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ABSTRACT

Functionally associated genes tend to be
co-expressed, which indicates that they could also
be co-regulated. Since co-regulation is usually gov-
erned by transcription factors via their specific bind-
ing elements, putative regulators can be identified
from promoter sets of (co-expressed) genes by
screening for over-represented nucleotide patterns.
Here, we present a program, POCO, which discovers
suchover-representedpatterns fromeitheroneor two
promoter sets. Typical microarray experiments yield
up- anddown-regulatedgenesets thatmay represent,
for example, distinct defense pathways. Assuming
that a functional transcription factor cannot simultan-
eously both up- and down-regulate the gene sets, its
binding element should respectively be over- and
under-represented in the corresponding promoter
sets. This idea is implemented in POCO, which
tests the hypothesis that the distributions of a pattern
differ among three sets of promoters: up-regulated,
down-regulated and randomly-chosen. In the pro-
gram, pattern discovery is basedon explicit enumera-
tion of all possible patterns on the alphabet (A, C, G, T
andN).ThemeanoccurrencesandSDsof thepatterns
are estimated using bootstrapping and their signific-
ance is assessed using ANOVA F-statistics, Tukey’s
honestly significantly difference test and P-values.
The program is freely available at http://ekhidna.
biocenter.helsinki.fi/poco.

INTRODUCTION

One important biological phenomenon that can be explored by
using high-throughput genomic techniques combined with
computational methods is gene regulation: which genes are
regulated and what causes the regulation. Gene expression is

typically regulated by two mechanisms working in concert.
Chromatin remodeling controls closely located genes, whereas
transcription factors activate or repress more distantly located
genes. In chromatin remodeling, genes are regulated by alter-
ing the structure of DNA blocks, thus controlling the access-
ibility of the genes to the regulatory factors (1). In the second
mechanism, regulated genes are identified via specific nucle-
otide patterns situated within the regulatory regions of the
target genes (2). If a set of similarly expressed genes are
distantly located, then the regulation is more likely to be
governed by transcription factors, via their patterns, than by
chromatin remodeling.

The usual computational pipeline to discover the regulatory
transcription factors begins with the generation of the
co-expressed gene groups, e.g. by gathering the gene groups
from expression data. The second step is to analyze the
promoter regions of these gene groups in order to detect
over-represented nucleotide patterns that could indicate a
co-regulation phenomenon. The final step is then to link the
over-represented pattern(s) with a particular transcription fac-
tor(s) to create the hypothesis. Various algorithms and tools
have been designed to screen for over-represented patterns,
and thus also the associated regulatory factors, from an input
promoter set. These tools fall into two main categories: prob-
abilistic sequence models (3–5) and pattern enumerators
(6–8). The advantage of probabilistic sequence model tools,
such as Gibbs samplers, is the ability to find long and general
patterns, but the disadvantage is the possibility of failing to
find the correct one as a result of getting trapped in a locally
optimal solution (8). Pattern enumeration tools are always
guaranteed to find the globally optimal solution, because
they analyze every pattern in the input set. However, they
also have drawbacks, such as reporting multiple hits from a
single original pattern, a limited pattern vocabulary and a
relatively short pattern length. While one method is more
suitable for one purpose and the other is more suitable for
another, their goal is the same—to report biologically
functional patterns.

To address the question of how to find biologically func-
tional patterns, we have developed a program that can analyze

*To whom correspondence should be addressed. Tel: +358 9 19159115; Fax: +358 9 19159079; Email: liisa.holm@helsinki.fi

ª The Author 2005. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org

Nucleic Acids Research, 2005, Vol. 33, Web Server issue W427–W431
doi:10.1093/nar/gki467

http://ekhidna


either one or two input promoter sets. When the program is
used to analyze two promoter sets, it cross-validates the found
patterns. The cross-validation can be a powerful method to
detect the true patterns from distinct cellular pathways or from
oppositely expressed gene sets. For example, defense-related
genes are needed when the cell is under pathogen attack, but
genes needed during an attack of one pathogen can be harmful
during an attack of another, and vice versa. Hence, when the
first gene group is activated, the second must be repressed and
when the second gene group is activated, the first must be
repressed. An example is provided by the competition between
salicylic acid and jasmonic acid defense-pathways in
Arabidopsis thaliana (9). Assuming that both gene groups are
regulated by transcription factors and that a single trans-
cription factor cannot simultaneously both up- and down-
regulate these given groups, there should be specific transcrip-
tion factors and characteristic patterns for both gene groups.
Otherwise, a common transcription factor would produce
similar regulation for both groups and compromise the desired
gene expressions. With these hypotheses, differently expres-
sed genes belonging to distinct pathways can be exploited to
filter unimportant patterns and to find biologically functional
patterns.

METHODS

Principles of POCO

The basic idea of pattern discovery programs is that patterns
occurring surprisingly often in the promoters of co-expressed
genes can have a regulatory function. Our extended version of
this idea is that the same regulatory pattern should not exist in
oppositely expressed gene groups. In other words, biological
patterns are expected to be over-represented in the promoters
of one gene group and under-represented in the other, relative
to each other and to the background promoter collection.

Overview of POCO

The program can be described in three parts. First, all patterns
composed of the alphabet A, C, G, T and N (N is the wildcard
and stands for any of A, C, G or T) that occur in the input
promoter sequences or in their reverse complements and have
the desired maximum length or length smaller than this are
stored into suffix-trie (10). The N-degenerated wildcard forms
are generated according to two rules: they must contain at least
4 nt and the first or the last nucleotide must not be N. All
full-length patterns as well as their smaller sub-patterns are
automatically analyzed, and thus the user is not obligated to
perform different analyses for different pattern lengths.

Second, the means and SDs of pattern occurrences in the
input promoter sets and in the background promoter collection
are estimated by using bootstrap simulations (11). Bootstrap
simulations are performed in a manner similar to the one
performed by our previous algorithm (12). Briefly, simulations
are performed for each of the three promoter datasets. In these
simulations, an equal number of promoters are selected by
using random sampling with replacement and this is repeated
(11). Both the number of promoters to be selected with random
sampling with replacement and the number of repeats are user
determinable. The use of the bootstrapped pattern occurrences

rather than raw occurrences leads to normally distributed
samples and allows the application of statistical tests for
equal size data. It can also be noted that the simulations
allow the elimination of uninteresting and repeated patterns
with statistical tests, because patterns that occur multiple times
in few promoters tend to have bigger SDs than patterns that are
more evenly distributed.

Third, similarities and dissimilarities between the pattern
distributions are evaluated and the patterns are grouped using
ANOVA, honestly significantly difference (HSD) test and
P-values. ANOVA measures the differences between the
means of more than two groups, and its null hypothesis is
that the means are the same (13). ANOVA is calculated
from the bootstrap estimated means and deviations and its
result, the F-score, gives the magnitude of the difference
(larger F-scores indicate larger difference than smaller
ones). The program also groups the patterns into five groups
by calculating the HSD-test (Q-value) for each pair of the three
datasets and by comparing results (13). The significance of the
patterns is then reported to the users with P-values, which is
the probability to find a larger F-score from the data by chance
(13). In the program, P-values are calculated from a standard-
ized f-distribution, where each F-score, and pattern, has a
corresponding P-value and the interesting P-values locate in
the extreme right-hand tail. The P-values are calculated using
the observed F-score distribution of analyzed patterns, which
is translated to correspond to the standardized f-distribution, if
necessary. As a result, P-values that are highly consistent with
those in the random data are reported (for detailed explanation
of the statistics and equations see Supplementary Material).

Inputs to POCO

To start POCO, users give their promoter sequence set(s) and
set a few parameters (see Supplementary Figure 2). The input
promoter set(s), for which reversible complementary strands
are automatically generated, must be in FASTA format. Other
parameters: ‘promoter length’ is the length of the sequences
retrieved for the background calculation as well as the trun-
cation length for the input sequences (shorter sequences are
accepted). ‘Motif length’ is the maximum number of nucle-
otides in the searched patterns. ‘Motifs to report’ is the number
of patterns grouped into the five groups and reported to the
user (all discovered patterns can be downloaded from the all-
file). ‘Min occurrence’ excludes patterns that occur in less than
this number of promoters. For example, if the value is 4 and the
input set has 20 promoters, then patterns occurring in 4 or more
promoters are analyzed. ‘Chosen background’ is the used
background organism; the full background promoter collec-
tion consists of the promoter sequences of all known genes in
this organism. Since comparison points for the significance of
a pattern are generated from the real promoter sequences,
constraints to remove duplicated TA-repeats, poly(A) or
poly(T) etc. are not required. Currently, there are seven
organisms available: Anopheles gambiae, A.thaliana,
Caenorhabditis elegans, Drosophila melanogaster, Homo
sapiens, Mus musculus and Saccharomyces cerevisiae, which
are the same as in the POBO-server (12). ‘Number of promoters
to pick-out’ and ‘Number of samples to generate’ are boot-
strapping parameters. ‘Number of promoters to pick-out’
should be equal or less than the size of the smaller input
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promoter set, whereas ‘Number of samples to generate’ depends
on ‘Motif length’ parameter (see Supplementary Material), but
basically higher values yield more accurate results.

Outputs of POCO

The output (see Supplementary Figure 2) contains F-score
sorted patterns that are assigned into five groups by comparing
the results of the HSD-tests. The five groups are groups 1 and
2, patterns over-represented only either in the first (1) or the
second (2) input promoter set; group 3, patterns over-
represented in both input promoter sets; and groups 4 and
5, patterns over-represented in the first input promoter set
and under-represented in the second (4) or vice versa (5).
When ‘Min occurrence’ is used, the over-represented patterns
must occur at least in this number of promoters. The output
contains the following information: the number of promoters
with the pattern, total occurrence, input and background boot-
strap means and SDs, t-test values, F-score, Q-, Z- and
P-values. All reported patterns are linked to the POBO-
server (12), which can be used to perform more demanding
bootstrap simulations, to disambiguate the wildcards (N) or to
map the locations of the patterns in the promoters.

Availability and running the program

POCO is written in the C++ language, a MySQL (http://
www.mysql.com/) database is used to store the background
promoters and the P-values are calculated using the
DCDFLIB-package (http://www.netlib.org/random). In the
server, some parameters are limited: number of characters
in input sets<31 000, Motif length<8, Number of promoters
to pick-out <20 and Number of samples to generate <300.
Typical run times, when using the maximum parameters, are a
few hours. The server, help-pages, backgrounds (MySQL
dump-files) and the source code to run POCO locally are
available at http://ekhidna.biocenter.helsinki.fi/poco/.

Artificial data tests

For comparison of Z-scores and F-scores and randomized data,
see Supplementary Material.

RESULTS

Example data

To demonstrate the functionality of the program and to give an
example how to use it, we reanalyze A.thaliana microarray
datasets from a transgenic plant constitutively over-expressing
WRKY70 (14). In the experiment, it was observed that a set of
defense-related genes were either up-regulated (24 genes) or

down-regulated (10 genes) compared with the control plant.
WRKY is a plant-specific transcription factor superfamily
and it is the second largest transcription factor superfamily
of the A.thaliana consisting of 74 proteins (15,16). TheWRKY
factor has been reported to bind onto patterns like
TTTGAC(C/T), which are called the W-box (15). Their bio-
logical role is to regulate genes involved in developmental
processes, responses to various stresses and plant defense
via the salicylic acid pathway (14). We retrieved the promoter
sequences of the reported genes (from the ATG) and analyzed
them using the following parameter settings: Motif length,
8 bp; Promoter length, 1500 bp; Number of promoters to
pick-out, 20; Number of samples to generate, 1000; Min
occurrence, 1; and Chosen background, A.thaliana.

Discovered patterns from the WRKY70-example

Table 1 shows patterns over-represented in the up-regulated
and under-represented in the down-regulated promoter set. An
interesting finding is that three out of the five patterns (patterns
at rank 1, 2 and 5 and corresponding P-values 3.7 · 10�7,
3.5 · 10�6 and 8.8 · 10�5) contain an ACT/AGT-core
(Figure 1a). This nucleotide triplet is reported to be significant

Table 1. The five top patterns over-represented in the up-regulated and under-represented in the down-regulated WRKY70 promoter set

Pattern Up-regulated Down-regulated Background F-score P
Occ Pro Avg SD Occ Pro Avg SD Avg SD

TTTNNACT/AGTNNAAA 70 23 58.22 5.46 7 5 14.00 3.55 40.63 6.66 17120.47 3.7 · 10�7

GACTNNNA/TNNNAGTC 110 24 91.82 9.53 19 9 38.09 4.78 47.78 7.33 14690.51 3.5 · 10�6

TNANNCNT/ANGNNTNA 424 24 353.72 24.74 105 10 209.88 17.88 310.68 19.96 12294.69 3.2 · 10�5

ATNATTC/GAATNAT 62 22 51.48 6.94 6 4 12.07 3.50 31.25 5.90 12244.94 3.3 · 10�5

TNTNNACT/AGTNNANA 169 24 140.62 10.91 36 9 71.98 8.83 106.31 10.90 11192.62 8.8 · 10�5

In the table, occ is the pattern occurrence, pro is the number of promoters with the pattern, and avg and SD are the bootstrap mean and standard deviation.

Figure 1. Comparison of known and the discovered patterns (alignments were
done by hand). (a) Patterns resembling theW-box (15). (b) Patterns resembling
the novel chitin binding element (19). (c) Patterns resembling the auxin-
responsive element (20). (d) Patterns resembling the AGP-factor element (23).
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for the binding of some C2H2 zinc finger proteins (17,18).
Another interesting finding is that the flanking sequences of
these patterns resemble the known W-box. Also, a pattern
TTGACTNA (at rank 39, F-score 8239.46, P-value
1 · 10�3) that is highly similar to the known W-box is in
the results of group 4. The data indicate a possible presence of
an over-represented W-box in the promoters of the up-
regulated genes that is missing in the down-regulated
promoter set. Therefore, it is possible that these patterns bind
WRKY-factors and presumably the over-expressedWRKY70.
The two other patterns at ranks 3 and 4 (P-values 3.2 · 10�5

and 3.3 · 10�5) resemble a pattern C(A/T)TCATTC
(Figure 1b), which was found to be over-represented within
the promoters of the up-regulated genes in a chitin-treated
plant (19). Chitin induces defense-related responses in
plant and the proposed hypothesis was that the transcription
factor that binds onto this pattern could co-operate with
WRKY (19).

Table 2 shows patterns under-represented in the
up-regulated and over-represented in the down-regulated pro-
moter set. In the table, patterns at rank 2 and 4 (P-values
7.6 · 10�5 and 2.1 · 10�4) resemble a pattern TAGTNCTGT
(Figure 1c) that was demonstrated to be the regulatory element
of several auxin-responsive genes in soybean (20). Auxin is a
plant signaling molecule that is involved in most major growth
responses, such as cell extension, division and differentiation
(21). It has also been shown that auxin is engaged in plant
defense, where it interacts with the jasmonic acid defense
pathway (22). The pattern at rank 3 (P-value 1.0 · 10�4) has
similaritieswith a patternAGATCCAA (Figure 1d), whichwas
shown to bind novel GATA-type transcription factors (AGPs)
(23).The expressionof oneof them,AGP1,wasup-regulatedby
wounding and this protein has been proposed to be a wounding
specific regulator (23). The patterns at ranks 1 and 5 (P-values
2.9 · 10�5 and 2.5 · 10�4) did not show strong similarity to
previously reported binding elements.

As a summary, on the one hand the patterns in the promoters
of up-regulated genes (Table 1) can be associated with a
WRKY-mediated salicylic acid defense pathway. On the
other hand, patterns discovered in the promoters of down-
regulated genes (Table 2) can be associated with wounding
and with another plant defense pathway, the jasmonic acid
pathway. Therefore, the results suggest that the genes in the
down-regulated gene cluster of the WRKY70-experiment
could belong to distinct and competing defense pathways,
which are silenced to favor other defense pathways. This
hypothesis is also supported by experimental data, which
show that the jasmonic acid pathway is indeed activated
under different stresses and stimuli than the salicylic acid
pathway (9).

DISCUSSION

The program demonstrated in this article can be used to
find biologically significant putative regulatory patterns. Our
opinion is that the program is well suited for a subset of
biological experiments where different promoter sets can be
obtained and where competition really takes place. This
situation can arise, for example, in comparisons of competitive
pathways, such as defense and stress, and in comparisons of
oppositely expressed gene sets.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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and Moreau,Y. (2001) A higher order background model improves
the detection of regulatory elements by Gibbs sampling.
Bioinformatics, 17, 1113–1122.

6. Brazma,A., Jonassen,I., Vilo,J. and Ukkonen,E. (1998) Predicting
gene regulatory elements in silico on a genomic scale. Genome Res.,
8, 1202–1215.
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