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SUMMARY
Glycemic traits are critical indicators of maternal and fetal health during pregnancy. We performed genetic
analysis for five glycemic traits in 14,744Chinese pregnantwomen. Our genome-wide association study iden-
tified 25 locus-trait associations, including established links betweengestational diabetesmellitus (GDM) and
the genesCDKAL1 andMTNR1B. Notably, wediscovered a novel association between fasting glucose during
pregnancy and the ESR1 gene (estrogen receptor), which was validated by an independent study in pregnant
women. The ESR1-GDM link was recently reported by the FinnGen project. Our work enhances the findings in
East Asian populations and highlights the need for independent studies. Further analyses, including genetic
correlation,Mendelian randomization, and transcriptome-wide association studies, providedgenetic insights
into the relationship between pregnancy glycemic traits and hypertension. Overall, our findings advance the
understanding of genetic architecture of pregnancy glycemic traits, especially in East Asian populations.
INTRODUCTION

Pregnancy glycemic traits (e.g., fasting glucose) play a critical

role in assessing and managing maternal health during preg-

nancy and serve as indicators of glucose metabolism and gesta-

tional diabetesmellitus (GDM).1 Understanding the genetic basis

of pregnancy glycemic traits may provide insights into the under-

lying genetic factors influencingmaternal glucose regulation dur-

ing pregnancy. To date, numerous genome-wide association

studies (GWASs) have identified candidate genetic variants

associated with glycemic traits in normal populations.2–4 How-
Cell Genomics 4, 100631, Oc
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ever, there has been limited research on glycemic traits during

pregnancy, with only a few studies exploring this area, especially

in the Chinese population.5–7

Clinical studies have focused on potential risk factors and

adverse outcomes associated with abnormal glucose levels

during pregnancy. In general, maternal age, obesity, polycystic

ovary syndrome, and previous history of hyperglycemia increase

a woman’s susceptibility to developing GDM.8–10 Elevated

maternal blood glucose levels lead to increased fetal growth,

causing macrosomia, infants born large for their gestational

age, and a higher likelihood of cesarean section.11–13 Moreover,
tober 9, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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hyperglycemia during pregnancy is often associated with other

complications during and after pregnancy, notably hyperten-

sion.11,14 However, the genetic architecture underlying the rela-

tionship between pregnancy glycemic traits and hypertension

has not been fully explored.

Non-invasive prenatal testing (NIPT) has emerged as an effec-

tive approach to reduce the birth rate of children with fetal auto-

somal trisomies.15 NIPT involves sequencing cell-free DNA frag-

ments, including fetal cell-free DNA, obtained from maternal

peripheral plasma utilizing next-generation sequencing technol-

ogy. Compared to the traditional genetic research pipeline of

‘‘sampling, sequencing, and analyzing,’’ using NIPT data signif-

icantly reduces both sequencing time and research costs, as ge-

notype data are generated alongside clinical prenatal tests.

Additionally, with the growing popularity of NIPT technology

worldwide, it has generated an immense amount of genotype

data, nearly ten times that of whole-genome sequencing sam-

ples.16 Previously, we demonstrated the validity of using large-

scale NIPT sequencing data for population genetics and

GWASs.17,18

In this study, we investigate the genetic basis of five preg-

nancy glycemic traits using NIPT sequence data, which include

three glucose levels based on the oral glucose tolerance test

(OGTT), the area under the curve of these three measurements,

and GDM. In total, we identified 25 locus-trait associations,

including several well-known examples such as the association

of GDM with the genes CDKAL1 and MTNR1B, and fasting

glucose levels with the gene PCSK1. A significant new associa-

tion was discovered between fasting glucose levels during preg-

nancy and the ESR1 gene (estrogen receptor). This finding was

subsequently confirmed by an independent study in pregnant

women. Notably, the ESR1-GDM association was recently re-

ported by the FinnGen project.19 Our work not only enriches

the findings specific to East Asian populations but also under-

scores the necessity for independent studies. Additional ana-

lyses, including genetic correlation, Mendelian randomization

(MR), transcriptome-wide association study (TWAS), and drug

target enrichment analysis (DTEA), have provided deeper ge-

netic insights into the relationship between glycemic traits during

pregnancy and hypertension. These findings offer insights into

the genetic landscape of pregnancy glycemic traits, particularly

within East Asian populations.

RESULTS

Participants and data types
In this study, we used two data types: whole-genome sequence

(WGS) data from the NIPT test and pregnancy glycemic traits

from the OGTT test. For participants with NIPT WGS data, we

included those with a sequencing depth greater than 0.05 and

a mapping rate above 90%, resulting in a cohort of 38,668 indi-

viduals. All were used in genotype imputation to ensure the high-

est possible accuracy. Additionally, there were 21,813 subjects

who underwent the OGTT and had glycemic measurements.

We employed all 21,813 subjects for subsequent regression

analysis involving other clinical phenotypes. For the GWAS anal-

ysis, we used participants who possessed both NIPT sequence

data and glycemic data, totaling 14,889 individuals (Figure S1A).
2 Cell Genomics 4, 100631, October 9, 2024
For the 38,668 individuals with NIPT sequence data, we as-

sessed gestational age at the time of the NIPT test and fetal

fraction in maternal plasma (Figure S1B), as provided in the

NIPT reports. Specifically, gestational age information was avail-

able for 28,037 participants, with an average of 16.16 weeks

(113.13 days). Additionally, fetal fraction data were obtained

for 15,837 participants, with an average of 9.76%, aligning with

our literature review (STAR Methods). For the 21,813 subjects

with pregnancy glycemic traits, we provided distributions of

maternal information and birth outcomes (Figures S1C–S1D).

Maternal characteristics included age (29.58 ± 4.03 years), BMI

(21.39 ± 3.08 kg/m2), first-time pregnancy status, and hyperten-

sion. Birth outcomes included gestational age (38.74 ±

1.58 weeks), birth weight (3286.43 ± 473.71 g), delivery type,

and newborn gender.

Pregnancy glycemic traits
Applying the criteria of 0hGlu R 5.1 mmol/L, 1hGlu R

10.0mmol/L, and 2hGluR 8.5mmol/L, 2,502 out of 21,813 preg-

nant women were diagnosed with GDM, resulting in a disease

rate of 11.47% (Figure S2A). This rate is slightly lower than the

14.8% reported in a 2019 meta-analysis conducted in mainland

China.20 After integrating NIPT sequence data, we retained

14,744 subjects, among which 1,619 were GDM cases, and

13,125 were controls. This subset was used for the GWAS anal-

ysis. For the 0hGlu, 1hGlu, and 2hGlu measurements, the avail-

able sample sizes for the GWAS were 14,889, 14,790, and

14,760, respectively. We provided the distributions of the three

glucose levels among the GDM case and control groups

(Figure S2A).

Additionally, we computed the area under the curve (AUC) for

the three OGTT glucose levels, which served as a metric for

glucose tolerance during pregnancy and was denoted as

GDMAUC (Figure S2B). The sample size for the GWAS of

GDMAUC was 14,726.

Regression analysis between GDM and multi-
phenotypes
Using a significance threshold of 5.15E�4, univariate regression

analysis identified 26 risk factors for GDM and 29 for GDMAUC

(Tables 1 and S1 and Figure S2C). Among the maternal informa-

tion, age was most significant (for GDM: odds ratio [OR] = 1.112

and p value = 4.19E�98, for GDMAUC: beta = 0.135 and p value =

5.20E�283), followed by BMI, multiparity, and hypertension.

Among the 93 early-stage laboratory tests, the most significant

features were blood glucose (GLU), prealbumin (PA), g-glutamyl

transferase (GGT), urine glucose (GLU_U), and uric acid, being

correlated with GDM in previous studies.21–29 In the multivariate

regression analysis, to ensure an effective sample size of 3,000

for each variable, we tested 20 out of 26 factors for GDM and

24 out of 29 for GDMAUC, identifying five and nine significant

risk factors, respectively (Tables S2 and S3). Notably, age was

the only significant maternal factor for GDM multivariately

(p value = 2.78E�10).

WomenwithGDMtend tohaveshortergestational lengths (OR=

0.662, p value = 8.84E�35), undergo cesarean sections at higher

rates (OR = 1.481, p value = 2.76E�19), and deliver a low-birth-

weight (OR = 1.517, p value = 3.26E�06) or macrosomic infant
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(OR=1.462,p value= 1.43E�05) (Table 1). Thegenderof newborn

is not a significant birth outcomewith GDM (OR = 1.008, p value =

0.847). At a 3.33E�03 (= 0.05/15) threshold, four diagnoses were

significantly associated with GDM and seven with GDMAUC,

including pregnancy with uterine scar and intrauterine distress

(Table S4). Additional diagnoses significantly associated with

GDMAUC were eclampsia (t = 5.272, p value = 1.37E�07), preg-

nancy with vomiting (t = �3.924, p value = 8.75E�05), and gesta-

tional hypertension (t = 3.795, p value = 1.48E�04) (Figure S2D).

Numerous studies have reported positive associations between

preeclampsia/eclampsia and GDM.14,30,31

Genotype imputation performance
Note that, from December 2018, the sequencing depth of

the NIPT product was increased. We excluded 1,719

samples with unknown test dates, resulting in 10,795 preg-

nant women with an average depth of 0.10493 before

December 2018 and 26,154 participants with an average

depth of 0.16443 afterward, with an overall average depth

of 0.15253 (Figure S3A).

After STITCH imputation (STAR Methods), we obtained a to-

tal of 8,134,302 SNPs. Filtering out SNPs with a Hardy-

Weinberg equilibrium (HWE) p value < 1E�6 and minor allele

frequency (MAF) < 0.05 resulted in 2,818,480 high-quality

SNPs. We assessed imputation accuracy of these high-quality

SNPs using Pearson’s correlation between the imputed geno-

type dosage and the original high-depth genotype of 30 Chi-

nese samples from the 1000 Genomes Project (1KGP). On

average, the imputation accuracy R was 87.61%, and R2 was

79.34% (Figure S3B). More imputation evaluation results,

including additional datasets and results at the specific SNP

level, are described in our companion work.32 Additionally,

we computed the Pearson’s correlation (R2) for the frequency

of non-reference alleles of these high-quality SNPs in our data-

set and the East Asian samples from the 1KGP (Figure S3C).

The R2 of 0.97 indicates a high consistency of our imputed var-

iants with those in the 1KGP.

We utilized BaseVar for population variation detection and

conducted principal component analysis (PCA) on the identified

variants to reveal population structure (STAR Methods). Addi-

tionally, we acquired population structure information derived

from the PCA plot of 585 samples representing 30 administrative

divisions in China. These divisions were further categorized into

seven main geographical regions spanning from north to south

China. These samples were independently recruited in a study

approved by the institutional review board at BGI (BGI-IRB

21163) and authorized by the Human Genetic Resources Admin-

istration of China ([2022] CJ0197). We projected the principal

components plot of the main data onto the reference data and

presented the plot in Figure S3D. Notably, the main samples ex-

hibited a significant overlap with samples from the Huazhong

area, which corresponds to central China and aligns with the

location of Wuhan.

GWAS analysis of glycemic traits
We performed GWAS analysis for three OGTT traits, GDM, and

GDMAUC (Figures 1 and 2 and Table S5). The full GWAS summary

statistics for these traits are available on our MANE (Maternal
Cell Genomics 4, 100631, October 9, 2024 3



Figure 1. The GWAS results of three OGTT measurements
(A–C) Manhattan plots of three OGTT measurements; SNPs that pass the genome-wide threshold (5E�8) were colored in red.

(D–F) QQ-plots of three OGTT measurements with genomic inflation factor l.
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and Neonatal) PheWeb website.33 In total, we identified 25 trait-

locus associations, with many previously associated either with

pregnancy glycemic traits (e.g., CDKAL1, MTNR1B, and

PCSK1)6 or with glucose levels in the general population (e.g.,

POLD2).34–36

Two genes, CDKAL1 and MTNR1B, were consistently asso-

ciated with all five traits, as previously reported to be associ-

ated with GDM.5,7,19,37,38 CDKAL1 has been associated with

proinsulin conversion defect and glucose-stimulated insulin

response defect.39,40 MTNR1B (melatonin receptor 1B) en-

codes one of the two high-affinity forms of a receptor for the

hormone melatonin, playing a role in glucose homeostasis.41
4 Cell Genomics 4, 100631, October 9, 2024
For GDM status, the lead SNPs mapped on the two genes

were rs35261542 (CDKAL1, p value = 3.88E�12) and

rs3781637 (MTNR1B, p value = 3.29E�09), respectively. In

Table S6, we provided details on the two SNPs and known

GDM-associated SNPs. Notably, rs35261542 was significant

in the mixed population study,37 while rs3781637 has not pre-

viously been reported in association with GDM. Additionally,

allele frequency of rs3781637 significantly differed between

East Asian and European populations.

The heritabilities (standard error) for 0hGlu, 1hGlu, 2hGlu,

GDM, and GDMAUC were 0.1308 (0.0372), 0.1395 (0.04),

0.0611 (0.04), 0.0817(0.0977), and 0.1429 (0.0421), respectively.



Figure 2. The GWAS results of GDM status and GDMAUC

(A) Mirrored Manhattan plot indicates the GWAS results of GDM status and GDMAUC, located on top and bottom, respectively; the red dashed line represents the

genome-wide significance threshold (5E�8).

(B) QQ plot for GDM status and GDMAUC with genomic inflation factor l.

(C) Regional plots of two loci CDKAL1 and MTNR1B for testing GDM.
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Validation study
Here, we selected a recently published study involving 22,882

Chinese pregnant women from Shenzhen Bao’an Women’s

and Children’s Hospital,7 referred to as the Shenzhen cohort.

This cohort underwent the same OGTT protocol as our study

participants. We downloaded their GWAS results of fasting

glucose, 1-h and 2-h glucose levels after consuming 75 g of

sugar, and GDM status from the GWAS catalog.

In detail, 20 out of the 25 trait-locus associations were sub-

ject to replication, as 5 GDMAUC-associated loci were removed

because the Shenzhen cohort did not test for GDMAUC. For

each of the 20 trait-locus associations, we examined a flanking

window of 500 kb in the Shenzhen cohort. An association was

considered replicated if at least one SNP within this window

had a p value less than 1E�4 and a linkage disequilibrium

(LD) r2 greater than 0.1. Among the 20 associations, 19 were

successfully replicated, with the sole exception being

1hGLU-MIR129-1 (Figure 3). The gene MIR129-1 has previ-

ously been reported to be associated with type 2 diabetes in
East Asian populations.42,43 The replication study underscores

the robustness of our GWAS findings on the pregnancy glyce-

mic traits.

A novel gene ESR1

We identified ESR1 as a candidate gene associated with

fasting glucose (0hGlu), with lead SNP rs3020430 (p value =

1.36E�08). Recently, the FinnGen project, with 12,332 GDM

cases and 131,109 parous female controls, identified ESR1

as a novel gene associated with GDM through GWAS, with

rs537224022 as the lead SNP.19 The MAF of this SNP is

0.006 in European populations and undetectable (0.00) in

East Asian populations, which explains its absence in our

dataset.

The gene ESR1 encodes an estrogen receptor and ligand-

activated transcription factor, which regulates estrogen-induc-

ible genes that play a role in growth, metabolism, sexual

development, gestation, and other reproductive system.44 To

validate our finding of the effects of ESR1 on fasting glucose,
Cell Genomics 4, 100631, October 9, 2024 5



Figure 3. The comparison between the GWAS results in this study and the replication study

The forest plots between this study and the replication study, for 0hGlu, 1hGlu, 2hGlu, and GDM, respectively; the position of the dots represents the beta values

of the two studies, and the lines represent the range of one standard deviation above and below; the successfully replicated variants in both studies aremarked in

color, or otherwise are marked in gray.
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we performed a GWAS-GWAS colocalization analysis45 with

the Shenzhen cohort7 using the coloc::coloc.abf46 in R. In the

Shenzhen cohort’s GWAS summary of fasting glucose, the

lead SNP in the ESR1 gene is rs9322351, with a p value of

6.91E�06 (in LD with rs3020430, r2 = 0.4008, in the 1KGP

EAS samples, GRCh38). The posterior probability of H4

(indicating one common causal variant) was 0.84, surpassing

the threshold of 0.75, signifying a shared causal signal. We em-

ployed the R function locuscompare47 to generate regional

plots (Figure S4). Additional literature has reported associa-

tions between ESR1 and pregnancy, such as its link to suscep-

tibility to recurrent pregnancy loss in a Tunisian study,48 as

well as estrogen dysregulation contributing to preeclampsia

occurrence.49,50
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Upon analyzing all 1,536 SNPs within the ESR1 gene from our

dataset, we conducted annotation analysis to glean functional in-

sights for each mutation site (Figure 4A). Notably, 96.2% of the

SNP sites are situatedwithin intron regions, lacking direct involve-

ment in protein encoding. Upon further investigation beyond

our dataset to encompass all SNPs in ESR1, we observed a

region within the ESR1 association peak that falls within exon

5 (Figure 4B). This region harbors three pathogenic/likely patho-

genic variants (rs397509428, rs1131692059, and rs1057519827)

according to the ClinVar database,51 with linked diseases

encompassing estrogen resistance syndrome and breast neo-

plasms.52,53We hypothesize that these SNPsmay exert influence

on glycemic levels during pregnancy by modulating estrogen

resistance and interacting with insulin levels.54–56



Figure 4. The GWAS result and annotation information on ESR1 and the results of gene set enrichment analysis

(A) The bar plot showing the variant count of each category for functional annotation on ESR1.

(B) The regional plot for 0hGlu on ESR1, with the fifth exon and potential pathogenic variants indicated below.

(C) The results of the gene set enrichment analysis for all genes correlated to glycemic traits, the�log10 p values are displayed on the left side using a bar plot, the

genes corresponding to each pathway are marked with blue dots on the right side, and the interactions between each gene are indicated with curves below.
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Gene set enrichment analysis
A total of 21mapped genes associated with pregnancy glycemic

traits were identified, including 14 protein-coding genes, 4 pseu-

dogenes, and 3 non-coding RNAs (Table S5). Since PPI (protein-

protein interactions) analysis excludes pseudogenes and non-

coding RNAs, the 14 protein-coding genes were included in

the STRING PPI analysis (Figure 4C). The majority of PPIs were

derived from text mining, with a minority being co-expressed

and one interaction experimentally determined. Among the

gene pairs potentially influencing pregnancy glycemic levels

through co-expression are MTNR1B and ABCB11, CDKAL1

and KIF11, as well as KIF11 and IDE. Notably, an experimentally

determined interaction was observed between ESR1 and

FOXA2. Studies using a Foxa2 knockout mouse model have

demonstrated that Foxa2 regulates the estrogen responsiveness

and influences ESR1 transcriptional activity in the uterus.57

At a significance threshold of p value <0.01, requiring a mini-

mum gene count of 3, and an enrichment factor >1.5, the gene

set enrichment analysis analysis identified enrichment in 20

functional pathways (Figure 4C). The top five pathways included

fasting blood glucose measurement, fasting blood sugar result,

insulin measurement, glucose tolerance test, and birth weight.

Notably, genes such as HKDC1, MTNR1B, CDKAL1, ESR1,

and LINC00261 were found in the birth weight pathway. Addi-

tionally, the pathway associated with gestational diabetes

featured genes including HKDC1, MTNR1B, CDKAL1, ESR1,

and FOXA2. Both the birth weight and the gestational diabetes

pathway involved gene ESR1, suggesting its essential role in

maternal and fetal conditions during pregnancy.

Genetic correlation analysis
Building upon our earlier discovery that ESR1 is a gene associ-

ated with pregnancy glycemic traits and considering the promi-

nence of hormone signaling revealed in the pathway-based anal-

ysis, we delved deeper into the association between ESR1 and

pregnancy glycemic traits (Figure 5A). First, we evaluated the ge-

netic correlation between established ESR1-associated pheno-

types and pregnancy glycemic traits, including 0hGlu, GDM,

and GDMAUC. The ESR1-associated phenotypes were acquired

by searching ‘‘ESR1’’ in the GWAS catalog,58 and we down-

loaded the available full summary statistics. In total, GWAS sum-

maries for 15 phenotypes were downloaded, encompassing

traits such as height (GCST90018959), systolic blood pressure

(GCST90018972), and pulse pressure (GCST90018970), among

others (Table S7).

At a significance threshold of 3.33E�3 (= 0.05/15), we

observed two significant associations for 0hGlu, including sys-

tolic blood pressure (SBP, rg = 0.2436 ± 0.0694, p value =

4.00E�04) and diastolic blood pressure (DBP, rg = 0.2586 ±

0.0803, p value = 1.30E�03). Notably, for GDMAUC, the two

most associated phenotypes were also SBP (rg = 0.185 ±

0.070, p value = 7.80E�03) and DBP (rg = 0.190 ± 0.070,

p value = 6.30E�03) (Table S8). While the phenotypic correlation

between GDM and hypertension has been confirmed,59,60 only

limited studies have explored this correlation from a genetic

perspective.

We also conducted a literature review to explore the potential

influence of hypertension during pregnancy on blood glucose
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levels, summarizing our findings into three pathways. Firstly, it

may worsen insulin resistance, impeding insulin’s capacity to

transport glucose into cells effectively.61 Secondly, hypertension

may impact maternal vascular function and hemodynamics,

thereby impairing the blood supply to the placenta and uterus,

disrupting insulin metabolism.62 Additionally, hypertension may

lead to increased inflammation and oxidative stress, negatively

affecting insulin sensitivity and secretion.63 These factors collec-

tively may result in elevated glycemic levels during pregnancy,

increasing the risk of gestational diabetes.

Mendelian randomization analysis
In this section, we investigated the causal effects of the asso-

ciated GWAS phenotypes on pregnancy glycemic traits with

variants associated with ESR1. Specifically, for each exposure

phenotype, we identified all independently significant (ind.sig)

variants (r2 < 0.2, p value < 5E�8) within 50 kb on both sides

of ESR1 (chr6:151606672–152179619, GRCh38). This identified

eight phenotypes with more than three ind.sig SNPs. Inference

of phenotypes with fewer than three SNPs may lack power;

therefore, we excluded the corresponding phenotypes. At the

significant threshold of 6.25E�3 (= 0.05/8), we observed

three, zero, and one causal relationships for 0hGlu, GDM,

and GDMAUC, respectively (Figure 5B and Table S9). For

0hGlu, the most significant causality was observed in pulse

pressure (p value = 2.14E�04), followed by serum phosphate

density (p value = 3.40E�03) and appendicular lean mass

(p value = 3.91E�03). For GDMAUC, the top two potentially

causal phenotypes were height (p value = 4.51E�03) and pulse

pressure (p value = 9.41E�03). The MR analysis highlighted the

relationship between blood pressure and pregnancy glycemic

traits in a causal manner, supposed by observations that

women with chronic hypertension are more prone to devel-

oping GDM.64

To ensure the validity of our MR analysis, we examined the

pleiotropic effects of instrumental variables and also performed

a reverse MR analysis. We combined all instrumental variables

across the exposure phenotypes and checked their GWAS

p values relative to glycemic traits. We found no genome-wide

significant signals with the smallest p value for rs488133-

GDMAUC (p value = 0.050). For the reverse MR analysis, we em-

ployed 0hGlu as the exposure variable and pulse pressure as the

outcome variable and conducted a two-sample MR analysis us-

ing the R function TwoSampleMR.65 The p value from the inverse

variance weighted method was 0.250 (>0.05), signifying the

absence of reverse causality.

Transcriptome-wide association study
TWASs can identify significant associations underlying geneti-

cally regulated genes and traits of interest.66,67 We thus per-

formed a TWAS analysis to investigate whether ESR1 affects

GDM by modulating its expressions (Figure S5 and Table S10).

To predict the genetically regulated gene expression (GReX),

we multiplied the independent significant cis-eQTL (expression

quantitative trait loci) effects of ESR1 by the corresponding ge-

notype dosages in our dataset.

At the significance threshold of 1.0E�03 (= 0.05/49), we iden-

tified 17, 0, and 2 tissues with potentially causal GReX on 0hGlu,



Figure 5. Results of genetic correlation and Mendelian randomization between glycemic traits and ESR1-associated phenotypes from

GWAS catalog

(A) The bar plots indicate genetic correlation results. The value marked on each bar indicates the p value of the genetic correlation test.

(B) The forest plots indicateMR results. The valuemarked on each bar indicates the p value of theMR test, and the asterisks (*) means that the p value has reached

the Bonferroni corrected threshold 6.25E�3 (= 0.05/8).

Article
ll

OPEN ACCESS
GDM, andGDMAUC, respectively. The top three tissues for 0hGlu

were brain basal ganglia (p value = 1.69E�07), artery tibial

(p value = 3.61E�07), and cell-transformed fibroblasts

(p value = 5.00E�07). For GDMAUC, the two significant tissues

were artery tibial (p value = 1.81E�04) and cell-transformed fi-

broblasts (p value = 6.92E�04). Here, we wish to underscore

the hypothesis that ESR1 plays a crucial role in influencing preg-

nancy glycemic traits through the regulation of gene expressions

in the tibial artery. This is expected given thewell-established as-

sociation between diabetes and arterial disease.68–70 Our study

offers a potential pathway through which these two diseases

may be interconnected.
Significant overlap of GWAS loci and drug targets
The DTEA translates GWAS results into potential applications.

Analysis of 19,365 genes and 10,722 drug gene sets, followed

by filtering (STAR Methods), retained 1,072 drug gene sets

from 66 classifications. At a significance threshold of

7.58E�04 and AUC >0.5, we noted significant overlaps of 3,

0, and 6 Anatomical Therapeutic Chemical classifications

for 0hGlu, GDM, and GDMAUC, respectively. Notably, for

GDMAUC, significant associations were found with hyperten-

sion (C07A, p value = 1.21E�07; C08C, p value = 7.01E�04)

and hypotension (C01C, p value = 5.93E�05) (Figure S6).

This observation aligns with the genetic correlation and MR
Cell Genomics 4, 100631, October 9, 2024 9
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analysis results, indicating a putative causal relationship be-

tween blood pressure and pregnancy glycemic traits. The po-

tential utility of drug targets for hypertension in addressing hy-

perglycemia necessitates comprehensive evaluation through

rigorous experimental and clinical trials.

DISCUSSION

Glycemic traits during pregnancy play a crucial role in maternal

and fetal health. Abnormal glycemic traits during pregnancy

may indicate a risk of developing gestational diabetes, which

can have adverse outcomes for both the mother and the baby.

Understanding the genetic architecture of pregnancy glycemic

traits is essential for facilitating the effective management of

associated complications. In our study, we uncovered an asso-

ciated signal, ESR1, which encodes an estrogen receptor known

to play a significant role in metabolism and gestation. Our inves-

tigation revealed potential mechanisms through which ESR1

was linked to pregnancy glycemic traits. One pathway involved

its impact on blood pressure, while another pathway involved

the regulation of gene expressions in the tibial artery. Further

investigation is required to elucidate the underlying biological

mechanisms involved in these associations.

In recent years, the rapid advancement of high-throughput

multi-omics technologies has facilitated the acquisition of tran-

scriptomics, proteomics, and metabolomics data from study

participants. Numerous placental multi-omics studies have

been conducted to identify biomarkers derived from diverse

omics datasets and subsequently construct predictive models

to distinguish women at high risk of pregnancy hyperglyce-

mia.71–76 While these analyses enable the identification of asso-

ciated biomarkers from each omics data, the explanations of the

underlying biological mechanisms and the genetic factors

involved are still obscure. The integration of genomic data with

other multi-omics data is essential for improving our understand-

ing of disease etiology comprehensively. A TWAS offers an

approach to integrate genomic and transcriptomic data,

revealing disease-associated genes through the regulation of

expressions.66 Additionally, proteome-wide association study

represents a novel method for detecting gene-phenotype asso-

ciations mediated by alterations in protein function.77 Metabo-

lome-wide association study has unveiled associations between

metabolic phenotypes and disease risk, taking into account

metabolic quantitative trait loci.78 We believe that the integrative

analysis of genomic and other multi-omics data holds significant

promise for providing a comprehensive exploration of the dis-

ease etiology of pregnancy hyperglycemia.

Limitations of the study
While our study offered valuable insights into the genetic land-

scape of pregnancy glycemic traits, it is essential to acknowl-

edge its limitations. First, despite the recruitment of nearly

40,000 participants, the valid sample size for the GWAS was

limited to 14,000 due to the absence of laboratory measure-

ments in 65% of the participants. Conducting a GWAS analysis

requires larger sample sizes to achieve sufficient statistical po-

wer. Additionally, it’s important to acknowledge that our sample

collection was confined to Wuhan, central China, potentially
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limiting the generalizability of our findings to the entire Chinese

population. To address this, we are currently working on recruit-

ing additional samples with both genotype and laboratory data

from various regions across China. Simultaneously, we are plan-

ning a large-scale meta-analysis within the East Asian popula-

tion. Second, while our analytical approaches have provided in-

sights into how ESR1 may influence glycemic traits during

pregnancy, biological experiments remain the gold standard

for validation. These experiments typically include mouse and

cell models. However, our literature review revealed that knock-

ing out the estrogen receptor (ESR1) can result in infertility in fe-

male mice,79,80 which poses significant challenges for designing

models to study glycemic traits in pregnant mice.We are actively

pursuing ongoing efforts for future biological replication. Addi-

tionally, most of the GWAS hits are non-coding intronic variants,

which complicates the direct inference of their functional

consequences on glycemic traits. This adds another layer of

complexity to experimental replication, as it is challenging to

pinpoint the precise regulatory mechanisms affected by these

non-coding variants in ESR1. Third, we acknowledge that the

ESR1-associated phenotypes retrieved from the GWAS catalog

predominantly originated from European populations. Despite

our efforts to harmonize data on allele type and frequency, mini-

mizing disparities in variants spectrum between European and

East Asian populations, there may persist some bias in our re-

sults. Furthermore, we downloaded some ESR1 associations

from East Asian populations; however, they either did not pro-

vide full summary statistics81–84 or had a limited number of sig-

nals that were subsequently excluded during harmonization.85,86

We strive for undertaking robust replication studies involving

larger East Asian populations to enhance the reliability of our

findings. Fourth, we note that studying environmental factors

alongside genetic analysis in GDM research is crucial. Environ-

mental influences such as diet, lifestyle, and pollutants play a

significant role in GDM development. Understanding these fac-

tors enhances our ability to predict, prevent, and manage GDM

effectively, improving maternal and fetal health outcomes. Un-

fortunately, we did not include a questionnaire to gather data

on environmental factors in this study, but we plan to collect

these variables in future investigations.
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Subjects
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Children’s Hospital (2021R062) and BGI Research (BGI-IRB 21088) and also authorized by the Human Genetic Resources Admin-

istration of China ([2021] CJ2002). We used NIPT sequencing data as the sole inclusion criterion and then performed filtering based

on sequencing depth, mapping rate, and outlier values.

Phenotype
We collected four sets of phenotypic data: (1) maternal information from the NIPT questionnaire, (2) laboratory tests from prenatal

exams, (3) neonatal information from childbirth outcomes, and (4) clinical diagnoses from doctor’s notes. Maternal data included

age, height, weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), and obstetric history, collected pre-NIPT screening.

BMI was calculated as weight (kg) divided by height (m2). Hypertension was defined as SBP/DBP over 140/90 mmHg. As a result, four

maternal factors—age, BMI, obstetric history (first-time pregnancy status), and hypertension—were used for regression analysis.

The laboratory tests were primarily blood and urinary biochemical measurements. To detect early risk indicators of GDM, we

focused on laboratory features in the first trimester. A total of 93 available phenotypes were measured and classified into 9

categories, including hematological (n = 24), urinalysis (n = 24), infection (n = 14), liver-related (n = 8), metabolism (n = 6), protein

(n = 5), electrolyte (n = 4), hormone (n = 4), and kidney-related (n = 4). For certain phenotypes, some women had multiple records

due to more than one examination or test. We defined an overall observation by taking average or ascertained incidence for quan-

titative and dichotomous traits, respectively.

The neonatal information included gestational week, birth weight, newborn gender, and delivery options. Low birth weight is

defined as a birth weight under 2500g, while fetal macrosomia is diagnosed when a baby weighs over 4000g. The delivery options

included natural birth and cesarean section. The clinical diagnosis was the doctor’s descriptions of pregnancy status which spanned

a wide spectrum of information, for example, pregnancy complications, how much amniotic fluid, what fetal positions for birth, etc.

Maternal glycemic traits
The oral glucose tolerance test (OGTT) was usually taken during the 24th to 28th week of pregnancy. Specifically, the pregnant women

were asked to drink about 237mL liquid that contained 75g glucose. Before drinking the liquid, the pregnancy women would have

blood drawn that for measuring the fasting glucose (0hGlu). After drinking the solution, blood was drawn two more times at 1-h

(1hGlu) and 2-h (2hGlu) post consumption. By following the recommendations of international association of diabetes and pregnancy

study groups,102 we defined aGDMcase if at least one of the following factors were true: 0hGlu >5.1mmol/L, 1hGlu >10.0mmol/L, or

2hGlu >8.5 mmol/L. To consider the contributions of the three OGTT values simultaneously, we further computed the area under the

curve (AUC) as 1hGlu + (0hGlu + 2hGlu)/2.103,104 We used GDMAUC as a complement to the GDM status and performed same sta-

tistical analysis.

METHOD DETAILS

Whole-genome sequencing
During gestational weeks 12–22, pregnant women who consented to the NIPT test had 5 mL of peripheral blood drawn. The blood

samples were centrifuged to separate the plasma, which contained bothmaternal and fetal cell-free DNA (cfDNA).We then employed

single-end whole genome sequencing using the BGISEQ-500 platform, with a read length of 35 base pairs (bp). On average, the

sequencing depth ranged between 0.13 and 0.23. Notably, at the time of NIPT testing, the fetal DNA fraction in maternal plasma

is approximately 10%,105,106 with half of it being identical to the maternal DNA. For subsequent analyses, we did not distinguish be-

tween maternal and fetal DNA; instead, we treated all cfDNA as maternal.

Variants calling
The sequencing readswere stored in fastq (.fq) format. First,weusedBWA-MEMalgorithm93 to align input reads to the human reference

genome assembly GRCh38/hg38 and obtained the bam alignment files. Then, we used SAMtools94 to sort sequences and remove

duplicate sequences, thus to keep those sequences with highest mapping quality. The following step was to check the base quality

in the aligned files and correct the quality value of the original bases to ensure the accuracy of base detection, which was achieved

by Base Quality Score Recalibration (BQSR) of the GATK toolset.95 Finally, to obtain the population-based variants, we used

BaseVar that was designed to call variants especially for ultra-low-passWGSdata.107 The detected variants were stored in VCF format.

Genotype imputation
Since the NIPT sequencing data was ultra-low depth and only about 10% of the genome were measured, resulting in a high rate of

genotype missingness. To make the NIPT sequence data qualified for genetic analysis, we performed genotype imputation for the

aligned bam files in STITCH,96 which produced allele dosages of the imputed genotype. To evaluate the imputation performance, we

used 30 randomly selected Chinese samples from the high-coverage 1000 genomes project (1KGP)108 as the true set, down-

sampled them to about 0.13, and performed imputation for the down-sample data together with the original NIPT data. Then, we

calculated the Pearson’s correlation R2 between the imputed dosages (test) and high coverage genotypes (truth) as the imputation

accuracy.
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Regression analysis
For the four types of phenotypes, we performed regression analysis to examine their relationship with GDM and GDMAUC. In general,

for potential risk factors (e.g., maternal age, early-stage laboratory tests), we fitted logistic and linear model by regressing GDM and

GDMAUC as dependent variable, respectively. For potential outcomes (e.g., birthweight, delivery type), we fitted either linear or logis-

tic regression for quantitative or binary outcomes while treating GDM and GDMAUC as predictive variable. For the clinical diagnosis

that were all binary variables, it was uncertain whether they were potential risks or outcomes, we used chi-square and t testes for

GDM and GDMAUC, respectively.

For significant risk factors with p-value less than 5.15E�4 (=0.05/97), we further performed multivariate logistic and linear regres-

sion analysis for GDMandGDMAUC, respectively. It is important to acknowledge that not all phenotypes hadmeasurements available

for every participant, which could reduce the effective sample size in a multivariate model. To ensure robustness, we selected a sub-

set of significant factors, ensuring that the sample size in the multivariate model remained at least 3,000.

Genome-wide association study
We executed GWAS analysis for the three glycemic traits (0hGlu, 1hGlu, and 2hGlu), GDM status and GDMAUC. This was achieved in

PLINK 2.097 with argument –glm –maf 0.05 –hwe 1e�06 –geno 0.1 by testing SNPs with minor allele frequency (MAF) > 0.05, Hardy-

Weinberg equilibrium (HWE) > 1E�6, and genotype missing rate (geno) < 0.1. The logistic regression model was employed to assess

GDM status, whereas linear regression models were utilized for evaluating OGTT traits and GDMAUC. The covariates comprised

maternal age, gestational week when taking OGTT screening, and the five principal components (PCs) of genotype variants. All co-

variates were standardized to have a mean of zero and a standard deviation of one by using the argument –covar-variance-stan-

dardize and the quantitative phenotype were normalized by –pheno-quantile-normalize. We set the genome-wide significance

threshold as 5E�08.

Heritability is a metric indicating the proportion of phenotypic variation in a trait that can be ascribed to genetic factors.109 We used

the LDSC (Linkage Disequilibrium Score Regression) method98 to estimate the heritability of glycemic traits, GDM, and GDMAUC. We

note that, given the binary nature of GDM status, calculating heritability should be conducted using the liability scale rather than the

observed scale. In particular, we specified the population prevalence of GDM as 0.1 and the sample prevalence as 0.113 by using

arguments –pop-prev and –samp-prev, respectively.

Protein-protein interaction and gene set enrichment analysis
Protein-protein interaction (PPI) analysis aims to identify and characterize the network of interactions between two or more proteins,

which is crucial for deciphering cellular processes and functions.110 Gene set enrichment analysis (GSEA) focuses on identifying bio-

logical pathways that are significantly enriched within a list of genes.111 We conducted the PPI and GSEA analysis by combining all

mapped genes associated with the five pregnancy glycemic traits. For PPI analysis, we utilized STRING to visualize the network.100

This included known interactions (e.g., experimentally determined), predicted interactions (e.g., gene neighborhood), and other in-

teractions (e.g., text-mining). GSEA analysis was performed using Metascape,99 leveraging the DisGeNET database, which catalogs

gene-disease associations.92

Genetic correlation analysis
Genetic correlation refers to the correlation established at the genetic level between two phenotypes.112 Understanding the genetic

correlation between traits is helpful to understand the shared genetic etiology and reveal the genetic pleiotropy. We employed

LDSC98 to estimate the genetic correlations between 0hGlu, GDM, GDMAUC, and potentially correlated traits. Specifically, we ac-

quired full summary statistics for these traits from the GWAS catalog.58 To ensure compatibility, we utilized LiftOver101 to convert

the reference genome of the downloaded summary statistics to GRCh38. LD calculations were performed using the East Asian pop-

ulation data from the 1000 Genomes Project as a reference.

Mendelian randomization analysis
Mendelian randomization (MR) is a statistical technique to assess causal effects of a modifiable exposure on an outcome by using

genetic variants as instrumental variables (IVs).113 In this study, we would like to explore the causal relationships between certain

potentially correlated phenotypes and glycemic traits. For each examined exposure phenotype, we chose highly significant SNPs

with p-value less than 5E�08 and conducted LD clumping to ensure the retained SNPs were independent. Specifically, we used

R function TwoSampleMR: clump_data65 by setting clumping r2 as 0.2 and other parameters in default values. The remaining

SNPs were utilized to compute the polygenic score (PGS) for our participants, achieved bymultiplying the exposure’s genetic effects

with individual-level genotype dosages. To assess the causality of the PGS on glycemic traits, we constructed appropriate regression

models with the PGS as the predictor.
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Transcriptome-wide association study
TWAS is a method that integrates gene expression data and genotype information to identify genes whose expression levels are

associated with complex traits or diseases.66,67 It involves two datasets: reference transcriptome data and the main dataset. The

reference data includes samples with genotype and gene expression information, used to study genetic impacts on gene expression.

The main dataset consists of samples with genotype and complex traits. By integrating genetic effects from the reference data with

the main dataset, we derived genetically regulated expression (GReX). Finally, we tested the association between GReX and the trait

of interest.

In this study, we used the GTEx database (v8) as our reference transcriptome data to estimate GReX levels for our participants.66

Specifically, we chose to use the cross-tissue gene expression imputation framework (CTIMP)114 and downloaded the effect sizes

from Zenodo89 for all 49 tissues. The cis-eQTL effects were obtained from all variants located within 500kb upstream and down-

streamof a target gene. These variants were clumped using an r2 threshold of 0.2 to retain independent effects using R:clump_data.65

GReXwas calculated bymultiplying eQTL effects with genotype dosages. Logistic regression was then used to analyze GDM status,

and linear regression was applied to 0hGlu and GDMAUC, with a significance threshold adjusted to 0.001 using Bonferroni correction.

Drug target enrichment analysis
In this section, we conducted drug target enrichment analysis (DTEA) to determine if a group of candidate genes was significantly

enriched for known drug targets. This analysis can provide insights into drug repurposing opportunities, uncover novel therapeutic

targets, and aid in understanding the molecular mechanisms underlying diseases.115 Using MAGMA v1.10,90 we performed drug-

gene set analysis on glycemia-associated genes. The drug-gene set was curated from the Drug-Gene Interaction Database (DGIdb)

version 5 interactions file.91 Gene-level analyses were performed using the default competitive model.116

The follow-up analysis involved drug classification. For this, we needed data on the Anatomical Therapeutic Chemical (ATC) clas-

sification of drugs.117,118 Using previously described enrichment curves, we annotated the drug-gene set analysis results according

to ATC classifications, excluding thosewith fewer than 10 valid drug-gene sets.116,119 The sets were ranked by association (-log10(p))

and divided into groups based on ATC classification. We then calculated the area under the curve (AUC) and p-value using the Wil-

coxon Mann-Whitney test, with a Bonferroni-corrected significance threshold set at p < 7.58E�04 for 66 drug classifications.
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