 538 | 257 | 321 | 321 | 443 [ 384 [ 218 [2483

2 [ aa | orowowsonoceon [ eaa [ aan [ ann [ onn Taza [ ann [ ana laans
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Cc THE PREDICT RESULT OF PEPTIDE BINDING
MSTNEPKEFRKTKRN
STNPKEFRE A-0301 7.13
STNPKEFRK A-0302 6.38
STNEKEFRE A-1101 6.75
STNPKEFRK A-1102 6.75
STNPKEFRK A-3101 6.78
STNPKEFRK A-3301 6.65
STNPKEFRE A-6801 6.24
KEFRKTKRNTLRRE
KTKRNTLRR A-0301 6.84
KTKRNTLRR A-0302 5.88
KTKRNTLRR A-1101 6.16
KTKRNTLRR A-1102 6.16
KTKRNTLRR A-3101 6.61
KTKRNTLRR A-3301 6.42
KTKRNTLRR A-6801 5.55
TKRNTLRREQDVRF
TLRRPQDVR A-0301 5.30
TLRRPQDVR A-3101 4.46
TLRRPQDVR A-3301 4.04
TLRREQDVRF PGGG
TLRREQDVR A-0301 5.30
TLRREPQDVR A-3101 4.46
TLRREPQDVR A-3301 4.04
QDVRF PGGGQIVGE
DVRF PGGGQ A-D301 4.23

Figure 2. An example of the output pages of MULTIPRED when inputis a list of peptides. The input protein peptides are from hepatitis C virus, the prediction method
used is ANN and the HLA supertype of interest is HLA-A3. (A) The main result page. As can be seen here, the input sequence is truncated into overlapping 9mers for
the prediction of binding scores to multiple HLA-A3 variants, *0301, *0302, *1101, *1102, *3101, *3301 and *6801. (B) Input peptides displayed in the descending

order of binding scores. (C) Alignment view of the predicted 9mer binders.

prediction result table, ‘Average’ was calculated as the aver-
age of the ‘Sum’ within a 15mer window (seven consecutive
9mers make a 15mer window).

When users select the input sequence as ‘a list of peptide
sequences’, the input sequences separated by carriage returns
or line breaks are treated as different peptides. All overlapping
9mers in each peptide are submitted for prediction. In the
result tables, predicted binding scores are represented by
the highest individual binding score of each input peptide.
The predicted binding scores of individual 9mers in each
peptide in the list are data not shown (Figure 2A). To display
the input peptides in the order of their binding scores, the
user can use the function ‘Sort the Result’. In the result page
(Figure 2B), the input peptides are listed in descending
order of their binding scores. To display the predicted 9mer
binders from each input peptide, the user can use the function
‘Alignment View’. In the result page (Figure 2C), the 9mers
with binding scores =4 are aligned with the input peptides.
The predicted 9mer binders are displayed with the names of
the HLA alleles, which produced binding scores above the
selected threshold.

If the user has 9mer peptides with known binding affinities
to proteins belonging to HLA-A?2, -A3 or -DR supertypes and
wants to build his own prediction models, the user can use
the ‘Model build’ function in MULTIPRED. Only 9mer pep-
tides can be used as training data. The users have the option to
use their data only, or combine their data with the existing
MULTIPRED data and build the model on the server.

Currently, users can expect to train an HMM model within
1 min while training of ANN models may take up to 50 min
(depending on the size of the training dataset)—there are
actually four ANNSs trained in the background. The ANN
models trained by the same dataset are usually slightly differ-
ent because the initial weights of networks are assigned ran-
domly (14). To make the trained models more stable, the
training is repeated four times, and four sets of weights are
trained—the predictions are the averages of these four predic-
tions. When the model building request is submitted, an inter-
mediate page (Figure 3) will be displayed providing the result
URL can be bookmarked for later model retrieval.

If the user has 9mer peptides with known binding affinities
and would like to evaluate the prediction accuracy of a model
with these peptides, the user can use the ‘accuracy evaluation’
function of MULTIPRED. The system predicts the binding
affinities of the input 9mers and calculates Agoc of the pre-
dictions. For each supertype, there are two built-in prediction
models available in MULTIPRED. Predictions can also be
performed by user-built models. Therefore, MULTIPRED
may produce several sets of predictions for the same sequence.
The comparison of predictions helps identify the most
promising peptides picked up as predicted binders by multiple
models. The comparison is facilitated by the ‘Consensus pre-
dictions’ function. The user needs to input the individual
Result IDs (up to three) to the system. The Result IDs must
be predictions of the same protein and to the same HLA
supertype, if the Result IDs belong to predictions on different
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Your model is currently being built... Please be patient...
The results will appear in this window.
Your output:

You may bookmark the above url to view your results later.
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Figure 3. When the model building request is submitted, an intermediate page will be displayed providing the result URL that can be bookmarked for later

model retrieval.

proteins, an error message will be displayed. The user can
select the analysis of top 5 or 10% of the predicted binders.
In the output table, top 5 or 10% predictions are displayed
in the descending order of their binding scores. The peptides
selected by multiple models are highlighted in blue or red.

DISCUSSION

Several web-based systems have been developed and widely
used for the prediction of MHC binders, such as SYFPEITHI
(17),BIMAS (18), SMM (19), MHCPred (20), RANKPEP (21),
TEPITOPE (22), NetMHC (23) and SVMHC (24). Although
MULTIPRED is similar to them in its overall goal of predict-
ing MHC-binding peptides, there are significant differences
in both functionality and methodology. SYFPEITHI uses bind-
ing motifs. BIMAS, MHCpred, RANKPEP and TEPITOPE
use quantitative matrices, and SMM is based on an improved
matrix-based algorithm called stabilized matrix method.
SVMHC uses support vector machines (SVMs) and NetMHC
uses ANNSs. Each of these methods uses one prediction model
per MHC proteins, making them difficult to maintain and
assess accuracy. TEPITOPE allows prediction of peptides
to many different Class II proteins (using multiple prediction
models), but it is not available through the Web. MULTIPRED
predicts peptide binding to multiple HLA proteins with one
model per HLA supertype. It can also identify promiscuous
peptides and T-cell epitope hotspots. Since HLA proteins are
highly polymorphic, promiscuous peptides that bind more than
one HLA protein are prime targets for vaccine and immuno-
therapy development because they are relevant to higher pro-
portions of the human population. T-cell epitope hotspots
are highly promising regions as targets of T-cell immune
responses, which are of interest for experimental validation
as potential vaccine targets. In addition, MULTIPRED pro-
vides several functions which are not available in other pre-
diction systems, such as model building by user function,
accuracy evaluation function and consensus prediction func-
tion. The pathway from epitopes to vaccine development is
lengthy and cost-intensive, involving exhaustive experiments.
The main utility of MULTIPRED is in the selection of key
antigenic regions to minimize the number of experiments
required for mapping of promiscuous T-cell epitopes and
T-cell epitope hotspots.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR online.
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