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Abstract We present multiple derivations of the Total Radiation Belt Electron Content (TRBEC), an
indicator of the global number of electrons that instantaneously occupy the radiation belts. Derived from
electron flux measurements, the TRBEC reduces the spatial information into a scalar quantity that concisely
describes global aspects of the system. This index provides a simple, global, and long‐term assessment of the
radiation belts that enables systematic analysis. In this work, we examine the TRBEC using the adiabatic
invariants of (μ,K,L∗) which has been used in previous articles as this coordinate system removes reversible
adiabatic effects. We then introduce a new expression to compute the TRBEC using the non‐adiabatic
coordinates of (E,αeq,L∗), relevant in the contexts of energetic electron precipitation, chorus, and hiss scattering
where adiabatic invariant quantities are no longer conserved. From both expressions of the TRBEC we
demonstrate that an erroneous factor of (2π)3 that appeared in previous works using the adiabatic derivation led
to an overestimate of the reported electron populations. In addition, we quantify electron loss in the outer
radiation belt (3.5 < L∗ < 5) via a case study using the Van Allen Probes data over a 20‐day period from March
2013 specifying particle populations both in terms of the aforementioned adiabatic and non‐adiabatic variables.
The total number of electrons in the outer radiation belt reached upwards of 1028 electrons at the peak of the
storm, a rest mass of roughly 10 g.

Plain Language Summary Charged particles in near‐Earth space can be trapped by Earth's magnetic
field, sometimes for years. These particles create regions of high‐intensity radiation known as the Van Allen
radiation belts. Particles lost from the radiation belts frequently impact the Earth, driving changes to the upper
atmosphere. In this study, we demonstrate a method to count the total number of particles in the radiation belts as
a function of time. We then apply this method to show how many particles were lost to the atmosphere during a
period in March 2013: about 1028 electrons, constituting a rest mass of about 10 g.

1. Introduction
In‐situ measurements of particle fluxes have been, and will continue to be, a crucial method to observe particles in
the radiation belts. The deployment of Geiger‐Müller tubes on board the Sputnik 2 and Explorer 1 satellites
marked the first observations of particles in the near‐Earth environment and led to the discovery of the Van Allen
radiation belts (Van Allen, 1959). Continual advancements in instrumentation have allowed for increased particle
energy and pitch angle resolutions, giving insight into the mechanisms that affect particle populations and dy-
namics. Trapped populations in the inner radiation belt are relatively stable; however, in the outer belt particle
fluxes fluctuate more readily due to the competition between the acceleration and loss depending on solar activity,
geomagnetic conditions, and other factors (e.g., Millan & Baker, 2012). For instance, the relative level of particle
fluxes following geomagnetic storms in this region is difficult to predict as electron fluxes have been observed to
rise, fall, or remain in a similar proportion (Reeves et al., 2003; Turner et al., 2015), although recent results using
integrated adiabatic measures reveal more repeatable patterns (Murphy et al., 2018). Many processes contribute to
the acceleration and loss of particles in the radiation belts, leading to questions about how the source and loss
processes affect the total number of particles (Ripoll et al., 2020). The Total Radiation Belt Electron Content
(TRBEC) provides a means to explore this and related questions through a quantitative accounting of the overall
number of particles in a given volume of phase space.

By name, the Radiation Belt Content (RBC) was first presented by Baker et al. (2004), itself an extension of
earlier work completed by Baker et al. (2001). The RBC was developed in these studies to investigate the
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variability of highly energetic electrons using a single parameter computed from data gathered by the low Earth
orbiting Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) spacecraft (Baker et al., 1993). The
number of electrons, N, was approximated as N = ηV where the average density of electrons, η, was determined
using omnidirectional flux measurements and V is the volume contained by the radiation belts (Baker et al., 2004).
Since many of the trapped orbits are not observable from Low Earth Orbit (LEO), accurately quantifying the
radiation belts in their entirety is challenging with LEO satellites (Pierrard, Botek, et al., 2021; Pierrard, Ripoll,
et al., 2021). The RBC was then termed the Total Radiation Belt Electron Content by Selesnick (2006) and
subsequent work by Selesnick and Kanekal (2009), who focused on storm time source and loss rates, expanded on
the previous methodology to account for adiabatic effects. Their end product was presented as the number of
electrons per unit of energy and is the first account in which the TRBEC was determined by integrating a
measured electron phase space density (Selesnick & Kanekal, 2009). Separately, Zhang et al. (2017) computed
the total electron content to estimate electron loss during precipitation events using data from the Van Allen
Probes Magnetic Electron Ion Spectrometer (MagEIS) (Blake et al., 2013; Spence et al., 2013) instruments. This
case study complemented their work on reporting characteristics of radiation belts particles from other satellite
and balloon observations (Zhang et al., 2017). The methodology stemmed from proton ring current studies by
Williams et al. (1976) and subsequent refinements by Zhao et al. (2015) that derived an equation for the total
kinetic energy within a flux tube. Zhang et al. (2017) utilized this flux tube expression to compute the total
electron content of a fixed energy range by summing over all of the flux tubes within a given L‐shell range in
0.1RE increments.

An alternative TRBEC expression was presented in the work of Forsyth et al. (2016) that used MagEIS data to
study the effects of substorms on the electron content within the radiation belts. The TRBEC expression provided
in Forsyth et al. (2016) used the adiabatic invariants μ, K and L∗ so that the number of electrons computed would
be unaffected by slow adiabatic changes. This adiabatic description of the TRBEC was also utilized by Murphy
et al. (2018) and Duderstadt et al. (2021) to complete statistical studies using Van Allen Probes data and to
quantify the amount of depletion during select intervals.

In this work, we combine the formalism used to derive the adiabatic TRBEC with the coordinate system of the
earlier works to derive and provide a new expression for the TRBEC that is a function of electron kinetic energies,
equatorial pitch angles, and drift shells. We also complete a separate derivation for the TRBEC in adiabatic
coordinates which is absent from the primary source material where it is presented or used (Duderstadt
et al., 2021; Forsyth et al., 2016; Murphy et al., 2018). Moreover, from our derivations and auxiliary comparisons,
we demonstrate that the published results using adiabatic invariants overestimate the TRBEC by a factor of
(2π)3 ≈ 248. The previous studies mainly focus on relative changes of the TRBEC, and their results are
essentially unaffected by this correction. However, the correct normalization becomes increasingly important for
studies that rely on reporting the TRBEC directly. From the TRBEC equations, in both coordinate frames, we
present considerations for computing the TRBEC numerically and, then, apply these methods to a case study
utilizing Van Allen Probes data for a quiet geomagnetic interval in early March of 2013.

2. Definitions and Derivations
2.1. First Principles Approach in Position‐Momentum Phase Space

We begin by defining the Phase Space Density (PSD), f , as

f =
j
p2 (1)

where j represents the differential particle flux and p is the relativistic momentum (Roederer & Zhang, 2014). As a
function of the kinetic energy, E, the momentum is

p =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E2 + 2Em0c2

√

c
(2)

where m0 is the electron rest mass and c is the speed of light in a vacuum. The PSD is then rewritten as
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f =
1

2.99792458 × 1010
j

E2 + 2Em0c2[(
c

MeV ⋅ cm
)

3
]. (3)

Given j is provided in units of #/ ( cm2 s MeV sr) , along with E and m0 in units of MeV and MeV/c2 respectively,
then the resulting units for the PSD are given in the brackets. Taylor et al. (2004) discuss the preferred units for the
PSD and provide conversions between alternative units.

The Total Radiation Belt Electron Content (TRBEC) is defined as the total number of particles in a given volume
of phase space. Denoting a generalized coordinate and momentum conjugate pair, (q,p) = (q1,q2,q3,p1,p2,p3) ,
the TRBEC in position‐momentum phase space is

N = ∭
q
∭

p
f (q,p) d3q d3p (4)

where the integration limits are used to determine the region of phase space and, hence, a particular particle
population and region within the radiation belts. In principle, the TRBEC N can be calculated over any well‐
defined phase space volume by using Equation 4. Practically, a direct estimate for the six‐dimensional integral
would require a prohibitively large number of measurements, so the TRBEC concept becomes more useful if we
can apply some assumptions to reduce its dimensionality.

Under the restrictive assumption of a dipole magnetic field, we could represent momentum space in terms of E,
αeq, and ϕp (kinetic energy, equatorial pitch angle, and gyro phase angle) and position space in terms of L, s, and
ϕq (distance from the geomagnetic center to the equatorial crossing of the field line, distance along the field line,
and azimuthal angle). We could then integrate analytically over ϕp,ϕq and s to reduce the initially six‐dimensional
integral to an integral over (E,αeq,L) , which could then be estimated with a practical number of measurements.

Under less restrictive assumptions in a non‐dipole model field, integrating over s and ϕq would be numerically
cumbersome. Rather than performing that calculation, we instead imagine adiabatically “turning off” the non‐
dipole contributions to the real field, and then evaluate N in the resulting dipole field. The adiabatic trans-
formation takes a particle phase space density observed at (Esat,αsat, x→) and maps it to a phase space position in
the dipole field (E,αeq,L∗) , where L∗ is described by Roederer (1970) (Roederer & Lejosne, 2018; Roederer &
Zhang, 2014) and αeq and E can be calculated using conservation of the first and second adiabatic invariants
(Schulz & Lanzerotti, 1974). The total number of particles N is the same in the transformed dipole field as in the
original non‐dipole field, making for a well‐defined and useful simplification, although we note that boundaries in
L∗ are not strictly spatial boundaries in the real (non‐dipolar) space.

The goal is now to derive an expression for the TRBEC explicitly in terms of E, αeq, and L∗ by integrating in a
dipole field. We initially opt to parameterize the six‐dimensional integral of Equation 4 using position coordinates
of L, s, and ϕq, and momentum coordinates of the electron total linear momentum, p, pitch angle, α, and gyro
phase angle, ϕp. The coordinates of the canonical momentum form a spherical coordinate system resulting in a
volume element of

d3p = (dp)(pdϕp) (p sin(α)dα)

= p2 sin(α) dp dϕp dα.
(5)

whereas the corresponding volume element of the generalized coordinates is

d3q =
A(s)
Aeq

(ds) (REdL∗ ) (REL∗dϕq)

=
A(s)
Aeq

(RE)
2L ∗ ds dL ∗ dϕq.

(6)
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In Equation 6, A(s)/Aeq is the ratio between the cross‐section area of a flux tube at a position s compared to the
area at the equator, where the path length is zero (s = 0), and is required to account for the shape of flux tubes in a
dipole magnetic field. Provided magnetic flux is conserved along field lines,

A(s)
Aeq

=
Beq

B(s)
(7)

so Equation 6 is rewritten as

d3q =
Beq

B(s)
(RE)

2L∗ ds dL∗ dϕq. (8)

Substituting Equations 5 and 8 into the TRBEC from Equation 4 and integrating both ϕp and ϕq from 0 to 2π gives

N = 4π2(RE)
2∫

s
∫

p
∫

α
∫

L∗
f (s,p,α,L∗)

Beq

B(s)
p2 sin(α)L∗ ds dp dα dL∗. (9)

For now the integration bounds will be left undefined, but will later be restricted so that only trapped particles in
the radiation belts are accounted for.

The remaining steps in this TRBEC derivation are to change coordinates to the desired variables. This is
completed by converting the momentum to an equivalent energy, the local to equatorial pitch angle, αeq, and the
parameterization for the distance along a field line from s to the geomagnetic latitude. By Liouville's theorem, the
density of particles in phase space is constant so the PSD at any position along a field to the PSD at a point on the
equatorial plane is related via

f (s,p,α,L∗) = f (s = 0,p,αeq,L∗). (10)

Differentiating the relation between a particle's momentum and its equivalent energy from Equation 2 the relation
between dp and dE is

pdp = γm0dE (11)

where

γ =
E

m0c2 + 1 (12)

is the Lorentz factor. By the conservation of the first adiabatic invariant,

μ =
(E2 + 2Em0c2) sin2(α)

2m0c2B
, (13)

where B is the local magnetic field, it can be shown that for an electron with a set energy

sin(α) = sin(αeq)

̅̅̅̅̅̅̅̅̅
B(s)
Beq

√

. (14)

Differentiating Equation 14 above yields the following relation between dα and dαeq.

cos(α)
dα
dαeq

= cos(αeq)

̅̅̅̅̅̅̅̅̅
B(s)
Beq

√

(15)
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Substituting the PSD relation from Equation 10 and the coordinate changes from Equations 11 and 15 into the
TRBEC from Equation 9 gives

N = 4π2(RE)
2m0∫

s
∫

E
∫

αeq

∫
L∗
f (E,αeq,L∗)γp

̅̅̅̅̅̅̅̅̅
Beq

B(s)

√
sin(α)cos(αeq)

cos(α)
L ∗ ds dE dαeq dL ∗

= 4π2(RE)
2m0∫

s
∫

E
∫

αeq

∫
L∗
f (E,αeq,L∗)γp

sin(αeq) cos(αeq)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − sin2 (αeq)
B(s)
Beq

√ L ∗ ds dE dαeq dL ∗
(16)

where the second equality first expands cos(α) using the Pythagorean identity and then substitutes sin(α) from
Equation 14.

The integration bounds over the field line path s and equatorial pitch angle αeq are now specified to limit the
integration to trapped electrons in the radiation belts. The endpoints for s occur at the mirror points in the northern
and southern hemispheres, +sm and − sm, which in turn depend on αeq. The domain for αeq includes all angles
outside the loss cone, from +αeq,LC to − αeq,LC, where the loss cone edge is calculated at 100 km. With these
changes Equation 16 becomes

N = 4π2(RE)
2m0∫

E
∫

+αeq,LC

αeq=− αeq,LC

∫

+sm

s=− sm
∫

L∗
f (E,αeq,L∗)γp

sin(αeq) cos(αeq)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − sin2 (αeq)
B(s)
Beq

√ L ∗ ds dE dαeq dL ∗

(17)

due to the symmetry about the equatorial plane.

For the final variable change for this derivation, the path described by the line element will be replaced with the
geomagnetic latitude, λ. The distance element of a dipole field is related to the geomagnetic latitude by

ds = REL∗
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√
cos(λ)dλ (18)

and in addition,

B(λ)
Beq

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√

cos6(λ)
(19)

shows the ratio between the local magnetic field strength parameterized in terms of λ and on the equatorial plane
(Schulz & Lanzerotti, 1974; Walt, 1994). Substituting Equations 18 and 19 into Equation 17 gives

N = 16π2(RE)
3m0∫

E
∫

π/2

αeq=αeq,LC

∫

λm

λ=0
∫

L∗
f (E,αeq,L∗)γp(L∗)

2

sin(αeq) cos(αeq)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − sin2 (αeq)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√

cos6(λ)

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√
cos(λ) dE dαeq dλ dL ∗.

(20)

For notational convenience, the latitude and equatorial pitch angle dependencies of Equation 20 are condensed
into a single function that we denote as W(αeq) .

W(αeq) = sin(αeq) cos(αeq)∫

λm

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√
cos(λ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − sin2 (αeq)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+ 3 sin 2(λ)

√

cos 6(λ)

√ dλ (21)

Journal of Geophysical Research: Space Physics 10.1029/2024JA032940

PITZEL ET AL. 5 of 18



The upper integration bound of the latitude at a mirror point can be computed using the following relation to the
equatorial pitch angle in a dipole magnetic field.

1
sin2 (αeq)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2 (λm)

√

cos6 (λm)
(22)

The latitude‐dependent terms of W(αeq) are denoted as T(y = sin(αeq)) in Schulz and Lanzerotti (1974),
accompanied by a numerical approximation for the function. The significance of T( y) is that it describes the full
helical trajectory of the bounce path and is therefore proportional to the bounce period (Schulz & Lanzer-
otti, 1974). Referring to W(αeq), a special case is when it is precisely zero, occurring at αeq = 0 and π/2 cor-
responding to when either the volume in momentum phase space and position phase space is zero. Although there
is no closed‐form solution to the W(αeq) or T(αeq) integrals (Schulz & Lanzerotti, 1974; Walt, 1994), an
interesting finding is that the numeric result of W(αeq) integrated between λm = 0 to π/2 is approximately 0.4571.
Within error, this corresponds to the ratio between the volume contained within a magnetic dipole shell and its
enclosing sphere, exactly 16/35 as shown in Appendix A.

Returning to the TRBEC derivation, using W(αeq) from Equation 21 simplifies Equation 20 to

N = 16π2(RE)
2m0∫

Emax

Emin

∫

π/2

αeq=αeq,LC

∫

L∗
max

L∗
min

f (E,αeq,L∗) γ p (L∗)
2 W(αeq) dE dαeq dL∗ (23)

which is our final expression of the TRBEC in (E,αeq,L∗) coordinates. We note again that both γ and p are
functions of E through Equations 2 and 12. The integration bounds over αeq ensure all trapped particles are
counted and the maximum and minimum bounds of energy and L‐shell can be chosen to select a given particle
population.

2.2. Coordinate Transformation to Adiabatic Invariants

Adiabatic invariants, such as (μ,K,L∗) , are desirable coordinates to specify a particle population for the TRBEC
as the boundaries are unaffected by adiabatic changes. However, integrating the PSD over a constant range of
adiabatic invariants is not simple using the TRBEC defined in terms of the generalized coordinates as shown in
Equation 4. This would define an irregular shape in the (q,p) phase space so it is advantageous to derive a separate
expression of the TRBEC that specifies a region in phase space comprised of adiabatic invariants.

To define the TRBEC using adiabatic invariants we begin by performing a volume‐preserving transformation in
phase space from (q,p) to a new set of canonical variables. Using the action‐angle variables of (ω,J) as the target
frame the frequencies and constants of the motion are determined without knowledge of individual particle paths.
The action variables Ji are the adiabatic invariants of the system where J1, J2, and J3 are associated with the gyro,
bounce, and drift motions respectively. They are approximated from the generalized Poincaré invariants, Ji, that
are defined as the following integrals over one complete period of qi (Northrop, 1963).

Ji ≈ Ji = ∮ pi dqi (24)

The function that generates the canonical transformation from (q,p) to (ω,J) is Hamilton's characteristic func-
tion, W = W(q,J), and, from this, the transformation equations are

pi =
∂W(q,J)

∂qi
(25)

and

ωi =
∂W(q,J)

∂Ji
(26)
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with the latter being the definition of the angle variable (e.g., Goldstein et al., 2008). From the definition of the
action variables, shown in Equation 24, and the transformation equations, Equations 25 and 26, it follows that
over a single period of a given motion, the change in the angle variable of that motion is by unity (e.g.,
Chow, 2013; Dittrich & Reuter, 2017).

∮ dωi (qj) = ∮ ∂ωi

∂qj
dqj = ∮ ∂2W(q,J)

∂qj∂Ji
dqj =

∂
∂Ji

∮ ∂W(q,J)
∂qj

dqj =
∂
∂Ji

∮ pj dqj = δij

⇒∮ dωi (qi) = 1 (27)

From the definition of the TRBEC, the corresponding expression for the TRBEC using the action‐angle variables
(ω,J) is

N= ∮ ∮ ∮
ω
∭

J
f (J) d3ω d3J

= ∭
J
f (J) d3J

(28)

by Equation 27 as it is assumed that the PSD is only dependent on the action variables, f = f (J).

The choice to use Ji, as defined in Equation 24, follows the action‐angle variable notation presented by many
authors (e.g., Baumjohann & Treumann, 1997; Chow, 2013; Dittrich & Reuter, 2017; Fitzpatrick, 2015;
Greiner, 2004; Hazeltine & Waelbroeck, 2004; Kivelson & Russell, 1995; Northrop, 1963; Roederer &
Zhang, 2014; Spiegel & Proykova, 1980; Walt, 1994). Other authors opt to define the action variable as
Ii = Ji/ (2π) (e.g., Arnold, 1997; Landau & Lifshits, 1976; Woodhouse, 2009). Some texts discuss both of these
definitions (e.g., Cline, 2018; Goldstein et al., 2008; Schulz & Lanzerotti, 1974). The choice of the action variable
does matter as different definitions affect the normalization of the associated angle variable. For example, the
conjugate angle variable to Ii, φi, is incremented by 2π (e.g., Arnold, 1997) over a complete motion cycle instead
of 1 as is the case with ωi shown in Equation 27. However, consistently defined action‐angle variables do not
affect the outcome of the TRBEC as a change in the definition of the action variables is offset by the subsequent
change of the closed loop integral over the associated angle variable. For example, using the (φ, I) pair gives

N = ∮ ∮ ∮
φ
∭

I
f (I) d3φ d3I

= 8π3∭
I
f (I) d3I

(29)

as an alternative expression of the TRBEC which is consistent with Equation 28.

At this stage, a final transformation is required to write the TRBEC using other preferred invariant quantities
instead of the action variables J1, J2, and J3 (e.g., Schulz & Lanzerotti, 1974; Walt, 1994). Specifically, we use μ
as the first adiabatic invariant and K (defined below) and L∗ as the second and third respectively. To transform to
the (μ,K,L∗) frame we perform a change of variables on Equation 28 using the Jacobian determinant, a matrix
with entries of Jij = ∂fi/∂xj that describes the transforms between variables xi and yi that are related by a set of
equations of the form yi = fi(x). The equations that relate the (J1,J2,J3) frame in terms of the (μ,K,L∗) are
computed by evaluating the integrals of the three Poincaré invariants (Schulz & Lanzerotti, 1974). The associated
action variables for the gyro and bounce motions can be evaluated as

J1 =
2πm0

q
μ, (30)

and

J2 =
̅̅̅̅̅̅̅̅̅̅̅
8m0μ

√
K, (31)

where
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K =∫

+sm

s=− sm

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Bm − B(s)

√
ds (32)

parameterizes the bounce path using the path length variable s. The location of the two distinct mirror points are
denoted by − sm and +sm in Equation 32 where B(s) and Bm represent the magnetic field strength at an arbitrary
position along the bounce path and a mirror point. The associated adiabatic invariant of the drift motion is

J3 =
2πqμE
REL∗ (33)

where L∗ is the drift shell parameter and

μE = BER3
E (34)

is a constant representing the magnetic moment of the Earth where BE is the magnetic field strength on the surface
at the equator (≈ 0.311653G) and RE is the radius of Earth (≈ 6371km) (Schulz & Lanzerotti, 1974).

The Jacobian of the mapping between these two sets of coordinates is then

J(μ,K,L∗) =
− 8

̅̅̅
2

√
π2μEm

3/2
0

RE

̅̅̅
μ

√

(L∗)2
(35)

using Equations 30, 31 and 33 as the transformation equations. Completing the change of variables to the TRBEC
expression from Equation 28 using the Jacobian above gives

N = ∫
μ
∫

K
∫

L∗
f (μ,K,L∗) |J(J1,J2,J3; μ,K,L∗)| dμ dK dL ∗

=
8
̅̅̅
2

√
π2m3/2

0 μE
RE

∫

μmax

μmin

∫

KLC

K=0
∫

L∗
max

L∗
min

f (μ,K,L∗)
̅̅̅
μ

√

(L∗)2
dμ dK dL ∗

(36)

which completes the abridged derivation in adiabatic coordinates. The intermediate steps of the mathematical
derivation are available in Loridan (2018) and Pitzel (2022). In Equation 36, the range of μ and L∗ can be chosen
freely to specify an electron population although to consider all trapped particle trajectories the integration bounds
of K in Equation 36 must encompass particles whose mirror points lie between the equatorial plane (K = 0) and
the loss cone boundary (K = KLC) .

2.3. Normalization Verification

To verify the TRBEC expressed in Equation 36 we perform another change of variables from the adiabatic
variables to the energy and equatorial pitch angle frame to retrieve Equation 23 with consistent normalization. As
before, for the transformation we require each Ji to be expressed in terms of E, αeq, and L∗. Substituting Equa-
tion 13 into Equation 30

J1 =
π(E2 + 2EE0) sin2 (αeq) (L∗)3

q c2BE
. (37)

In a similar manner, Equation 31 becomes

J2 = 4REL∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E2 + 2EE0

√

c
∫

λm

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − sin2 (αeq)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√

cos6(λ)

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 3sin2(λ)

√
cos(λ) dλ (38)
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from expanding K from Equation 32 using the magnetic latitude to parameterize the bounce path assuming a
dipole magnetic field. Equations 37 and 38 combined with Equation 33 then define the coordinate transformation
between (J1,J2,J3) and (E,αeq,L∗) . The associated Jacobian is

J(E,αeq,L∗) = 16π2(RE)
3
(L∗)

2m0 γ p W(αeq) (39)

where both γ and p are functions of energy as previously defined.

The expression for the TRBEC in the (E,αeq,L∗) coordinate frame is then

N = ∫
E
∫

αeq

∫
L∗
f (E,αeq,L∗) |J(J1,J2,J3;E,αeq,L∗)| dE dαeq dL ∗

= 16π2(RE)
3m0∫

Emax

Emin

∫

π/2

αeq=αeq,LC

∫

L∗
max

L∗
min

f (E,αeq,L∗) γ p W(αeq) (L∗)
2 dE dαeq dL ∗

(40)

which is identical to Equation 23. The intermediate steps are completed in full in Pitzel (2022). Similar to
Equation 36, chosen ranges of E and L∗ in Equation 40 define a particle population for study while the stated range
over the equatorial pitch angle limits the integration to all trapped particle paths. In this instance the latter re-
striction follows from the Jacobean transformations being one‐to‐one so the K = 0 to KLC integral bounds
directly corresponds to αeq = αeq,LC to π/2 without further manipulation.

2.4. Normalization Comparisons

In regards to the TRBEC in non‐adiabatic coordinates, our Equation 23 is consistent with previous TRBEC works
by Selesnick and Kanekal (2009) and Zhang et al. (2017). Detailed comparisons with these works are given in
Appendix B. Conversely, our TRBEC derivation in adiabatic coordinates, Equation 36, differs from the recent
literature relying on the adiabatic formulation; with all else equal, a factor of (2π)3 appears in the equations
presented in Forsyth et al. (2016) and Murphy et al. (2018), and used by Duderstadt et al. (2021), that is absent
from non‐adiabatic TRBEC in Equation 23.

Since our adiabatic TRBEC result is not entirely consistent with the literature, we present an additional verifi-
cation test in this section. To verify our normalization of the TRBEC equations in the previous sections, we
compute the Phase Space Volume (PSV), the domain of integration, as it can readily be computed using
Equation 23 and also independently.

2.4.1. Expected Phase Space Volume

Geometrically, the expected six‐dimensional PSV is the product of the two three‐dimensional phase spaces. Using
the canonical momentum and generalized position, the PSV can be expressed as

VPS = ∭
q
∭

p
d3q d3p = VqVp (41)

where Vq and Vp are the volumes contained in the q and p phase spaces respectively.

2.4.2. PSV Derived From the TRBEC

To derive the PSV from TRBEC the PSD is set to a unitless constant of one. For example, using the TRBEC
expression in (q,p) from Equation 4 with f = 1 leads directly to the result of Equation 41 above. Given that the
normalization between Equations 23 and 36 is consistent from Section 2.3 we only need to compute the PSV from
one of them. We opt to use Equation 23 as the final result is simpler to interpret in physical space compared to
adiabatic space.

From Equation 23, with f = 1, we carry out the integration over E and L∗ between finite minimum and maximum
bounds. In αeq, the integration is completed between 0 and π/2 which is necessary to account for the phase space
of all particles.
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VPS = 16π2(RE)
3m0∫

Emax

Emin

∫

π/2

αeq=0
∫

L∗
max

L∗
min

(L∗)
2 γ p W(αeq) dE dαeq dL∗ (42)

With the PSD set as a constant, Equation 42 is separable and can be evaluated further.

VPS = 16π2(RE)
3∫

Emax

Emin

γ m0 p dE∫
π/2

αeq=0
W(αeq) dαeq∫

L∗
max

L∗
min

(L∗)
2 dL∗ (43)

To obtain a result for the PSV in the desired momentum‐position space the integral in energy in Equation 43 is
converted to an equivalent one in momentum by Equation 11. The function W(αeq) , Equation 21, integrated
numerically from αeq = 0 to π/2 is approximately 0.4571. Evaluating the remaining integrals, the PSV reduces as

VPS = 16π2(RE)
3 0.4571∫

pmax

pmin

p2 dp∫
L∗

max

L∗
min

(L∗)
2 dL ∗

= 16π2(RE)
3 0.4571(

1
3
p3)

⃒
⃒
⃒
⃒

pmax

pmin

(
1
3
(L∗)

3
)

⃒
⃒
⃒
⃒

L∗
max

L∗
min

= (
4
3
π((pmax)

3
− (pmin)

3
)) (0.4571

4
3
π(RE)

3
((L∗

max)
3
− (L∗

min)
3
)).

(44)

Equation 44 is equivalent to the expected result from Equation 41. The left term of the final equality of Equa-
tion 44 shows the volume in momentum space is the volume between two concentric spheres determined by the
minimum and maximum integration bounds. Similarly, the right terms correspond to the volume in position space
which is the volume between two concentric dipole shells determined by the integration limits over L∗. The factor
of 0.4571 accounts for the difference between the volume contained within a dipole compared to that of an
enclosing sphere which is an approximation of the exact ratio of 16

35 (cf. Appendix A).

The equivalence of the PSV computed with the TRBEC in non‐adiabatic coordinate with f = 1, in comparison to
the expected result, Equation 41, confirms that the proper normalization of the TRBEC is as it appears in
Equation 23. Furthermore, given that Equations 23 and 36 are consistent with one another it follows that
Equation 36 does not require a correction of (2π)3 as used in the aforementioned literature.

3. Estimating the TRBEC From Van Allen Probes Observations
We now briefly outline important considerations for the numeric computation of the TRBEC and then demonstrate
these methods using data from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) instrument
(Blake et al., 2013) in the Energetic particle, Composition, and Thermal plasma (ECT) instrument suite (Spence
et al., 2013). The identical satellites, in operation from 2012 to 2019, were placed on similar highly elliptical and
low inclination orbits (1.1 by 5.8 RE at 10°) (Mauk et al., 2013) which situated MagEIS to measure the bulk of both
seed and relativistic electrons, between 20 keV and 4.8 MeV (Blake et al., 2013). To estimate the TRBEC, we
converted the measured electron flux to a PSD in the desired coordinate frame, followed by estimating the un-
measured populations (noted below), and then computed the TRBEC integral itself for each 4.5 hr half orbit (i.e.,
apogee to perigee or perigee to apogee) of the Van Allen Probes. We used L∗ and K values computed using the
Tsyganenko and Sitnov (2005) magnetic field model. The MagEIS data used in this work is presented as a pitch
angle resolved background corrected flux (Claudepierre et al., 2019). In this coordinate frame, it is not compu-
tationally intensive to compute the PSD for the non‐adiabatic TRBEC since the corresponding PSD is kept in the
same reference frame. Conversely, obtaining the PSD in adiabatic coordinates is not as straightforward
(Boyd, 2016; Hartley & Denton, 2014) as a conversion from j(E,α,L∗) to j(μ,K,L∗) is required before invoking
Equation 1.

3.1. Unmeasured Particle Populations

The Van Allen Probes orbits coupled with MagEIS's instrument capabilities allowed for measurements over a
wide range of the electron pitch angle distribution, but a small fraction of electron populations that pertain to the
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TRBEC are left unobserved. We must estimate three particle populations, at the boundaries of the TRBEC
integration bounds, to complete the numerical integration of either Equation 23 or Equation 36. The following
electron populations must be estimated: (a) equatorially mirroring electrons, (b) electrons with small pitch angles
that mirror at the loss cone boundary, and (c) electrons with relatively large μ and K (i.e., ultra‐relativistic
electrons). We note that all of these computations are completed for a comparably small portion of the TRBEC, as
the first two populations listed represent a relatively small portion of phase space and the third has a negligible
phase space density.

The Van Allen Probes primarily operate slightly off the equatorial plane, and electrons that mirror at lower in-
clinations cannot be observed. We approximate this unmeasured population by assuming that the PSD at the
equator is constant in pitch angle between 90° (equatorially mirroring) and αloc, the equatorial pitch angle of a
particle that mirrors at the satellite location. Since αloc is close to 90° for the Van Allen Probes orbit, the un-
measured volume of phase space is relatively small and the possible error introduced by this approximation is
limited for reasonable particle distributions. If we instead assume zero PSD for the unmeasured population, it
typically reduces the TRBEC values by a few percent.

The second unmeasured population that we must estimate are electrons inside and near the loss cone, since the
pitch angle channels of MagEIS are not always sufficient to resolve the loss cone. When the loss cone is smaller
than the smallest pitch angle bin of MagEIS we assume that the PSD is constant out to the loss cone. This will
slightly overestimate the population, however, determining the size of the loss cone is vital to the TRBEC
computation and we stress that this region in phase space is relatively small. In the (E,αeq,L∗) and (μ,K,L∗)

coordinate frames respectively, the loss cones size is dependent on the drift shell as

αeq,LC ≈ sin − 1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 + 3
2

h
RE

(L∗)3/2(4 − 3
L ∗ (1 + h

RE
))

1/4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (45)

where the altitude h is taken as 100 km, and

KLC ≈ 2.110L∗ − 2.267. (46)

For the second adiabatic invariant, the relationship with L∗ is linear and so we have opted for a numerical
approximation by directly integrating Equation 32 rather than an equivalent analytical expression (Pitzel, 2022).

The final population we consider are electrons with relatively large μ and K values. This particle population is
encompassed by the TRBEC using linear adiabatic bounds. However, due to the mapping of the PSD between E
and αeq to μ and K this region in (μ,K) phase space is entirely unobserved. Given that the flux distribution falls off
with energy, we assume the PSD is zero ( f = 0) for electrons corresponding to μ = 2000 MeV/G and K = KLC
(Equation 46).

3.2. March 2013 Case Study

Figure 1 shows the geomagnetic conditions (Dst and Ap geomagnetic indices) and the TRBEC in adiabatic in-
variants (Equation 36) in early March 2013. Four chosen sets of integration bounds for each panel account for all
trapped particles between a fixed L∗ range of 3.5–5 with given ranges of μ between 50 and 2,000 MeV/G. The
similarity of the TRBEC computed from the MagEIS observations between Van Allen Probe A and B illustrates
the excellent cross‐calibration between instruments during this interval.

At the beginning of the period of interest on 1 March 2013, there is a storm indicated by increased activity in the
geomagnetic indices, followed by another on 17 March. During these two events, there is an immediate increase
in the number of particles across all the studied μ ranges. In the quiet period between the storms (4 March–15
March) the TRBEC steadily decreases. The decay is exponential for particles with μ> 200 MeV/G with a rate
that decreases for increasing particle energy, showing that in the quiet phase between storms higher energy
particles have more stable trajectories. The exponential decay implies a loss rate proportional to the number of
available electrons in the radiation belts.

Journal of Geophysical Research: Space Physics 10.1029/2024JA032940

PITZEL ET AL. 11 of 18



In the μ ranges of 200–500 MeV/G (500–1,000 MeV/G), there is a 95% (90%) reduction in the TRBEC plots from
the peak following the initial storm to the end of the decay period. Respectively, both these observations
reproduce the results presented in Duderstadt et al. (2021) and Forsyth et al. (2016) from their TRBEC com-
putations over comparable integration bounds. While the relative change is consistent between our work and the
cited works, in both cases the absolute number of electrons in Figure 1 is a factor of ≈ 250 less than the previous
results. This is accounted for by the factor of (2π)3 difference in the equations used to compute the TRBEC.

The TRBEC computed in non‐adiabatic coordinates is shown in Figure 2 over the same period. The selected
region in phase space mainly represents the TRBEC for relativistic particles in the slot region and outer radiation
belt from top to bottom in Figure 2. Similarly to the adiabatic TRBEC, there is an increase in the number of
particles after the storms on 1 March and 17 March across all energies. However, at L∗ > 4 there are multiple
injections of lower energy particles, less than 100 keV, on 9 March that decay relatively quickly compared with
the loss rates prior to it. This is consistent with simulations during this period that show the main driver of loss in
the slot is due to whistler mode hiss waves which are most efficient in this energy range (Ripoll et al., 2017, 2019).

Figure 1. The TRBEC of electron populations determined by the listed integration bounds in the adiabatic coordinates of
(μ,K,L∗). The Dst and Ap indices during the case study interval are included in the top plot.
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This increase is not observed in Figure 1 due to the higher energy of the selected boundaries. A minimum of
μ = 50 MeV/G in Figure 1 is equivalent to a 244 keV equatorially mirroring particle at L = 4.

In the slot region (L∗ = 3.5 to 4, Figure 2 top panel) the electron populations decay quickly before converging to a
stable value due to the noise floor of the MagEIS instrument. Outside of the slot region, the electron decay is
largely exponential. For lower energies (<300 keV), the exponential decay is interrupted by the injection on 9
March, whereas for 300–1,000 keV electrons the exponential decay is sustained until the 17 March storm. The
higher‐energy particles are more stable over this period, as shown by the decreased decay rate, and before 9 March
represent the bulk of the electrons in the outer belt.

These results show the strength of examining the TRBEC both in physical space (E,αeq,L∗) and in adiabatic space
(μ,K,L∗) . Higher‐energy particles show a slow exponential loss during quiet times that is particularly smooth in
adiabatic space. Lower‐energy particles show injections and loss features due to non‐adiabatic processes where
mapping to invariant space is less applicable.

Figure 2. The TRBEC of electron populations determined by the listed integration bounds in the non‐adiabatic coordinates
of (E,αeq,L∗).
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4. Summary
We presented further developments and refinements to the Total Radiation Belt Electron Content (TRBEC) from
its origins in Baker et al. (2001) for its continued use as a homogeneous long‐term radiation belt and space
weather index. From an information perspective, it is clear that TRBEC significantly reduces the amount of
spectral, spatial, and temporal information from measured fluxes, but its functionality comes by way of the ability
to simplify a complex system into a scalar quantity. It provides a simple, global, and long‐term assessment of the
radiation belt that enables systematic analysis. This relationship between the electron flux and the TRBEC
parallels geomagnetic indices such as the Ap and Dst in that global disturbances to the magnetic field are
computed and reduced by combining many magnetometer measurements. Furthermore, in the absence of ac-
celeration or loss, the total number of particles is conserved which is a property not held by particle fluxes.

We first presented a derivation of the TRBEC by specifying an electron population for a given range in the non‐
adiabatic coordinates of energy, equatorial pitch angle, and L∗. Then, using the Hamiltonian formalism, we
derived the TRBEC using action‐angle variables to present the TRBEC in terms of adiabatic invariant quantities,
namely μ, K, and L∗. We followed these derivations by showing consistency in the normalization of these ex-
pressions and compared both derivations to previous results. We showed agreement with Selesnick and Kane-
kal (2009) and Zhang et al. (2017) with our non‐adiabatic derivation of the TRBEC, however, we also conclude
that the adiabatic form of the TRBEC presented in Forsyth et al. (2016), Murphy et al. (2018) and used by
Duderstadt et al. (2021) overstates the TRBEC by a factor of (2π)3 (≈248). The impact of the latter discrepancy on
the listed papers is limited, since they focus on relative differences in electron populations rather than on absolute
number.

We showed numerically how we computed the TRBEC over a 20‐day period in 2013, finding similar trends as
Forsyth et al. (2016) and Duderstadt et al. (2021) using the adiabatic formulation of the TRBEC. The TRBEC in
physical space (E,αeq,L∗) is newly derived here, and may be better adapted to describe dynamic radiation belts
evolving in ways that do not conserve the two first adiabatic invariants. Beyond showing that particles undergo
exponential decay, a future application of the TRBEC would be to use its ability to quantify electron loss from the
radiation belts to estimate global precipitation rates during geomagnetic quiet intervals.

Overall, the total number of electrons in the radiation belts is immense, reaching upwards of 1028 electrons at the
peak of the storm studied. The total kinetic energy of those electrons is also very large, on the order of 1014 J.
However, if these electrons could be collected then the combined rest mass would be on a more human scale:
about 10 g.

Appendix A: Volume Contained by a Dipole Shell
Here we show that the exact ratio between the volume contained within a magnetic dipole shell and the volume of
its enclosing sphere is 16

35. Using the polar coordinates (r,λ),

r = REL∗ cos2(λ) (A1)

describes the radial distance of magnetic dipole field lines to the origin (e.g., Schulz & Lanzerotti, 1974). In polar
coordinates, the volume of a solid generated by the revolution of the area bounded by a curve, given by r(λ), is

V =
2
3
π∫

λ2

λ1

(r(λ))3 cos(λ) dλ (A2)

where λ1 and λ2 are the bounding radii vectors of the curve (e.g., Phúc, 2020). The specific form of Equation A2
sweeps the curve around the geomagnetic pole axis (λ = π/2). Implementing the dipole field from Equation A1
with Equation A2 and evaluating the expression gives the volume contained within a dipole field line, Vdipole, in
terms of the fractional volume of a sphere with a radius corresponding to the equatorial crossing distance of the
dipole field lines.
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Vdipole =
2
3
π∫

π/2

− π/2
(REL∗ cos2(λ))3 cos(λ) dλ

=
2
3
π(REL∗)

3
∫

π/2

− π/2
cos7(λ) dλ

= (
4
3
π(REL∗)

3
) ∫

π/2

0
cos7(λ) dλ

= Vsphere(
1225 sin(λ) + 245 sin(3λ) + 49 sin(5λ) + 5 sin(7λ)

2240
)

⃒
⃒
⃒
⃒

π/2

0

=
16
35

Vsphere

(A3)

Appendix B: Comparisons to Previous Results
In this Appendix, we show consistency between the TRBEC derived here and previous work by Selesnick and
Kanekal (2009) (henceforth abbreviated as SK09) and Zhang et al. (2017) (henceforth abbreviated as Z17).

Selesnick and Kanekal (2009) assume a differential flux (electron intensity) j

j = p2f = gsin2n α. (B1)

For the case n = 0 (i.e., an isotropic distribution function) in a dipole, and using NSK09 to denote the SK09 so-
lution, the resulting TRBEC is given by their Equation 21:

dNSK09

dE
=

256π2a3E
35pc2 ∫

L2

L1

L2g(L)dL (B2)

We reconcile nomenclatures by setting a = RE and noting that n = 0 implies g = f p2:

dNSK09

dE
=

256π2(RE)
3Ep

35c2 ∫

L2

L1

L2f (L)dL (B3)

For our solution, we start with Equation 23 and note that the integral of W(α) over the range α = 0 to π/2 is 16/35.
Differentiating with respect to energy, setting L = L∗ (i.e., using the same dipolar assumption as in SK09
Equation 21), and dropping any dependence of f on α,

dN
dE

= 16π2(RE)
2m0

16
35
∫

L2

L1

f (L) L2γ p dL

=
256π2(RE)

2m0γp
35

∫

L2

L1

L2f (L) dL

(B4)

Using E = γm0c2 gives

dN
dE

=
256π2(RE)

2Ep
35c2 ∫

L2

L1

L2 f (L) dL (B5)

which is consistent with Equation B3.

For Zhang et al. (2017), we start with their Equation 6, giving the total content in a flux tube. Denoting their
solution for the flux tube content with NFT :
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NFT = 8πA0r0∫
v2

v1

v2 dv∫
π/2

0
fv (α0) sinα0 cosα0 (1.30 − 0.56 sinα0) dα0 (B6)

where A0 is the flux tube area at the equator and r0 = LRE is the distance to the flux tube considered.

Z17 uses a non‐relativistic formulation throughout, and their phase space density (denoted fv above and f in Z17)
is in units of (dis tance × velocity)− 3, related to the differential flux j as fv = m

v2 j (Z17, below Equation 6). The
phase space density f in this work is in units of (distance × momentum)− 3, defined as f = j/p2. In the non‐
relativistic limit, p = mv and so fv = m3f . Converting fv and using r0 = LRE:

NFT = 8πA0LREm3∫
v2

v1

v2 dv∫
π/2

0
f (α0) sinα0 cosα0 (1.30 − 0.56 sinα0) dα0 (B7)

According to the paragraph preceding Z17 Equation 6, the term sinα0 cosα0 (1.30 − 0.56 sinα0) is equivalent to
W(α0) in this work (and is indeed a good approximation).

NFT = 8πA0LREm3∫
v2

v1

v2 dv∫
π/2

0
f (α0)W(α0) dα0 (B8)

Replacing the flux tube area A0 with a differential area element REL dL dθ and integrating gives a quantity that is
directly comparable to our TRBEC N and which we will denote NZ17:

NZ17 = 8πm3∫
2π

0
dθ∫

L2

L1

L2R2
E dL∫

v2

v1

v2 dv∫
π/2

0
f (α0)W(α0) dα0 (B9)

performing the integral in θ gives

NZ17 = 16π2R2
Em

3∫
L2

L1

L2 dL∫
v2

v1

v2 dv∫
π/2

0
f (α0)W(α0) dα0 (B10)

Using the non‐relativistic relation E = 1/2mv2 gives dv = dE/ (mv), and so

NZ17 = 16π2R2
Em

3∫
L2

L1

L2 dL∫
E2

E1

v
m

dE∫
π/2

0
f (α0)W(α0) dα0 (B11)

Or, with p = mv:

NZ17 = 16π2R2
Em∫

L2

L1

L2 dL∫
E2

E1

p dE∫
π/2

0
f (α0)W(α0) dα0 (B12)

which is equivalent to our Equation 23 in the non‐relativistic limit (γ = 1).

Data Availability Statement
The Van Allen Probes flux data is available through the Coordinated Data Analysis Web (CDAWeb), or directly
from the Los Alamos National Laboratory (LANL), at https://cdaweb.gsfc.nasa.gov/ and https://rbsp‐ect.new-
mexicoconsortium.org/data_pub/ respectively. The PSD data is available from the Van Allen Probes Science
Gateway at https://rbspgway.jhuapl.edu/. We thank the MagEIS and Van Allen Probes Science Gateway teams
for providing these data sets. The MATLAB code used to compute the TRBEC in both the energy and adiabatic
invariant coordinate frames, plus data files of the computed TRBEC are archived in an open‐access repository
(Pitzel, 2024) and maintained at https://github.com/JPitzel/Total_Radiation_Belt_Electron_Content/.
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