Skip to main content
. 2024 Nov 14;14:1449235. doi: 10.3389/fonc.2024.1449235

Table 4.

Predictive performance metrics for ML models trained on T1w and T2w for training and validation sets.

AUC Accuracy Sensitivity Specificity PPV NPV
XGBoost Training
95% CI
0.68
(0.60- 0.75)
0.66
(0.60 - 0.73)
0.42
(0.31 - 0.53)
0.84
(0.77 - 0.90)
0.66
(0.52- 0.78)
0.67
(0.59 - 0.74)
Test
95% CI
0.72
(0.56 - 0.87)
0.75
(0.63 - 0.85)
0.62
(0.38 - 0.83)
0.80
(0.66 - 0.89)
0.53
(0.31 - 0.73)
0.85
0.72 - 0.94)
Regularized Logistic
Regression
Training
95% CI
0.63
(0.55 - 0.70)
0.60
(0.54 - 0.67)
0.57
(0.46 - 0.67)
0.63
(0.54 - 0.72)
0.53
(0.42 - 0.63)
0.67
(0.58 - 0.76)
Test
95% CI
0.52
(0.36 - 0.68)
0.41
(0.30 - 0.54)
0.56
(0.33 - 0.78)
0.36
(0.23 - 0.51)
0.24
(0.13 - 0.40)
0.69
(0.49 - 0.85)
Random
Forest
Training
95% CI
0.99
(0.99 - 1.0)
0.97
(0.95 - 0.99)
0.98
(0.94 - 1.0)
0.97
(0.93 - 0.99)
0.96
(0.90 - 0.99)
0.99
(0.96 - 1.0)
Test
95% CI
0.51
(0.33 - 0.70)
0.38
(0.27 - 0.51)
0.68
(0.44 - 0.87)
0.27
(0.16 - 0.42)
0.25
(0.14 - 0.40)
0.70
(0.47 - 0.88)
SVM Training
95% CI
0.54
(0.46 - 0.63)
0.60
(0.54 - 0.67)
0.21
(0.14 - 0.32)
0.90
(0.82 - 0.94)
0.59
(0.41 - 0.75)
0.61
(0.53 - 0.68)
Test
95% CI
0.61
(0.45 - 0.76)
0.68
(0.56 - 0.79)
0.25
(0.09 - 0.49)
0.84
(0.71 - 0.93)
0.36
(0.14 - 0.65)
0.75
(0.62 - 0.86)