
Nucleic Acids Research , 2024, 52 , 13447–13468 
https://doi.org/10.1093/nar/gkae912 
Advance access publication date: 18 October 2024 
Synthetic Biology and Bioengineering 

A no v el int er pretable deep lear ning-based computational 

fr amew ork designed synthetic enhancers with broad 

cross-species activity 

Zhaohong Li 1 , 2 ,† , Yuanyuan Zhang 

1 , 2 ,† , Bo Peng 

3 , 4 ,† , Shenghua Qin 

1 , 2 ,† , Qian Zhang 

5 , Yun Chen 

1 , 2 , 

Choulin Chen 

1 , 2 , Yongzhou Bao 

1 , 2 , Yuqi Zhu 

6 , Yi Hong 

6 , Binghua Liu 

7 , Qian Liu 

7 , Lingna Xu 

1 , 2 , 

Xi Chen 

8 , Xinhao Ma 

9 , Hong y an Wang 

7 , Long Xie 

1 , Yilong Yao 

10 , Biao Deng 

1 , 2 , Jiaying Li 11 , 

Baojun De 

12 , Yuting Chen 

12 , Jing Wang 

8 , Tian Li 13 , Ranran Liu 

14 , Zhonglin Tang 

10 , Jun w ei Cao 

12 , 

Erw ei Zuo 

1 , Chug ang Mei 9 , Fangjie Zhu 

13 , Changwei Shao 

7 , Guirong Wang 

8 , Tongjun Sun 

6 , 

Ningli Wang 

11 , Gang Liu 

5 , Jian-Quan Ni 3 , 4 , 15 , * and Yuwen Liu 

1 , 2 , 10 , * 

1 Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, 
Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, 
Shenzhen 518124, China 
2 Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, 
Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China 
3 Gene Regulatory Lab, School of Basic Medical Sciences, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, 
China 
4 State Key Laboratory of Molecular Oncology, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China 
5 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang 
District, Beijing 100101, China 
6 Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and 
Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, NO. 7 Pengfei Road, Dapeng 
District, Shenzhen 518124, China 
7 State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of 
Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China 
8 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and 
Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng 
District, Shenzhen 518124, China 
9 College of Grassland Agriculture, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F 
University, NO. 3 Taicheng Road, Yangling District, Yangling, Shaanxi 712100, China 
10 Green Healthy Aquaculture Research Center, Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural 
Sciences, Building 26 Lihe Technology Park, Auxiliary Road of Xinxi Avenue South, Nanhai District, Foshan 528226, China 
11 Department of Ophthalmology, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical 
University, Dongjiaomin lane No1, Dongcheng District, Beijing 100101, China 
12 College of Life Sciences, Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, 
NO. 306 Zhaowuda Road, Saihan District, Hohhot 010018, China 
13 College of JUNCAO Science and Ecology, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, 
Fujian Agriculture and Forestry University (FAFU), NO.15 Shangxiadian Road, Cangshan District, Fuzhou 0350002, China 
14 Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road NO. 2, Haidian District, Beijing 100193, 
China 
15 SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, NO. 56 Xinjian South Road, Yingze 
District, Taiyuan 030001, China 
* To whom correspondence should be addressed. Tel: 0755 23250159; Fax: 0755 89381751; Email: liuyuwen@caas.cn 
Correspondence may also be addressed to Jian-Quan Ni. Email: nijq@tsinghua.edu.cn 
† The first four authors should be regarded as Joint First Authors. 

Abstract 

Enhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the 
significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous 
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Introduction 

The temporal and spatial pattern of gene expression is pri-
marily orchestrated by cis- regulatory elements (CREs), such as
promoters and enhancers, which play a critical role in estab-
lishing and maintaining the identity and function of tissues or
organs. Due to their remarkable capacity in driving the tran-
scription of any coding sequence in an expression cassette,
synthetic CREs are widely used in nucleic acid-based thera-
peutics to obtain the appropriate expression of pharmaceutic
products, and in cell-based bioreactors to increase production
yield of valuable biologics. Recently, CRE engineering has also
emerged as a valuable tool in genomic breeding, playing a piv-
otal role in advancing sustainable agricultural development
( 1–3 ). To identify CREs residing in the genome, a plethora of
high-throughput based functional genomics technologies has
been exploited and applied in various organisms, including
biochemical marker-based epigenomic profiling assays ( 4–6 )
and massively parallel reporter assays (MPRAs) that directly
measure CRE activity ( 7–10 ). Despite the wealth of natural
CREs identified from existing genomes, they may not always
align with the expression objectives required for diverse appli-
cation scenarios. This discrepancy underscores the necessity
for designing de novo synthetic CREs ( 11 ). 

The rational CRE design relies heavily on a comprehen-
sive understanding of the intrinsic cis- regulatory code govern-
ing the activity of CREs. Over past decades, researchers have
unveiled numerous combinations of DNA sequence features,
notably transcription factor binding sites (TFBSs), that con-
stitute this regulatory code ( 12–14 ). Therefore, conventional
approaches to crafting CREs with specific attributes predom-
inantly involve leveraging known functional sequence motifs
and employing iterative mutagenesis. For example, the ma-
nipulation of the orientation, number and spacing of well-
established key functional motifs within existing or native
n, deciphering the sequence determinants of their activity remains 
 with controllable Activity design platforM) framework, a novel deep
ering subtle and intricate patterns within extensive enhancer screen-
prediction and highlights critical sequence features implicating strong
 surpass the potency of the strongest enhancer within the Drosophila
 e xhibited conserv ed functionality across species that ha v e div erged
conserved enhancer regulatory grammar . Additionally , we designed
ts v ersatility. Ov erall, our study not only introduces an interpretable
able to the design of other types of cis- regulatory elements. 

CREs has proven instrumental in artificial promoter design 

( 2 ,15 ). Additionally, the introduction of random mutations in 

a functional screening library has led to the identification of 
several novel promoters with higher regulatory activity com- 
pared to their native counterparts ( 16 ). However, progress in 

CRE design has been sluggish due to the intricate specificity of 
spatio-temporal patterns and the nuanced flexibility of regu- 
latory grammar, particularly in promoter-distal CREs. The in- 
complete understanding of regulatory code largely limits the 
number of lexicons available in the CRE design toolbox. In 

addition, the exponential expansion of the sequence search 

space (4 

L for a CRE, where L represents its sequence length) 
and the inherent complexity of the weak grammar of the regu- 
latory code, such as the impact from the flanking sequences of 
motifs, further hinders the rational CRE design ( 17 ). Owing 
to the collective effects of these factors, conventional CRE de- 
sign strategies, i.e. rational CRE design strategies, suffer from 

lack of efficiency, demanding a profound understanding from 

seasoned experts to craft the backbone sequence, and series 
of time-consuming and labor-intensive experiments to evolve 
sequence design ( 18 ). 

In recent years, the incorporation of deep neural networks 
(DNNs) has propelled genomics research forward, particu- 
larly in predicting TF (DNA-binding protein) binding sites 
( 19 ), CRE activity ( 20–23 ) and alternative splicing events ( 24–
26 ). This progress extends to forecasting the activity of CREs.
Notably, the Enformer, employing a deep learning architec- 
ture that assimilates information from up to 100 kb away in 

the genome, stands out for its capacity to precisely predict 
numerous epigenetic and transcriptional profiles using only 
the DNA sequence as input ( 23 ). The efficacy of DNNs in 

these domains lies in their ability to leverage extensive and 

highly heterogeneous datasets, autonomously revealing hid- 
den predictive patterns within sequence data ( 27 ,28 ). Based 
high-throughput methods facilitating genome-wide enhancer ide
challenging. Here, we present the DREAM (DNA cis- Regulatory E
learning-based approach for synthetic enhancer design. Proficient 
ing data, DREAM achie v es cutting-edge sequence-based enhancer
enhancer activity. L e v eraging DREAM, w e ha v e engineered enhanc
genome b y appro ximately 3.6-f old. R emarkably, these synthetic en
more than billion years, indicating that DREAM was able to learn
silencers and cell line-specific enhancers using DREAM, demons
approach for enhancer design but also lays out a general framewo
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on its superior prediction accuracy, DNNs have been inte- 
grated with evolutionary optimization algorithms (EOAs) in 

the application of de novo CRE design. By constructing a 
DNN model that precisely recapitulates the sequence–activity 
relationship of CREs, EOA can be employed to emulate the 
natural evolutionary process. This algorithm navigates an ex- 
pansive sequence space in search of mutations that enhance 
fitness, which aligns with the target of CRE optimization. 
Specifically, the procedure involves systematically introduc- 
ing mutations into an initial population. At each iteration, the 
DNN model’s predictive prowess serves as the fitness func- 
tion, assessing the activity of the evolved sequence. This eval- 
uation guides the selection of mutations that confer the de- 
sired CRE function, facilitating the in silico evolution of CRE 

sequences through multiple mutational steps ( 29 ). The inte- 
gration of DNNs and EOAs offers a powerful approach to 

streamline and enhance the CRE design process. However, 
existing work mainly focus on promoters, untranslated re- 
gions (UTRs), or other promoter-proximal CREs ( 29–32 ). The 
promoter-distal CREs, such as enhancers, present distinct se- 
quence features and more flexible organizational principles 
( 33 ,34 ), thereby intensifying both theoretical and practical 
challenges in de novo CRE design. A notable advancement 
in this domain is the development of DeepSTARR, a model 
designed to predict enhancers. This model was trained using 
data from self-transcribing active regulatory region sequenc- 
ing (STARR-seq), which measured genome-wide enhancer ac- 
tivities in Drosophila S2 cells. In the following phase of en- 
hancer design, the researchers chose to predict the regulatory 
activity of one billion random sequences using the model. Un- 
like an EOA approach, this random in silico screening only 
yielded synthetic sequences with activity comparable to natu- 
ral enhancers ( 35 ). The question remains open as to whether 
unexplored DNA sequences exist that could demonstrate ac- 
tivity surpassing that observed in natural enhancers. 

Another strategy of DNN-based CRE design is built on the 
deep generative adversarial networks (GANs). GANs operate 
by engaging in a minimax adversarial game between the gen- 
erator and discriminator neural networks, enabling the gener- 
ation of novel molecules from the latent space ( 36 ). Remark- 
able success has been demonstrated by GANs in tasks such 

as promoter design and protein engineering ( 37–41 ). How- 
ever, GANs suffer from poor interpretability . Specifically , the 
origins and organization of semantics or functional sequence 
motifs in the latent space remain unclear. GANs are known for 
challenges such as mode collapse, non-convergence and insta- 
bility during training, particularly when faced with inappro- 
priate network structures and parameter initializations. Fur- 
thermore, to obtain CREs with specific properties, pre-trained 

classifier or regression DNNs are often required, which further 
increases the computational burden ( 38 ). 

Here, we developed DREAM (DNA cis- Regulatory Ele- 
ments with controllable Activity design platforM), an efficient, 
scalable and explainable computational framework to design 

CREs from scratch. DREAM can learn a repertoire of the reg- 
ulatory lexicon related to the regulatory activity and accu- 
rately predicts the regulatory activity of enhancers. The en- 
hancer regulatory activity prediction module within DREAM 

exhibits superior performance compared to the DeepSTARR 

model ( 35 ), representing state-of-the-art performance. Using 
this framework, we emulated the optimization trajectory of 
developmental and housekeeping enhancers within the se- 
quence space, obtaining synthetic enhancers that exhibit ap- 

proximately 3.6-fold higher activity than the strongest natural 
enhancer in the Drosophila genome. Surprisingly, the func- 
tion of these enhancers optimized in Drosophila S2 cells are 
conserved across a diverse range of species and exhibit strong 
ability to stimulate the transcription of the luciferase reporter 
gene. We suggest that DREAM could find broad applications 
in designing various classes of CREs and provide valuable bi- 
ological insights into their underlying regulatory grammar. 

Materials and methods 

UMI-STARR-seq data collection and processing 

The genome-wide high-resolution Drosophila developmental 
and housekeeping enhancer UMI-STARR-seq (Unique Molec- 
ular Identifiers-STARR-seq) dataset was retrieved from the 
GEO database (accession number GSE183939) ( 35 ). The 
RNA and DNA input reads were mapped to the Drosophila 
genome (dm3) using Bowtie2 with default parameters. For 
paired-end RNA reads that mapped to the same positions, 
only paired-end RNA reads with different UMIs were re- 
tained. Enhancer activity was quantified as the log2 fold 

change of RNA reads count mapped to the genomic region 

over the input DNA read counts. To maintain comparability 
with the DeepSTARR model, we utilized an identical train- 
ing, validation and hold-out chromosome dataset for training 
and evaluating the multitask deep learning model. Briefly, the 
Drosophila dm3 genome was divided into 249 bp windows 
with a stride of 100 bp. To ensure high-fidelity regulatory ac- 
tivity, the dataset only includes the bins with more than five 
reads in the DNA library and at least one read in the RNA li- 
brary. To increase the sequences diversity in the dataset, three 
type potential enhancer sequences were introduced into the 
dataset: (i) 20 000 randomly sampled sequences overlapping 
the chromatin accessible regions in Drosophila S2 (7580), 
kc167 (7175) and OSC (5245) cell types ( 42 ,43 ); (ii) 8842 

enhancers from Drosophila OSC (4640) and BG3 (4202) cell 
types ( 44 ); (iii) 1778 inducible enhancers in Drosophila S2 

cells for ecdysone (1593) and Wnt (185) signaling ( 45 ,46 ). 
Additionally, we included 11 658 developmental and 7062 

housekeeping enhancers, as well as 21 0686 random windows 
with a range of enhancer activity levels. The dataset was aug- 
mented by adding the reverse complement of each sequence 
with the same regulatory activity . Ultimately , the validation 

dataset comprised 40 570 sequences, and the testing dataset 
comprised 4 1186 sequences, all derived from the first and 

second halves of chr2R, respectively. 

The architecture of SENet 

The Squeeze-and-Excitation (SE) attention mechanism repre- 
sents a channel-wise attention mechanism widely employed 

in computer vision and deep learning. SE blocks dynamically 
recalibrate channel-wise feature responses by explicitly mod- 
eling interdependencies between convolutional feature chan- 
nels, thereby enhancing the representational power of conven- 
tional convolutional neural networks ( 47 ). In this study, we 
constructed a multi-task convolutional neural network that 
only takes one-hot encoded DNA sequences as the input to 

predict both developmental and housekeeping enhancer regu- 
latory activities by incorporating the novel SE block. 

First, the DNA sequences were transformed by the 1D con- 
volutional layer (filters = 512, kernel_size = 7, strides = 1) 
followed by the batch normalization, the non-linearity acti- 
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vation function and average pooling (size = 5, strides = 2). 
Previous study has shown that the convolutional neural net- 
works utilizing an exponential activation function in the first 
layer filters consistently lead to interpretable and robust rep- 
resentations of DNA motifs ( 48 ). To enhance the model in- 
teroperability, the exponential activation was utilized as the 
non-linearity activation function. Subsequently, the DNA fea- 
ture maps were further transformed by four SE-ResNet mod- 
ules (filters = [256, 256, 512, 512], blocks = [2, 2, 2, 2]). Fi- 
nally, there are flatten layer followed by two fully connected 

layers with 512 and 256 neurons, respectively. The output of 
the fully connected layer was activated by a Rectified Lin- 
ear Unit (ReLU) non-linear activation function, followed by 
a dropout layer with a dropout rate set to 0.2. 

The SE block involves three computational operations: the 
squeeze operation, excitation operation, and scale operation. 
The SE computational block can build on any given trans- 
formation F tr , e.g. a convolution, mapping the input X ∈ 

R 

H 

′ ×W 

′ ×C ′ to the feature maps U where U ∈ R 

H×W ×C to per- 
form feature recalibration. The features U are first passed 

through a squeeze operation, which produces a channel de- 
scriptor by aggregating feature maps across their spatial di- 
mensions ( H × W ). This descriptor aims to create an em- 
bedding of the global distribution of channel-wise feature re- 
sponses, enabling information from the global receptive field 

of the network to be utilized by all its layers. The aggregation 

is followed by an excitation operation, which takes the form 

of a simple self-gating mechanism that takes the embedding 
as input and produces a collection of per-channel modulation 

weights. To mitigate the vanishing / exploding gradient prob- 
lem in our deeper convolutional neural network, we integrate 
SE blocks with the ResNet by using the SE block transfor- 
mation F tr is taken to be the non-identity branch of a resid- 
ual module. SE both act before summation with the identity 
branch. The detailed architecture of our model is plotted in 

Supplementary Figure S1 . 

Training the SENet 

First, the DNA sequences were converted to the one-hot en- 
coding, where A, C, G and T are encoded as [1, 0, 0, 0], [0, 
1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] respectively . Specifically , 
the parameters of SENet were learnt as follows. The observed 

regulatory activities of developmental and housekeeping en- 
hancers were denoted as Y . To train the regression SENet 
model, the mean squared error loss (MSE) was selected as the 
loss function. Therefore, the goal of the training process is to 

find the � such that: 

argmin 

�

loss 
(
Y − f ( X i , �) 

) = 

argmin 

�

( 
1 

m 

∑ m 

i 
‖ Y − f ( X i , �) ‖ 2 + λ2 ‖ �‖ 2 ) 

where � represents all learnable parameters of the SENet, f 
is the whole neural network, f ( X i , �) is the predicted reg- 
ulatory activity vector of developmental and housekeeping 
enhancers, X i indicate the one-hot encoded DNA sequence, 
and λ2 is the weight-decay hyper-parameter penalty for large 
model weights quantified by the L2 norm. The parameters 
in each layer of SENet were initialized with the Xavier Glo- 
rot’s initialization method ( 49 ). The stochastic gradient de- 
scent (SGD) algorithm was used to train the parameters, i.e. 

the � was updated as follows: 

� ← � − η
∂ loss 

(
Y − f ( X i , �) 

)
∂�

where η is the learning rate, and the optimizer Adaptive Mo- 
ment Estimation (ADAM) to train our model ( 50 ). To prevent 
overfitting, an early stopping strategy is applied to the valida- 
tion set (patience = 10). In each SE module, the dropout rate 
was set to 0.1, and after the flatten layer, it was set to 0.4. 

The model was implemented and trained with the Keras 
(version: 2.8.0, https:// keras.io/ ) (with TensorFlow version: 
2.8.0) The architecture and hyper-parameters of the SENet 
were tuning with the Bayesian optimization algorithm on the 
validation set. 

Evaluation of prediction accuracy and model 
comparison 

The performance of the model was evaluated separately 
for developmental and housekeeping predictions on the 
held-out test dataset. We used the Pearson correlation coef- 
ficient (PCC) between the observed and predicted enhancer 
functional activity to evaluate the predictive performance 
of our model. We also evaluate the model performance 
on bins that are not overlapping with repeats and locate 
within the Drosophila genome chromatin accessible re- 
gions, respectively. The repeat annotation for Drosophila 
dm3 genome was downloaded from the RepeatMasker 
database ( https:// www.repeatmasker.org/ genomes/ dm3/ 
RepeatMasker- rm405- db20140131/dm3.fa.out.gz ), and the 
A T AC-seq data for the Drosophila S2 and kc167 cell line 
were obtained from the GEO database (accession number 
GSE119708) ( 42 ). To provide a comprehensive and systematic 
comparison of SENet with other current mainstream models, 
the architecture and implementation of the DeepSTARR 

( https:// github.com/ bernardo- de- almeida/DeepSTARR ) ( 35 ), 
DanQ ( https:// github.com/ uci-cbcl/ DanQ ) ( 51 ), DNABERT 

( https:// github.com/ jerryji1993/ DNABERT ) ( 52 ), DenseL- 
STM ( https:// github.com/ WangLabTHU/ deepseed ) ( 53 ), 
AttnBiLSTM ( https:// github.com/ 1edv/ evolution ) ( 29 ), Bas- 
set ( https:// github.com/ davek44/ Basset ) ( 21 ), DeepATT 

( 54 ), DeepMEL ( https:// github.com/ aertslab/ DeepMEL ) 
( 55 ,56 ), DeepSEA ( https:// deepsea.princeton.edu/ ) ( 57 ) and 

DeepSTARR2 ( https:// github.com/ bernardo- de- almeida/ 
DeepSTARR _ embryo ) ( 58 ) models were obtained from their 
respective code repositories. We modified the activation func- 
tion of the output layer (from sigmoid to linear) and the loss 
function (from cross entropy to MSE) of these classification 

models to adapt them for enhancer activity prediction (regres- 
sion), while keeping the other hyperparameters unchanged. 
For the DNABERT model, we obtained the pre-trained 

model following the instructions in the documentation at 
https:// github.com/ jerryji1993/ DNABERT and performed 

fine-tuning. Using Bayesian optimization algorithms within 

the Optuna framework (version 4.0, https:// optuna.org/ ), we 
optimized the learning rate and warm-up percentage param- 
eters for the DNABERT model across 30 trials, achieving an 

optimized learning rate of 0.0002 and a warm-up percentage 
of 0.07. To account for the variance caused by the random 

initialization of deep learning model parameters, we repeated 

the training for each deep learning model 100 times. The 
mean and variance of the model performance on the hold-out 
chromosome dataset were calculated. We employed four 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://keras.io/
https://www.repeatmasker.org/genomes/dm3/RepeatMasker-rm405-db20140131/dm3.fa.out.gz
https://github.com/bernardo-de-almeida/DeepSTARR
https://github.com/uci-cbcl/DanQ
https://github.com/jerryji1993/DNABERT
https://github.com/WangLabTHU/deepseed
https://github.com/1edv/evolution
https://github.com/davek44/Basset
https://github.com/aertslab/DeepMEL
https://deepsea.princeton.edu/
https://github.com/bernardo-de-almeida/DeepSTARR_embryo
https://github.com/jerryji1993/DNABERT
https://optuna.org/
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metrics, i.e. PCC, Spearman correlation coefficient (SCC), 
coefficient of determination ( R 

2 ) and MSE to compare the 
predictive performance between our model and DeepSTARR 

on the hold-out chromosome dataset. 

Motif visualization 

We used the method established in the previous study ( 48 ,21 ) 
to extract the DNA representation of the enhancer regulatory 
activity . Specifically , for each filter in the first convolution layer 
of SENet, the sequences which can activate the filter to more 
half of its maximum value were identified and extracted to 

construct the position weight matrix (PWM). The nucleotide 
occurrences in these sequences was counted and transformed 

to the probabilistic PWM. To identify the PWM which is likely 
corresponding to the known TFBS, we align these PWMs to 

the motifs in the JASPAR database ( 59 ) using the Tomtom 

search tool ( 60 ) with the threshold of FDR (False Discovery 
Rate) q -value < 0.1. The information content (IC) for each 

PWM was calculated as: 

IC = −
∑ 

i, j 

b j l o g 2 
(
b j 

) + 

∑ 

i, j 

m i j l o g 2 
(
m i j 

)
where m is the matrix of nucleotide probabilities for the motif, 
and b is the array of background Drosophila dm3 nucleotide 
probabilities. TFBSs within the Drosophila enhancer region 

was identified using the FIMO (Find Individual Motif Occur- 
rences) ( 61 ) with the threshold of P -value 1e-5. 

We calculated the contribution scores of all nucleotides in 

the sequence to the activity of developmental or housekeep- 
ing enhancers using DeepExplainer ( 62 ), an implementation 

of DeepLIFT ( 63 ) within DeepSHAP (version: 0.46.0). Back- 
ground sequences were set as 1000 dinucleotide-shuffled se- 
quences of the target sequence, serving as reference sequences. 
For each sequence, the nucleotide contribution scores were 
obtained by multiplying the importance scores calculated by 
DeepSHAP with the one-hot encoding matrix of the sequence. 
The visualization of these scores was performed using the 
ggseqlogo function from the R package ggseqlogo (version: 
0.124). 

Motif importance and motif co-occurrence analysis 

To quantify the importance of filters in the first layer of the 
SENet, we used two metrics devised in the previous study, i.e. 
the activity (occurrence frequency) and the influence on the 
predictions of model ( 64 ). Specifically, the activity of the filter 
f for a set of sequences within a certain genomic context was 
computed as follows: 

a n f i = Exp 

( 

L ∑ 

l=1 

D =4 ∑ 

d=1 

w f ld s n,i + l,d 

) 

a n f = 

1 

L 

L ∑ 

l=1 

a n f i 

where w f are the learnable parameters or weights of convo- 
lutional filter f of length L , D indicates the dimension of the 
one-hot encoded DNA matrix s n , a n f i is the exponential acti- 
vation for the convolutional filter f at position i of the input 
sequence, and a n f is the average of mean sequence activities. 
The exponential activation function always greater than zero, 
such that a n f i can be considered as the evidence that the motif 
represented by w f occurs at position i . The influence of filter 

f on the predicted developmental and housekeeping enhancer 
activity ̂ y nt , t ∈ ( dev , hk ) was computed as the Pearson cor- 
relation r f t = pc c n ( a n f , ̂ y nt ) over a set of input sequences n . 

The co-occurrence of filters was visualized using principal 
component analysis (PCA) on the mean activations a n f on 

input sequences (Figure 3 ) and the pairwise correlations be- 
tween mean sequence activations. 

In silico enhancer syntax analysis 

(i) In silico motif position effect analysis: We employed two 

methods to calculate the positional effects of motifs: (a) Ran- 
dom backbone sequences: The consensus sequence of the tar- 
get TF motif was embedded into 50 000 random 249 bp DNA 

backbone sequences. The motif’s position within the back- 
bone was denoted as p , and the predicted enhancer activity 
of the sequence was denoted as A p . The length of the TF mo- 
tif was denoted as l . Backbone sequences were generated by 
sampling each base with equal probability, and their predicted 

enhancer activity was denoted as A rnd . The positional effect 
of the TF motif at position p was calculated as mean (log 2 
( A p / A rnd )). By varying p from 1 to 249 − l , we obtained the 
positional effect profile of the TF motif. (b) Natural enhancers: 
Natural enhancers containing only one instance of the tar- 
get TF motif were selected. The predicted enhancer activity of 
these enhancers was denoted as A enh . Using the function swap 

( enh , p , motif ), we swapped the motif instance with the se- 
quence ( enh ) at position p : ( p + l ), and the predicted enhancer 
activity of the resulting sequence was denoted as A p . The po- 
sitional effect of the TF motif at position p was calculated 

as mean (log 2 ( A p / A enh )). By varying p from 1 to 249 − l , we 
obtained the positional effect profile of the TF motif. (ii) In sil- 
ico motif epistasis-distance analysis: The consensus sequence 
of TF motif A 

was embedded in the center of 50 000 random 

249 bp DNA backbone sequences. TF motif B was then em- 
bedded at a distance d upstream or downstream of motif A 

. 
The enhancer activities of the following sequences were pre- 
dicted using SENet: (a) random backbone sequence ( A rnd ), 
(b) sequence with only motif A 

embedded (A motifA 

), (c) se- 
quence with only motif B embedded ( A motifB ), (d) sequence with 

both motif A 

and motif B embedded ( A motifAB ). The epistasis be- 
tween motif A 

and motif B at distance d was defined as log 2 
( A motifAB / ( A motifA 

+ A motifB − A rnd )) ( 35 ). A value of 1 indicates 
an additive effect, while a value > 1 indicates positive synergy. 
For three TF motifs, motif A 

and motif B were fixed at their opti- 
mal relative distance in the random backbone, and motif C 

was 
moved. The rest of the calculation remained the same. (iii) In 

silico three-order TF combination effect analysis: The consen- 
sus sequences of motif A 

, motif B and motif C 

were embedded in 

the center of 50 000 random backbone sequences, maintaining 
the optimal relative distances between motifs. The predicted 

enhancer activity of these sequences was denoted as A. The 
predicted enhancer activity of the backbone sequences was de- 
noted as A rnd . The higher-order TF combination effect was de- 
fined as mean (log 2 ( A / A rnd )). (iv) Multivariate linear regres- 
sion model based on key TF motif features: TF motifs within 

the Drosophila enhancer regions were identified using FIMO 

( 61 ) with a P -value threshold of 1 × 10 

−5 . The DNA shape 
features of the sequences flanking the TF motifs (10 bp on 

each side) were estimated using the DNAshapeR package (ver- 
sion:1.32.0, https:// bioconductor.org/ packages/ DNAshapeR/ ) 
( 65 ). These features included minor groove width (MGW), 
roll (Roll), propeller twist (ProT) and helix twist (HelT). For 

https://bioconductor.org/packages/DNAshapeR/
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both developmental and housekeeping enhancers, a multivari- 
ate linear regression model was constructed using features re- 
lated to key TF motifs. These features included the number of 
motif instances, the distance of the motif from the center of 
the enhancer sequence, the binding strength of the TF (motif 
core, -log (binding probability) as a proxy), the DNA shape 
scores of the flanking sequences and the relative distances be- 
tween key motifs. Only motif instances starting after position 

10 and ending before position 239 of the 249 bp oligos were 
used to ensure the retrieval of their 10 bp flanking sequences. 
For motif distance analysis, only non-overlapping motif pairs 
were considered. The P -values of the features in the multivari- 
ate linear model were used to assess the significance of their 
contribution to enhancer activity. 

Sequences property analysis 

The TF motifs within the Drosophila enhancer region and 

designed sequences were identified using FIMO ( 61 ) with a 
threshold P -value of 1e-5. The number of motifs, distance 
between motifs, GC content of motifs, GC content of se- 
quences and k-mer frequency of sequences were calculated us- 
ing custom R scripts. Levenshtein distance and Hamming dis- 
tance between sequences were calculated using the stringdist 
R package (version 0.9.12). The DNA shape features of the 
sequences flanking the TF motifs (10 bp on each side) were 
estimated using the DNAshapeR package ( 65 ). Nucleotide di- 
versity was calculated as the average number of nucleotide dif- 
ferences per site between two DNA sequences in all possible 
pairs in the sample population ( 66 ). Entropy was computed 

using the formula: Entropy = 

l ∑ 

x 
p (x ) log p (x ) , where p (x) is 

the frequency of the motif x in the sequence, and l represents 
all TF motifs in the sequence. We used the -log (binding prob- 
ability) as a proxy for TF binding affinity, determined using 
the FIMO software ( 61 ). 

Sequences optimization 

To generate novel enhancers with the high regulatory ac- 
tivity, we implemented a genetic algorithm using the par- 
allelized Python DEAP package (version 1.3.3, available at 
https:// github.com/ deap/ deap ) with a distributed evolutionary 
approach. Initially, we set the population size to 100 000 indi- 
viduals, initializing them with the nucleotide frequencies sim- 
ilar to the Drosophila reference genome. The mutation prob- 
ability and two-point crossover probability were both set to 

0.1, with a selection tournament size of 3. The genetic algo- 
rithm comprised 90 generations, each aimed at maximizing 
the regulatory activity of developmental and housekeeping en- 
hancers, respectively. Eight enhancers generated from the in- 
termediate steps of the iterative optimization process and two 

final optimized enhancers were synthesized to measure their 
activity experimentally. We also extended DREAM by design- 
ing different fitness functions to meet various enhancer or si- 
lencer design requirements as follows: (i) ‘ A T rich + strong 
activity’ enhancers: fitness = f (sequence) / gc (sequence); (ii) 
strong housekeeping silencers: fitness = - f (sequence); (iii) 
strong housekeeping enhancers: fitness = f (sequence); (iv) 
enhancers with user-specified activity: fitness = -| T - f (se- 
quence)|; (v) enhancers specific to the human A549 cell line: 
fitness = g A549 (sequence) - max ( g HCT116 (sequence), g MCF7 

(sequence); where f (sequence) represents the predicted en- 
hancer activity in Drosophila S2 cells, gc (sequence) repre- 

sents the GC content, T represents the user-specified enhancer 
activity, and g A549 (sequence), g HCT116 (sequence) and g MCF7 

(sequence) represent the predicted enhancer activity in hu- 
man A549, HCT116 and MCF7 cells, respectively. The op- 
timization target in the DREAM framework’s genetic algo- 
rithm is to maximize the corresponding fitness function. Ad- 
ditionally, during the GA operations, the sequences were fixed 

with three restriction enzyme sites (RESs) at positions 50, 150 

and 200 bp (AgeI = ‘ACCGGT’, SalI = ‘GTCGAC’, HindIII = 

‘AAGCTT’), while continuing to optimize the corresponding 
fitness function to obtain the ‘with 3 fixed RESs’ enhancers. 

Cell line and transfection 

A diverse array of cell lines across seven species, namely 
Drosophila S2, Spodoptera frugiperda SF9, chicken DF1, fish 

( Cynoglossus semilaevis ) spermatogonium, Pichia pastoris , 
human 293T, A549, HEPG2, K562 cell, mouse 3T3, C2C12, 
CHO, ARPE-19 cell, pig PK15, PSKM cell and sheep MSC 

cell, was employed to examine the regulatory activity of can- 
didate enhancers. Comprehensive details outlining the cell cul- 
ture and transfection methodologies are provided in the sup- 
plementary notes. 

Plasmid construction and extraction 

The Plasmid used in this study was constructed as follows 
(the details about plasmids are provided in the supplementary 
notes): 

• E-pGL3_DSCP_luc Plasmid Construction: The synthe- 
sis of the E-pGL3_DSCP_luc plasmid, designed to initi- 
ate luciferase reporter gene expression with the DSCP 

promoter, was facilitated in collaboration with San- 
gon Biotech, China. In this construct, an enhancer was 
strategically inserted upstream of the DSCP promoter 
in E-pGL3_DSCP_luc, augmenting its regulatory capac- 
ity. The CMV enhancer sequence (Addgene, #171379) 
sourced from the literature ( 67–69 ). 

• pGL3_DSCP_Rluc Plasmid Construction: Using the pT- 
TK Plasmid (Addgene, #31549) as a template, PCR am- 
plification was performed to obtain the Rluc expres- 
sion cassette. The Rluc cassette was then inserted down- 
stream of the DSCP promoter in the pGL3_DSCP_luc 
plasmid after removing the luciferase gene, resulting in 

the pGL3_DSCP_Rluc Plasmid. 
• E-CAG-luc Plasmid Construction: The CAG pro- 

moter was obtained through PCR amplification of the 
VB220421-1515nsc plasmid (kindly provided by Vector- 
Builder). Subsequent steps involved excising the SV40 

promoter and the Renilla luciferase reporter plasmid 

from pmirGLO using restriction endonuclease. The CAG 

promoter was then ligated onto the modified pmir- 
GLO plasmid through Gibson cloning (NEB, E2611L). 
Notably, the CMV sequence within CAG was substi- 
tuted with the enhancer sequence derived from the E- 
pGL3_DSCP_luc plasmid on the transformed plasmid, 
yielding the final E-CAG-luc plasmid. 

• E-HIS-Rluc-luc Plasmid Construction: Using the pLyGo- 
Kp-1 Plasmid (Addgene, #163143) as a template, PCR 

amplification of Pphis4 was performed to obtain the His 
tag. The His tag was then inserted downstream of the 
SV40 polyadenylation signal in the E-pGL3_DSCP_luc 
plasmid using Gibson assembly, resulting in the E-HIS- 

https://github.com/deap/deap
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Luc plasmid. Subsequently, using the pT-TK Plasmid 

(Addgene, #31549) as a template, PCR amplification was 
carried out to obtain the Rluc expression cassette driven 

by the DSCP promoter. This cassette was then inserted 

upstream of the pause site in the E-HIS-Luc plasmid us- 
ing Gibson assembly, resulting in the final E-HIS-Rluc- 
luc plasmid for dual luciferase reporter experiments in 

Pichia pastoris. 

Plasmid extraction was executed using the Endo-Free Plas- 
mid Maxi Kit (Omega, D6926-03). 

Luciferase reporter assays and data analysis 

The Dual-Luciferase® Reporter 1000 Assay System 

(Promega, E1960) was employed to conduct the dual lu- 
ciferase reporter assay. Following a 24-h transfection period, 
the cellular medium was discarded, and PBS was used for cell 
washing. Subsequently, 200 μl of lysate, diluted to a 1 × con- 
centration, was administered to the cells. After 10-min cell 
lysis, 20 μl of the resultant cell lysate was carefully trans- 
ferred to a 1.5 ml centrifuge tube (Selection, MCT-001–150). 
This was followed by the addition of 100 μl of Luciferase 
Assay Reagent II to the lysate. The luminometric reading 
was acquired using a GLOMAX20 / 20 instrument (Promega 
E5311). To terminate the reaction, 100 μl of Stop & Glo 

was introduced, and the centrifuge tube was repositioned in 

the GLOMAX20 / 20 instrument (Promega, E5311) for the 
final reading, with meticulous record-keeping of the results. 
Three independent biological replicates were performed for 
each sequence. We normalized all firefly luciferase signals 
to the signal of Renilla luciferase to control for transfection 

efficiency and cell number (the relative luciferase signal). 

Results 

The computational framework of DREAM in CRE 

design 

To de novo design transcription start site (TSS) distal CREs 
with desired regulatory activity, we developed an innova- 
tive framework named DREAM. This framework integrates 
a state-of-the-art SE CNN (SENet) model and a genetic algo- 
rithm, featuring two interconnected modules: the sequence- 
function module and the evolutionary sequence optimization 

module (Figure 1 , ‘Materials and Methods’ section). 
To be specific, SENet was first employed and trained to pre- 

dict the activity of CREs ab initio solely using DNA sequences 
as model input (Figure 1 A). SENet can explicitly model the dy- 
namical non-linear dependencies between convolutional fea- 
ture channels and enhance the representation ability of vanilla 
CNNs by using the SE attention mechanism ( 47 ). The SE at- 
tention mechanism has been applied in predicting TF-DNA 

binding ( 70 ). By scanning the input CRE sequences with a 
moving sliding window, the first convolutional layer of SENet 
is responsible for extracting and recovering a spectrum of po- 
tential DNA motifs related to regulatory activity. This paral- 
lels the mechanism by which TFs identify specific DNA motifs 
within regulatory regions, activating unique transcriptional 
programs that play a pivotal role in defining cell identity and 

fate. The subsequent convolutional layers, hierarchically and 

adaptively, recapitulate the dynamic interplay and spatial re- 
lationships among the filters (analogous to TFs biologically) 
and aptly epitomize it into a high-dimensional representation 

space. Second, utilizing the trained SENet as the fitness func- 

tion, we employed a genetic algorithm to iteratively improve 
individual fitness within a randomly initialized sequence pop- 
ulation, working toward a predefined design objective (Figure 
1 B). Briefly, at the lower level, in each generation, the new 

candidate CREs (offspring) are introduced by iteratively ap- 
plying mutation, recombination and selection operators to the 
selected CREs (parents) from the preceding generation. At the 
higher level, the fitness of each candidate CRE is measured by 
the well-trained SENet, and strong selection mechanisms de- 
termine which offspring advance to the next generation. Im- 
portantly, as mentioned earlier, leveraging the regulatory lex- 
icon learned by the filters in the first convolutional layer of 
SENet, DREAM inherently enables visualization of the pre- 
ferred regulatory lexicons during CRE optimization. There- 
fore, the whole trajectory of CRE design and optimization is 
transparent and biologically interpretable. 

DREAM can accurately recapitulate the enhancer 
activity 

To obtain training data for DREAM, we downloaded UMI- 
STARR-seq data in Drosophila melanogaster S2 cells from a 
previous publication ( 35 ). Specifically, the dataset used by de 
Almeida et al . utilized UMI-STARR-seq to measure enhancer 
activity toward two distinct transcriptional programs defined 

by their representative promoters: a synthetic core promoter 
(DSCP) derived from the even-skipped TF for developmental 
enhancers, and the core promoter of Ribosomal protein gene 
12 ( Rps12 ) for housekeeping enhancers, in D. melanogaster 
S2 cells ( 71 ). These cells, derived from late-stage embryos, 
are widely used in gene expression and regulation studies. 
This dataset, characterized by high resolution and fidelity, 
offers a quantitative assessment of enhancer activity across 
the Drosophila genome ( 35 ). The dataset screened a total of 
242 026 sequences for potential enhancer activity. Among 
these sequences, 11 658 and 7062 were identified as boosting 
transcription initiated from a developmental and housekeep- 
ing a promoter, respectively. Unlike other epigenomic assays 
based on the enrichment of specific biochemical marks (such 

as H3K27ac) to infer enhancer activity, STARR-seq directly 
measures the intrinsic enhancer activity of DNA sequences 
in a high-throughput manner ( 17 , 35 , 43 , 72 ). Therefore, deep 

learning models trained with STARR-seq datasets can directly 
predict enhancer activity, rather than relying on proxy mea- 
surements such as H3K27ac signal. 

When it comes to predicting enhancer activity solely from 

DNA sequences, DeepSTARR ( 35 ) has set a notable bench- 
mark with its state-of-the-art performance employing a CNN- 
based model. In order to gauge our approach against this 
benchmark, we directed the same training, validation and 

hold-out chromosome dataset to the multitask SENet com- 
ponent of DREAM (‘Materials and Methods’ section). Us- 
ing the hold-out chromosome data as independent testing 
data, SENet achieved Pearson correlation coefficients (PCC) 
of 0.71 ( P -value < 2.2e-16) and 0.80 ( P -value < 2.2e-16) 
for developmental enhancers and housekeeping enhancers, re- 
spectively (‘Materials and Methods’ section; Figure 2 A and 

B). SENet also accurately predicted the difference in en- 
hancer activity between the developmental and housekeep- 
ing promoters on the hold-out chromosome (PCC = 0.92, 
P -value < 2.2e-16; Figure 2 C). The predictive performance 
of SENet are robust on the non-repeat regions (developmen- 
tal enhancer: PCC = 0.71, P -value < 2.2e-16; housekeeping 
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Figure 1. Ov ervie w of the DREAM frame w ork. DREAM comprises tw o integral modules: the st ate-of-the-art SENet that models enhancer activit y using 
DNA sequences as the input ( A ) and the e v olutionary optimization module of DNA sequences ( B , ‘Genetic Algorithm’). The SENet was trained using 
UMI-STARR-seq data to learn the DNA regulatory lexicon underlying enhancer activity and was subsequently used to predict the regulatory activity of 
diverse DNA sequences. In tandem, the evolutionary optimization module employs a genetic algorithm, iteratively maximizing regulatory activity as 
predicted by the SENet-derived model. This iterative process ensures precise and targeted enhancement of enhancer functionality, thus facilitating the 
design of tailored sequences for specific regulatory tasks. 

enhancer: PCC = 0.80, P -value < 2.2e-16; Supplementary 
Figure S2 ) and the open chromatin regions (S2 cell and kc167 

cell developmental enhancer: PCC = 0.75, P -value < 2.2e- 
16; housekeeping enhancer: PCC = 0.85, P -value < 2.2e- 
16; Supplementary Figure S3 ). To further validate the gen- 
eralizability of SENet, we subjected it to 249 randomly 
generated synthetic enhancer sequences spanning a broad 

spectrum of activity levels (experimentally measured by de 
Almeida et al. ( 35 )). We found that, remarkably, SENet also 

demonstrated excellent predictive performance in these ex- 
ogenous sequences which are not present in the Drosophila 
genome (‘Materials and Methods’ section, PCC = 0.65, P - 
value < 2.2e-16; Supplementary Figure S4 ). 

To provide a comprehensive and systematic comparison of 
SENet with other current mainstream models, we included 

ten deep learning models capable of predicting enhancer ac- 
tivity (including the DeepSTARR model ( 35 )): DanQ ( 51 ), 
DNABERT ( 52 ), DenseLSTM ( 53 ), AttnBiLSTM ( 29 ), Basset 
( 21 ), DeepATT ( 54 ), DeepMEL ( 55 ,56 ), DeepSEA ( 57 ) and 

DeepSTARR2 ( 58 ) (see ‘Materials and Methods’ section). We 
evaluated the performance of these models on a hold-out chro- 
mosome dataset using four metrics: PCC, SCC, R 

2 and MSE. 
The results demonstrated that SENet outperformed all the 
other models. Specifically, compared to the second-best per- 
forming model, DNABERT, SENet achieved average improve- 
ments of 3.51% in PCC (housekeeping enhancer: 3.11%, de- 
velopmental enhancer: 3.91%), 3.02% in SCC (housekeeping 
enhancer: 3.02%, developmental enhancer: 3.01%), 6.80% in 

R 

2 (housekeeping enhancer: 6.41%, developmental enhancer: 

7.19%) and 9.06% in MSE (housekeeping enhancer: 10.28%, 
developmental enhancer: 7.83%) (Figure 2 D). The results of 
10-fold cross-validation also indicate that SENet has the best 
performance in predicting enhancer activity ( Supplementary 
Figure S5 ). In contrast to the DeepSTARR model, the novel 
SE block proposed in SENet can explicitly model the non- 
linear interactions between the filters (corresponding to DNA 

motifs). This capability enhances the representational power 
in modeling the regulatory grammar that governs enhancer 
activity. 

The SENet can reveal the regulatory lexicon and 

syntax of enhancers 

Understanding and interpreting the underlying basis on which 

the models make decisions and predictions can provide pro- 
found insight into the biological mechanisms being stud- 
ied. Previous research has established that the collaborative 
occupancy of TFs, along with the interplay between their 
motifs and genomic contexts, plays a pivotal role in fine- 
tuning enhancer activity ( 33–35 , 73 , 74 ). Here, to extract the 
enhancer cis- regulatory grammars learned by SENet, we em- 
ployed a sequence-alignment-based approach. This approach 

sifted through sequences that robustly activated nodes in the 
first convolutional layer and subsequently aligned them for 
closer examination ( 19 , 31 , 21 , 64 , 75 ) (‘Materials and Meth- 
ods’ section). We found that 21.29% (109 / 512) of the po- 
tential regulatory motifs learned by the convolutional filters 
significantly aligned with enhancer-activating TF DNA bind- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
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Figure 2. The sequence-activity model of DREAM framework can quantitatively and accurately predict enhancer activity solely from DNA sequences. ( A 

and B ) 2D kernel density plots showing the correlation between the observed and the predicted regulatory activity for developmental enhancers (A) and 
housekeeping enhancers (B) on the held-out chromosome, respectively. ( C ) The SENet accurately captures the activity difference between enhancers 
coupled to de v elopmental and housekeeping promoters. ( D ) Four metrics—PCC, SCC, R 

2 and MSE—were utilized to assess the predictive performance 
of the SENet and other ten models on de v elopmental enhancers and housekeeping enhancers. The evaluation encompassed diverse datasets, including 
the kc167 (kc167 A T AC) and S2 cell (S2 A T AC) accessible regions, 249 synthetic de v elopmental enhancers designed by de Almeida et al . (Synth), 
non-repetitive regions on the hold-out chromosome (Non-repeats), and the entirety of the hold-out chromosome dataset (Testset). 

ing motifs (annotated motifs; ‘Materials and Methods’ sec- 
tion; q -value < 0.1), such as GA T Ad, Strat93E, kay, Dref, 
sna and Ets21C motifs ( 35 , 44 , 71 ) (Figure 3 A–F). Some mo- 
tifs were captured by different filters recurrently, implying that 
the filters were highly redundant ( Supplementary Figure S6 ). 
Additionally, our observation also revealed that some filters 
responded to highly similar sequence patterns but displayed 

conspicuously diverse effects on the final predicted activity 
( Supplementary Figure S6 ). This implies that the motifs and 

their contextual relationships within enhancers are intricate 
and sophisticated, adding a layer of complexity to the under- 
standing of their functional impact. Notably, some filters that 
can’t match any known motifs ( de novo motifs) might rec- 
ognize the low-level sequence features related to enhancers, 
such as higher GC content which is enriched in the chromatin 

accessible regions ( 76 ), or the sequence features determining 
DNA shape recognized by TF binding ( 77 ,78 ). 

Moreover, two complementary metrics, i.e. (i) the occur- 
rence frequency of the filters in each enhancer sequence 
(activation) and (ii) the influence of each filter on the fi- 
nal enhancer activity prediction (association), were employed 

to evaluate the contribution and importance of the mo- 
tifs recovered by the filters (‘Materials and Methods’ sec- 
tion). The annotated motifs, which exhibit higher IC ( P - 
value = 0.012, one-sided Wilcoxon rank-sum test) and ac- 
tivation ( P -value = 0.046, one-sided Wilcoxon rank-sum 

test) in SENet ( Supplementary Figure S7 ), exhibit a simi- 
lar association with enhancer activity as the de novo motifs 
( Supplementary Figure S7 D). We observed that the SENet- 
unveiled motifs were found to be as predictive, if not more so, 
of enhancer activity than known TF motifs ( Supplementary 
Figure S8 ). Notably, the motif instances (matching the fil- 
ters) exhibiting increased activation within housekeeping 
enhancers, which show greater evolutionary conservation 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
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Figure 3. The SENet component of DREAM framework identifies sequence motifs associated with enhancer activity. ( A –F ) The filters in the first 
con v olutional la y er of SENet can reco v er the motifs associated with enhancer activity, including G A T A d (A), Strat93E (B), ka y (C), Dref (D), sna (E), and 
Ets21C (F) motifs. ( G ) Clustering of 512 motifs disco v ered b y DREAM frame w ork. T he plot sho ws are the first tw o principal components of the motif 
occurrence frequencies in sequence windows (activity). Triangles represent the de novo motifs and dots denote motifs with significant (FDR < 0.1) 
similarity to the annotated motifs in the JASPAR databases. Marker size indicates the average activity; the estimated motif effect on the developmental 
enhancer activity (association) is shown by color. 

(Spearman’s rho = –0.20, P -value = 9.13e-3). The TFs 
recovered by the filters with positive association on ac- 
tivity displayed significantly lower evolutionary rates than 

those captured by filters with negative association (house- 
keeping enhancer: P -value = 7.4e-3; developmental en- 
hancer: P -value = 0.09; one-sided Wilcoxon rank-sum test; 
Supplementary Figure S9 ). Together, these observations af- 
firm that, indeed, SENet has effectively learned the regula- 
tory grammar underlying enhancer activity. To investigate 
the co-occurrence of motifs across sequences, we applied 

PCA (Figure 3 G). We found that motifs with similar nu- 
cleotide composition tended to group together, with two ma- 
jor clusters associated with increased or decreased enhancer 
activity co-occurring within the same sequence. Hierarchical 
clustering of filter (motif) activation correlations reveals the 
presence of numerous co-activated motifs within enhancers 
( Supplementary Figure S10 ). These findings potentially indi- 
cate widespread TF–TF interactions within enhancers. Addi- 
tionally, we observed that motifs with negative association on 

enhancer activity tended to be CG-rich. 
We compared the motifs identified by SENet and Deep- 

STARR ( Supplementary Figure S11 ) and found that only 

13.6% of the motifs matched ( q -value < 0.1, Supplementary 
Figure S11 A). We speculate that one reason for this discrep- 
ancy is that some filters of the two models only capture a 
subset of TFBS motifs, leading to mismatches. Further anal- 
ysis indicated that, compared to vanilla CNNs (i.e. Deep- 
STARR model), SENet captured more known TFBS motifs 
(observed at q -value < 0.1 and q -value < 0.05 thresholds, 
Supplementary Figure S11 C). Additionally, the de novo filters 
and annotated filters in SENet exhibited higher IC and activa- 
tion (both P -Value < 2.2e-16, one-sided Wilcoxon rank-sum 

test; Supplementary Figure S11 D and E). We assessed the im- 
portance of filters by correlating their activation values with 

enhancer activity (PCC) and found that, in predicting devel- 
opmental and housekeeping enhancers, SENet captured more 
important DNA motifs compared to the DeepSTARR model 
(filters with importance > 0.1, Supplementary Figure S11 F). 
Finally, to further validate our findings, we used the motifs 
learned by SENet and DeepSTARR to construct random for- 
est and XGBoost models for predicting the activity of devel- 
opmental and housekeeping enhancers. The results showed 

that the DNA sequence features learned by SENet have higher 
predictive power (except for the non-significant prediction 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
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of developmental enhancer activity by the XGBoost model, 
with other P -values < 0.01, one-sided Wilcoxon rank-sum 

test; Supplementary Figure S11 G). We also observed consis- 
tent conclusions when using the top 20, 50 and 100 ranked fil- 
ters by importance as features ( Supplementary Figure S11 G). 

To further explore the complexity and dynamics of en- 
hancer regulatory syntax, we selected the top six important 
TF motifs learned by SENet (considered key motifs) and per- 
formed an in silico analysis of their positional effects, epistasis 
and higher-order motif interactions (Figure 4 ; Supplementary 
Figure S12 and Supplementary Figure S13 ). The key findings 
are as follows: (i) enhancers often display positional prefer- 
ences for TF motifs, with instances of the same motif con- 
tributing differently to enhancer activity based on their po- 
sitions. In developmental enhancers, the positional effect of 
TF motifs shows a unimodal distribution, where motifs at 
the center of the sequence contribute the most to enhancer 
activity (Figure 4 B). In contrast, housekeeping enhancers ex- 
hibit a multimodal distribution, with significant contributions 
from motifs located not only at the center but also at the 5 

′ 

and 3 

′ ends of the sequence ( Supplementary Figure S12 A). 
(ii) Epistasis between TF motifs varies with their relative dis- 
tance (Figure 4 C and Supplementary Figure S12 B). Different 
TF motifs show distinct patterns of interaction based on their 
relative distances, forming two categories: those with opti- 
mal distances of < 25 bp and those > 25 bp. When consid- 
ering the interaction among three TF motifs (with two mo- 
tifs fixed at their optimal interaction distance), the epista- 
sis follows a similar pattern ( Supplementary Figure S13 A). 
(iii) The distance between some key motifs significantly in- 
fluences enhancer activity. For instance, in developmental en- 
hancers, the distance between key motifs such as GA T Ae mo- 
tifs and grn motifs shows a notable impact on enhancer ac- 
tivity (Figure 4 D and Supplementary Figure S12 C). (iv) The 
DNA shape of the TF motifs flanking sequences also plays 
a crucial role in enhancer activity. By analyzing four main 

DNA shape features—MGW, roll (Roll), ProT and HelT—
we found that the contribution of DNA shape to enhancer 
activity is more significant in housekeeping enhancers (Fig- 
ure 4 D and Supplementary Figure S12 C). We hypothesize that 
these DNA shapes affect the binding affinity of TFs to DNA, 
thereby regulating enhancer activity. (v) Higher-order interac- 
tions among TF motifs (e.g. three motifs) exhibit complex pat- 
terns. Even when maintaining the optimal distance required 

for TF–TF interactions, only some combinations of three TF 

motifs tend to increase enhancer activity in developmental en- 
hancers ( Supplementary Figure S13 B). 

Optimize enhancers activity with the DREAM 

framework 

Utilizing the highly predictive model for enhancer activity as 
the ‘fitness’ function for the genetic algorithms, we can design 

the CREs with prespecified regulatory activity, including en- 
hancers exhibiting exceptional transcriptional-stimulating ef- 
fect. To achieve this, we initialized 100 000 random sequences 
sampled from the sequence space with similar nucleotide fre- 
quencies as the Drosophila genome. These sequences were 
then subject to genetic algorithms which simulated opti- 
mization trajectories of 90 generations toward maximizing 
their enhancer activity (‘Materials and Methods’ section). We 
observed that enhancer activity of the developmental and 

housekeeping transcriptional programs approached satura- 

tion, reaching its peak after ∼70–80 generations. The activity 
levels of developmental and housekeeping enhancers derived 

from the final design using the DREAM framework were 6.8- 
and 5.3-fold (predicated by SENet), respectively, compared to 

the strongest enhancer identified in the Drosophila genome 
( 35 ) (Figure 5 A). We also found that increasing the initial pop- 
ulation size improves the ability of genetic algorithms to find 

higher-activity enhancers but also significantly increases com- 
putational resource demands ( Supplementary Figure S14 ). To 

gain insights into the putative TF binding motifs playing crit- 
ical roles during the optimization of enhancer activity, we ex- 
amined the activation value profiles during the in silico opti- 
mization trajectory, for the Top 10 and Bottom 10 filters found 

in the final optimal enhancers (filters with Top 10 and Bottom 

10 activation values). Notably, we observed a gradual increase 
in activation values for the Top 10 filters. Particularly, the fil- 
ter_288 capturing kay and Jra motifs exhibited the highest 
activation value. In contrast, the activation values of the Bot- 
tom 10 filters remained largely unchanged (Figure 5 B). For a 
more comprehensive exploration of the properties of the artifi- 
cial enhancers designed by DREAM, we visualized them in the 
DNA enhancer embedding space. This visualization included 

the DREAM-optimized developmental enhancers, natural se- 
quences in the Drosophila genome (encompassing both de- 
velopmental enhancers and random genomic sequences), ran- 
dom sequences with an identical nucleotide frequency distri- 
bution and synthetic developmental enhancers designed by de 
Almeida et al . ( 35 )—serving as the control sequences (Figure 
5 C and D). The control sequences were located in regions 
with the lower enhancer activity, and the natural develop- 
mental enhancer samples clustered together. The natural se- 
quences did not reach the optimal fitness (enhancer activity) 
peak, suggesting that natural enhancers may be subject to ad- 
ditional constraints beyond regulatory activity. In contrast, the 
DREAM-optimized enhancers scattered, and showed dramat- 
ically higher regulatory activity. 

To explore motif syntax underlying strong enhancer activ- 
ity, we examined motif configuration changes during the in 

silico optimization trajectory. We found that during the opti- 
mization of enhancer activity based on DREAM, the occur- 
rence of TF motifs with close proximity (motif distance < 20 

bp), the number of key motifs, TF binding affinity and the 
diversity of TF motifs gradually increased, while the av- 
erage distance between motifs decreased, and sequence di- 
versity reduced (Figure 6 A and Supplementary Figure S15 ). 
Enhancers designed by DREAM exhibited significant dif- 
ferences in these sequence properties compared to natural 
Drosophila enhancers and those previously designed by Deep- 
ST ARR ( 35 ) and DeepST ARR2 ( 58 ) (all P -values < 2.22e- 
16, one-sided Wilcoxon rank-sum test; Figure 6 A). Further- 
more, enhancers designed by DREAM were closer to natural 
enhancers in terms of Hamming distance and Levenshtein dis- 
tance (all P -values < 2.22e-16, one-sided Wilcoxon rank-sum 

test; Supplementary Figure S15 B). Additionally, the designed 

enhancers showed differences from natural sequences in k - 
mer frequency ( k = 5,6) and the DNA shape of motif flanking 
sequences ( Supplementary Figure S15 C and D). Additionally, 
during the optimization process, clear co-occurrence patterns 
emerged among functional motifs, such as the SREBP-kay, 
SREBP-Jra, Mitif-kay, etc., underscoring the interplay of these 
motifs is vital for increasing enhancer activity ( Supplementary 
Figures S16 and S17 ). These observations suggest that, un- 
der intense selection pressure, populations rapidly converge 
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Figure 4. In silico analysis reveals positional effects of k e y motifs in de v elopment al enhancers, dist ance-dependent TF motif epist asis, and contributions 
of TF motif-related features to enhancer activity. ( A ) Schematic illustrating two computational strategies for assessing motif positional effects in silico : 
‘Random Backbone Sequences’ and ‘Natural Enhancers’ (see ‘Materials and Methods’ section for details). ( B ) Positional effects of the top six TF motifs 
in de v elopmental enhancers. Green lines represent the ‘Random B ackbone Sequences ’ strategy, orange lines indicate the ‘Natural Enhancers ’ strategy, 
and blue lines denote the negative control ‘GGGCT’. Dashed line indicates an additive effect. ( C ) Epistasis effects between TF motifs as a function of the 
relative distance between motifs. The first motif in the title is fixed at the center of the backbone, while the second motif (motif B) is computationally 
mo v ed (color-coded). The ‘GGGCT’ motif serves as a negative control (see ‘Materials and Methods’ section). ( D ) Contributions of TF motif-related 
features to de v elopmental enhancer activity. For each TF motif (each row), multiple linear regression models were constructed using the number of 
motif instances, the distance from the enhancer center, the binding strength of the TF (motif core, with -log (binding probability) as a proxy), DNA shape 
scores of the flanking sequences, and the relative distances between key motifs. The P -value of each motif feature from these models indicate the 
significance of each motif feat ure ’s contribution to enhancer activity. 
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Figure 5. DREAM frame w ork le v erages the most influential regulatory le xicon to optimiz e the regulatory activity of enhancers. ( A ) Distribution of 
predicted enhancer activity ( y -axis) for developmental and housekeeping enhancers at mutational steps ( x -axis) for the in silico optimization trajectories 
f a v oring high activity. B o x es demarcate the 25th, 50th and 75th percentile values, while whiskers indicate the outermost point with 1.5 times the 
interquartile range from the edges of the bo x es. T he blue and y ello w dash lines represent the Drosophila de v elopmental and housek eeping enhancer 
with the strongest activity measured in S2 cells, respectively. ( B ) The dynamic trajectories of activation values for filters ranked in the top 10 (dashed 
lines) and bottom 10 (solid lines) based on activation values within the final optimized enhancers during in silico evolution. The color indicates the filter 
influence on the predictions of de v elopmental enhancer activity. ( C and D ) Unsupervised Clustering shows that the optimized developmental enhancers 
by the DREAM framework are conspicuously distinct from the Drosophila genome sequences (including developmental enhancers [11 658] and random 

genomic non-coding sequences [50 0 0]), random sequences with the same nucleotide frequency distribution as the Drosophila genome (50 0 0) and 
synthetic de v elopmental enhancers designed b y de Almeida et al . (249) ( 35 ). T hose sequences w ere projected into the enhancer embedding space with 
the UMAP algorithm. The dot color represents the type of sequence type. The dot color represents the type of sequence type (C) and the predicted 
regulatory activity of de v elopmental enhancers (D), respectively. 

towards the optimal fitness by strategically exploiting and re- 
inforcing TF motifs and motifs syntax that substantially con- 
tribute to enhancer activity. The motif enrichment analysis fur- 
ther revealed that the optimized enhancers harbored a distinct 
set of overrepresented functional motifs (Figure 6 B and C). 
These results indicated that the DREAM framework learned 

the enhancer grammar and applied it into the process of en- 
hancer design, rather than merely copying the sequences of 
natural enhancers. 

To further demonstrate the scalability of the DREAM 

framework in designing CREs, we developed different fit- 
ness functions for various CREs design goals (‘Materials and 

Methods’ section, Supplementary Figure S18 A and B): ( i ) en- 
hancers with extremely high AT content and strong activity 

(‘ A T rich + strong activity’ enhancers); ( ii ) enhancers with 

three user-specified restriction enzyme sites (RESs; with 3 fixed 

RESs, i.e. AgeI = ‘ACCGGT’, SalI = ‘GTCGAC’, HindIII = 

‘AAGCTT’); ( iii ) CREs with strong activity (‘strong house- 
keeping silencers / enhancers’); ( iv ) developmental enhancers 
with user-specified activity levels ( Supplementary Figure S20 ); 
( v ) enhancers specific to the human A549 cell line (Figure 
7 ). We observed that in these five different design scenar- 
ios, DREAM effectively optimized sequences for the prede- 
fined goals ( Supplementary Figures S18 and S19 ). In the task 

of designing A549 high activity enhancers, DREAM pro- 
duced sequences with significantly higher activity than natural 
A549 enhancers (human genomic A549 enhancers, Figure 7 B 

and C). However, the increase in activity in A549 cells was 
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Figure 6. The dynamic changes of known TF binding motifs during the in silico optimization trajectory. ( A ) This panel illustrates various characteristics, 
including the count of TF motif pairs with distances < 20 bp (# (distance < 20)), the a v erage number of (k e y) TF motifs (# (motifs)), TF binding affinity 
quantified by −log (binding probability), diversity of TF motifs evaluated through entropy, sequence diversity quantified by Levenshtein distance, the 
mean distance between TF motifs, and GC content of binding TF motifs (motif GC%) and sequences (sequence GC%) throughout the in silico 
optimization trajectory. The x -axis outlines the steps of the in silico optimization process, and the results are compared with natural enhancers in the 
Drosophila genome as well as synthetic enhancers designed by DeepSTARR ( 35 ) and DeepSTARR2 ( 58 ) (one-sided Wilcoxon rank-sum test). ( B ) TF 
motifs o v er-represented in optimiz ed synthetic enhancers compared to natural de v elopmental enhancers in the Drosophila genome. ( C ) TF motifs 
o v er-represented in de v elopmental enhancers compared to genomic regions of non-enhancers (back ground). T he x -axis represents the log2-transformed 
one-sided Fisher’s exact test odds ratio, and the y -axis represents the corresponding FDR-corrected significance. 
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Figure 7. A549 high-activity and A549 specific enhancers designed Using DREAM. ( A ) P redictiv e perf ormance of the DREAM enhancer activity 
prediction module across A549, HCT116 and MCF7 cell lines, e v aluated on the hold-out chromosome 22 test dataset. ( B and D ) Optimization processes 
for designing high-activity and cell-type specific enhancers in A549 cells, respectively. These figures also compare the enhancer activities of designed 
sequences to natural enhancers. ( C and E ) Nucleotide contribution scores of the optimized enhancer sequences, derived from the DREAM enhancer 
activity prediction module using DeepExplainer ( 62 ). Additionally, instances of motifs identified using Vertebrate PWMs from the JASPAR2024 database 
are shown. Boxes demarcate the 25th, 50th and 75th percentile values, while whiskers indicate the outermost point with 1.5 times the interquartile 
range from the edges of the bo x es. 
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accompanied by increased activity in HCT116 and MCF7 

cells. TF motif analysis in two designed sequences revealed 

motifs primarily for TP53, TP63 and TP73. For A549 cell- 
type-specific enhancers, DREAM generated sequences with 

higher specificity than natural A549-specific enhancers (hu- 
man genomic A549-specific enhancers, Figure 7 D and E). TF 

motif analysis showed higher diversity in optimized A549- 
specific enhancers, including motifs for TP53, TP63, TP73, 
PATZ1, ZNF281 and ZBED4 (Figure 7 D and E). This sug- 
gests an antagonistic relationship between enhancer activity 
and cell-type specificity, where achieving high specificity often 

comes at the cost of reduced activity. Furthermore, the mo- 
tifs used differed between tasks, with cell-type-specific tasks 
incorporating motifs that enhance specificity alongside those 
that activate transcription. 

DREAM-designed enhancers displayed extreme 

regulatory potential across multiple species 

To validate the accuracy of the DREAM framework in de- 
signing enhancers, we employed the developmental enhancers 
(enhancers designed in the context of driving the developmen- 
tal promoter) as a paradigmatic case study . Specifically , we 
selected an extensive and diverse set of enhancer sequences 
for luciferase reporter assays in S2 cell (Figure 8 D). These se- 
quences include (i) non-enhancer sequences in the Drosophila 
genome (non-enhancers), serving as the baseline control; (ii) 
the natural Drosophila developmental enhancers exhibiting 
the strongest and medium regulatory activity measured by 
STARR-seq; (iii) the five synthetic Drosophila developmen- 
tal enhancers with the highest regulatory activity (Top 5) de- 
signed by de Almeida et al. (DeepSTARR did not target en- 
hancer activity for directional optimization) ( 35 ); (iv) ten en- 
hancers designed by the DREAM design framework, com- 
prising eight enhancers generated from the intermediate steps 
of the iterative optimization process and two final optimized 

enhancers emerging upon algorithmic convergence. Notably, 
we found that the two final optimized enhancers designed by 
the DREAM framework exhibited a remarkable and signifi- 
cant 3.6-fold (average, one-sided Wilcoxon rank-sum test, P - 
value = 0.01) and a 3.9-fold (average, one-sided Wilcoxon 

rank-sum test, P -value = 1.84e-05) increase in regulatory ac- 
tivity, compared to the strongest Drosophila endogenous en- 
hancer and the strongest artificial enhancer previously de- 
signed by de Almeida et al ., respectively. Meanwhile, consis- 
tent with previous research, the strongest enhancer designed 

by de Almeida et al. exhibited regulatory activity compara- 
ble to the strongest natural Drosophila enhancer, reinforcing 
the robustness of our findings ( 35 ). Furthermore, the enhancer 
activities predicted by the DREAM framework exhibited a 
strong correlation with those measured by luciferase reporter 
assays (PCC = 0.80, P -value = 1.60e-05), which further un- 
derscores the exceptional performance of the DREAM frame- 
work for enhancer activity prediction. 

Recent research has revealed that, despite low sequence 
conservation, the activity of enhancers across evolution could 

be conserved by retaining a collection of conserved TF DNA 

binding motifs with variations in ordering and spacing ob- 
served across different species ( 79 ,80 ). Despite the model 
of DREAM framework was trained with the Drosophila S2 

cell dataset, we found that the 5.7% (29 / 512) and 7.2% 

(37 / 512) motifs recovered by the filters of SENet can align 

with fungi and vertebrate’s TF motifs retrieved from JASPAR 

database ( q -value < 0.1). Therefore, we speculated that the 
function of these enhancers optimized in Drosophila S2 cells 
might be conserved across species. To test this hypothesis, we 
compared the activity of the designed enhancers and a 305- 
bp CMV enhancer frequently used in gene over-expression 

constructs. We performed luciferase reporter experiments on 

these sequences in diverse cell lines from nine species, span- 
ning 1.275 billion years of evolutionary divergence, includ- 
ing chicken, fish ( Cynoglossus semilaevis ), human, mouse, pig, 
sheep, cattle, insect ( Spodoptera frugiperda ) and yeast ( Ko- 
mag ataella phaffii, syn. Pic hia pastoris ) (Figure 8 E). Intrigu- 
ingly, we found that, comparing to CMV enhancer, which is 
one of the most potent CREs at activating transcription in 

mammalian cells, our designed enhancers presented an aver- 
aged ∼3.4-fold increase in transcription-stimulating activity. 
The advance of DREAM-designed enhancers is most promi- 
nent in non-mammalian cell lines, which are usually not a 
favored infection target of CMV virus. For example, in the 
SF9 cell of Spodoptera frugiperda , the regulatory activity of 
DREAM-designed enhancers surpassed that of the CMV en- 
hancer by 209.5-fold and the Hr5 enhancer (commonly used 

in insects to over-express a gene) ( 81 ) by 15.7-fold. In sper- 
matogonium cells of Cynoglossus semilaevis , the DREAM- 
designed sequence in exhibited regulatory activity 28.6-fold 

higher than that of the CMV enhancer. Additionally, in yeast, 
the DREAM-designed sequences demonstrated 9.1- and 3.9- 
fold higher activity than the UASE enhancer ( 82 ), and the most 
potent enhancer synthesized by de Almeida et al., respectively. 
Together, these results indicated that the extremely strong reg- 
ulatory activity of optimized enhancers are conserved across 
various species and further demonstrated the ability of the 
DREAM framework to discern and comprehend the general 
regulatory grammar inherent to enhancers. The CMV (cy- 
tomegalovirus) immediate enhancer / β-actin (CAG) promoter 
has been shown to have strong ubiquitous activity in var- 
ious cell types and is widely used in recombinant adeno- 
associated virus (rAAV) vectors as a versatile gene delivery 
platform for clinical gene therapy. Next, we sought to test 
whether the synthetic enhancers are able to further improve 
the expression efficiency of CAG promoter and CMV pro- 
moter in human K562 and A549 cells, Drosophila S2 cells. We 
found that DREAM-optimized enhancer displayed stronger 
ability to stimulate the expression of CAG and CMV pro- 
moter in all three cell lines (all P -values ≤ 0.05, one-sided 

Wilcoxon rank-sum test; Supplementary Figure S21 ). Finally, 
we individually selected the most potent designed sequences 
from S2 cells (Generation:90_individual:2) and human 293T 

cells (Generation:79_individual:2) to assess the regulatory ac- 
tivity of the enhancers designed in our study within an en- 
dogenous chromatin context. We generated luciferase trans- 
genic Drosophila lines using the attB / attP site-specific recom- 
bination system. The result showed that, compared to the 
wild-type (utilizing the DSCP promoter), the optimized en- 
hancer sequence increased luciferase expression by approxi- 
mately 10 000-fold (‘Materials and Methods’ in Supplemen- 
tary data, Supplementary Figure S22 A). Additionally, we in- 
tegrated the optimized enhancer into the genome of human 

293T cells via recombinase-mediated integration and subse- 
quently measured their activity. The result demonstrated that 
the optimized enhancer exhibited an activity 1.29-fold higher 
than that of the CMV enhancer (‘Materials and Methods’ 
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Figure 8. The final optimized enhancers displayed extreme regulatory activity and are functionally conserved across diverse species. ( A ) Nucleotide 
contribution scores for the optimized enhancers derived from the enhancer activity models using DeepExplainer. Instances of motifs identified by 
DREAM are emphasized, with known motifs indicated in black and de novo motifs marked in red. The number of known motifs (# (known motifs)) and 
the number of de no v o motifs (# ( de no v o motifs)) are also marked. ( B ) The colored matrices illustrate the presence or absence of TF motifs ( x -axis) in 
the corresponding tax onom y ( y -axis), with blue indicating absence and orange indicating presence of the TF in the respective tax onom y. ( C ) Schematic 
representation of the luciferase reporter assa y s sy stem f or the test sequences, with the designed sequences positioned at the 5 ′ end of the DSCP 
promoter. ( D ) Comparing enhancer activity, as measured by luciferase reporter assays, with predictions generated by the DREAM framework in S2 cells. 
Five classes of sequences are shown in the plot, including (i) non-enhancer sequences in the Drosophila genome (non-enhancer), (ii) the Drosophila 
de v elopmental enhancers exhibiting the strongest and medium regulatory activity, (iii) the top five synthetic developmental enhancers with the highest 
regulatory activity, as designed by de Almeida et al. ( 35 ), (iv) ten enhancers designed by the DREAM design framework and (v) the CMV enhancer and 
Hr5 enhancer. The firefly luciferase values were normalized with the signal of Renilla luciferase. Error bars: Standard error of the mean ( n = 3 biological 
replicates). ( E ) Comparative analysis using luciferase reporter assays to assess the activities of enhancers optimized by the DREAM framework, 
enhancers designed by de Almeida et al. ( 35 ), and the CMV enhancer across diverse cell lines spanning nine species, including c hic ken, fish 
( Cynoglossus semilaevis ), human, mouse, pig, sheep, cattle, insect ( Spodoptera frugiperda ) and yeast ( Komagataella phaffii ). The Hr5 ( 81 ) and U A SE ( 82 ) 
enhancers served as controls for insect ( Spodoptera frugiperda ) and yeast ( Komagataella phaffii ) cell lines, respectively, while the CMV enhancer was 
used as a control for the remaining cell lines. The luciferase values are normalized against the signal of Renilla luciferase. Error bars: Standard error of 
the mean ( n = 3 biological replicates). 
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in Supplementary data, P -values = 0.02, one-sided T -test; 
Supplementary Figure S22 C). Collectively, these findings sug- 
gest that, beyond their role in episomal plasmids, synthetic 
enhancers could significantly amplify gene expression, and, in 

other words, induce specific molecular phenotypes within the 
endogenous chromatin context. 

To validate DREAM’s accuracy in various CRE de- 
sign tasks, including the design of strong housekeeping 
enhancers / silencers, we randomly selected 19 synthetic CREs 
(14 synthetic enhancers and 5 synthetic silencers) and val- 
idated their activity using luciferase reporter assays in 

Drosophila S2 cells ( Supplementary Figure S18 C–G): (i) 4 ‘ A T 

rich + strong activity’ enhancers, (ii) 4 ‘with 3 fixed RESs’ 
enhancers, (iii) 11 ‘strong housekeeping silencers / (iv) en- 
hancers’. The luciferase reporter assays results demonstrated 

that the designed enhancer sequences (Generation: 90_in- 
dividual:1) had significantly higher regulatory activity com- 
pared to Hr5 enhancer. Specifically, the ‘ A T rich + strong ac- 
tivity’ synthetic developmental and housekeeping enhancers 
were 1.7 and 3.1 times more active than Hr5, respectively. The 
‘with 3 fixed RESs’ synthetic developmental and housekeep- 
ing enhancers showed 3.9 and 12.1 times higher activity than 

Hr5, respectively. The synthetic housekeeping enhancers were 
6.6 times more active than Hr5. Notably, the strongest syn- 
thetic housekeeping silencers could reduce Rps12 promoter 
transcriptional activity by 43.8 times. Additionally, the de- 
signed housekeeping silencers also significantly inhibited PGK 

promoter transcriptional activity in human and mouse cell 
lines. 

Discussion 

Enhancers, pivotal genetic elements, play a crucial role in es- 
tablishing and maintaining cell identity. Designing synthetic 
CREs with desired properties, for example, cell type specific or 
high-activity CREs, offers significant applications. Cell-type- 
specific enhancers can precisely control gene expression in 

targeted tissues or cells, essential for regenerative and per- 
sonalized medicine. They enable therapies that activate genes 
only in specific cells, minimizing side effects and enhancing 
treatment efficacy. High-activity enhancers are valuable in in- 
dustrial biotechnology, optimizing the production of biofuels, 
pharmaceuticals and other compounds by boosting the ex- 
pression of key metabolic genes in microbes or plants. In this 
study, we present DREAM, an innovative framework for syn- 
thetic enhancer design and optimization, harnessing the power 
of deep learning. DREAM demonstrates state-of-the-art per- 
formance of enhancer activity prediction, surpassing its coun- 
terpart, the DeepSTARR model. Importantly, the enhancer de- 
sign process within the DREAM framework is transparent 
and highly biologically interpretable, shedding light on cis - 
regulatory lexicon associated with enhancer activity. Lever- 
aging learned motifs and DNA features, DREAM is able to 

design artificial enhancers with the predefined or highest reg- 
ulatory activity . Notably , the final optimized enhancers exhib- 
ited a comparable sequence difference to natural enhancers, 
reinforcing the effectiveness of the DREAM framework in de- 
signing novel synthetic enhancers rather than merely mem- 
orizing natural enhancer sequences by rote. Moreover, these 
designed enhancers exhibit conserved functionality across a 
diverse range of species, including yeast, insects, avians and 

mammals. 

Recent studies have leveraged deep learning models for the 
design of enhancer elements, highlighting the evolving land- 
scape of computational approaches in this domain. Notably, 
de Almeida et al . developed the DeepSTARR model, a vanilla 
CNN trained on UMI-STARR-seq data, to predict the activ- 
ity of 1 billion random DNA sequences, identifying sequences 
with varying enhancer activities, including enhancers with ac- 
tivity comparable to the strongest native Drosophila S2 de- 
velopmental enhancers ( 35 ). In a follow-up study, they intro- 
duced the DeepSTARR2 model, which modified the convo- 
lutional layers of the original DeepSTARR model and was 
trained on A T AC-seq data ( 58 ). This approach enabled the 
prediction of the activity of 3 billion random DNA sequences 
and the identification of tissue-specific enhancers. However, 
the DeepSTARR series models employ a ‘random sampling 
and prediction’ design strategy that cannot guarantee the op- 
timal target properties of enhancers within the DNA sequence 
space and is inefficient. Additionally, Taskiran et al. employed 

the DeepMEL model, trained on (sc)A T AC-seq data, and used 

a greedy algorithm to design cell type (line)-specific enhancer 
elements ( 56 ). However, the greedy search method used by 
Taskiran et al . is limited in exploring the DNA sequence space, 
making it prone to local optima, and A T AC-seq signals are 
only imperfect predictors and typically need to be comple- 
mented by methods that directly measure enhancer activities 
( 83 ,84 ). In contrast to these methods, the DREAM framework 

we proposed demonstrates several notable advantages. First, 
the enhancer activity prediction module within the DREAM 

framework significantly outperforms the models used in the 
aforementioned studies, including DeepSTARR ( 35 ), Deep- 
STARR2 ( 58 ) and DeepMEL ( 55 ), in terms of predictive per- 
formance. Second, the DREAM framework offers enhanced 

interpretability, capturing more informative DNA sequence 
features for enhancer activity than the DeepSTARR model. 
Additionally, unlike the random sampling method employed 

by de Almeida et al ., which is inefficient and lacks direc- 
tional design capabilities, the DREAM framework can opti- 
mize from 0.1 million random DNA sequences to obtain en- 
hancers with ∼3.6-fold higher activity than the strongest de- 
velopmental enhancers in the Drosophila genome. Moreover, 
compared to Taskiran et al . ’ s method, the genetic algorithm 

used in the DREAM framework expands the search space ef- 
fectively, mitigating the issue of local optima while maintain- 
ing design efficiency. The DREAM framework’s direct opti- 
mization of enhancer activity, facilitated by training on UMI- 
STARR-seq data, allows for the generation of enhancers with 

customized activity levels. This contrasts with models trained 

on (sc)A T AC-seq data, which cannot directly optimize en- 
hancer activity due to the imperfect prediction of chromatin 

accessibility alone. Furthermore, the relatively short length of 
enhancers designed using the DREAM framework (249 bp) 
is advantageous for the miniaturization of AAV delivery vec- 
tors. Lastly, the DREAM framework allows users to customize 
the fitness function, enhancing its scalability and enabling the 
optimization of multiple enhancer properties simultaneously. 
For example, users can control cell specificity or simultane- 
ously optimize sequence properties and enhancer activity. 

The effectiveness of DREAM framework heavily relies 
on access to substantial amounts of high-quality enhancer 
sequence-activity datasets. Currently, there remains a scarcity 
of large-scale and highly reproducible datasets that directly 
measure the activity of enhancers. While the well-established 

high-throughput functional genomics assays, such as ChIP- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae912#supplementary-data
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seq and A T AC-seq, have provided valuable insights into en- 
hancer function and regulation ( 85 ), it is important to note 
that they primarily generate signals indicative of some de- 
gree of correlation with enhancer activity rather than directly 
measuring enhancer activity itself. In contrast, cutting-edge 
techniques such as STARR-seq and other episomal MPRAs 
represent an advancement from the luciferase reporter assay, 
which has long been considered the gold standard for directly 
measuring enhancer activity. These methods bring enhancer 
quantification into an NGS-based format, enabling the direct 
measurement of enhancer activity in a high-throughput man- 
ner. Consequently, they stand out as ideal candidates for gen- 
erating training dataset for the DREAM framework. In this 
study, we utilized the UMI-STARR-seq data from Drosophila 
melanogaster S2 cells to train the DREAM framework. UMI- 
STARR-seq incorporates unique molecular identifiers (UMIs) 
to accurately distinguish and remove PCR duplicates, which 

is crucial for increasing signal-to-nose ratio while avoiding 
false positives ( 84 ). Despite the effectiveness of STARR-seq 

and its derivatives, they are technically challenging and labor- 
intensive, involving > 250 steps and relying on high transfec- 
tion efficiency of the cells of interest ( 72 ). Consequently, high- 
quality STARR-seq data remains limited at present. In the fu- 
ture, with the ongoing standardization and optimization of 
STARR-seq technology protocols, coupled with the genera- 
tion of high-quality datasets across various species, the cur- 
rent data constraints of the DREAM framework are poised to 

diminish. This progress will facilitate the design of enhancer 
sequences across a more diverse range of species. 

Unraveling and cataloging DNA motifs linked to enhancer 
functionality will pave the way for understanding the molec- 
ular mechanisms of enhancer regulation. A notable advantage 
of our DREAM framework lies in its biological interpretabil- 
ity. It has the capacity to unveil and categorize DNA motifs 
linked to enhancer functionality, thus providing insights into 

the cis- regulatory grammar governing enhancer activity. In 

this study, we showcased the proficiency of DREAM in accu- 
rately recovering well-established enhancer-activating TF mo- 
tifs, including kay and GA T Ad motifs. Additionally, DREAM 

also identified novel motifs that cannot align with any known 

ones, providing novel insights into enhancer regulation. Be- 
yond providing important insights into the regulatory gram- 
mar of enhancers, the DREAM framework has the potential 
to simulate enhancer activity evolution in silico by design- 
ing proper fitness functions and population demographic his- 
tory. The visualization of dynamic changes in the filter acti- 
vation of SENet’s first layer allows us to understand how the 
DNA sequence space is explored during evolution and how 

the enhancer functional motifs are exploited in the in silico se- 
quence design process. Intriguingly, we found a conspicuous 
co-occurrence pattern emerged among the functional motifs 
during the in silico enhancer evolution, such as the SREBP-kay, 
SREBP-Jra, which indicated the interactions between func- 
tional motifs are vital for manipulating the enhancer activity. 

Utilizing natural CREs for fine-tuning gene expression faces 
limitations, particularly when there is a need to induce ex- 
tremely high expression of a target gene. The constrained 

activity of natural enhancers may stem from the fact that 
natural selection does not explicitly optimize enhancer activ- 
ity. The gene expression patterns within organisms are often 

intricately orchestrated by a network of multiple enhancers 
( 74 , 86 , 87 ). In this scenario, natural selection may tend to op- 
timize the overall module’s output and its internal interactions 

rather than solely elevating the activity of an individual regula- 
tory element. Additionally, CREs with excessive activity might 
adversely impact the overall fitness of an individual, hinder- 
ing their emergence in the process of natural evolution. In 

this work, utilizing the DEARM framework for synthetic en- 
hancer design, we expanded the repertoire of CREs available 
in the genetic engineering toolbox beyond natural DNA se- 
quences. Our strategy successfully designed enhancer elements 
with remarkably strong activity—exceeding approximately 
3.6-fold the potency of the strongest natural enhancer in the 
Drosophila genome. Notably, despite the DEARM framework 

being trained on the Drosophila S2 cell dataset, the final op- 
timized enhancers exhibited remarkably high regulatory ac- 
tivity across diverse species. This observation not only under- 
scores the conservation of enhancer syntax across species but 
also implies that the designed enhancers harbor significant po- 
tential for application in various fields, including gene therapy, 
genomic breeding and industrial production from cell-based 

bioreactors. 
While many studies evaluating enhancer activity often over- 

look specifying the associated promoter, emerging evidence 
suggests that the activity of an enhancer is influenced to 

some degree by its cognate promoter. Reports indicate that 
enhancer-promoter compatibility may be governed by inter- 
acting sets of TFs or cofactors ( 71 ,88–90 ). Hence, it is cru- 
cial to recognize that enhancers designed by the DREAM 

framework might not perform as anticipated when coupled 

with a promoter different from the one used in the train- 
ing data. Conventional STARR-seq techniques typically as- 
sess enhancer activity with one promoter at a time, posing 
challenges in obtaining large-scale training datasets for pro- 
moter and enhancer interactions. A recent advancement, the 
ExP STARR-seq assay, allows simultaneous assessment of the 
activity of 1000 candidate enhancers on 1000 promoters ( 88 ). 
While commendable, these data may still fall short of meeting 
the training requirements for deep learning-based models. A 

promising direction for future research involves the develop- 
ment of innovative high-throughput technological approaches 
capable of efficiently and accurately providing information on 

promoter and enhancer compatibility. Once such datasets be- 
come available, the DREAM framework can incorporate both 

promoter and enhancer DNA sequences simultaneously for 
training and optimization, enabling the prediction of enhancer 
activity for a given sequence coupled with any specified pro- 
moter sequence. 

DREAM framework can also be extended to efficiently de- 
sign other CRE, such as promoters and silencers, with desir- 
able properties with the corresponding training dataset. Re- 
cently, researchers proposed a new workflow that significantly 
enhances the capability of STARR-seq to efficiently and simul- 
taneously measure the functional activity of both enhancers 
and silencers ( 91 ). This framework is poised to become a piv- 
otal tool in the design of silencers. Additionally, the crafting 
of tissue-specific CREs can be accomplished by utilizing the 
corresponding high-throughput training dataset derived from 

diverse cell lines or tissues, which would necessitate only slight 
adjustments to the fitness function of DREAM. 

To effectively harness and design specific phenotypes in 

plants and animals using synthetic CREs, it is essential to pre- 
cisely design and regulate the activity of these CREs, including 
their spatiotemporal specificity. Moreover, a profound under- 
standing of the underlying principles governing gene regula- 
tory networks and their responses to environmental stimuli 
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is crucial ( 92 ). These insights represent key future directions 
and research areas for applying synthetic biology in plant and 

animal breeding. 

Data availability 

The source code used to implement, train and evalu- 
ate the SENet is available on GitHub ( https://github.com/ 
cisGrammar/DREAM ) and Figshare ( https://doi.org/10.6084/ 
m9.figshare.27135255.v1 ). The source code for designing and 

optimizing the enhancers is also available from https://github. 
com/ cisGrammar/ DREAM/ GA . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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