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Abstract

Ultra-high field (7T) MRI allows scans at sub-millimetre resolution with exquisite

signal-to-noise ratio (SNR). As 7T MRI becomes more widely used clinically, the chal-

lenge of patient motion must be overcome. Retrospective motion correction is used

successfully for some protocols, but for acquisitions such as slice-by-slice scans only

prospective motion correction can deliver the full potential of 7T MRI. We report the

first implementation of prospective 3D Fat Navigator (“FatNav”) motion correction

for the Siemens 7T Terra MRI. We implemented a modular Sequence Building Block

for FatNav and embedded it into the vendor's gradient-recalled echo (GRE) sequence.

We modified the reconstruction pipeline to reconstruct FatNav images online,

coregistering them and sending motion updates to the host sequence online. We

tested five registration algorithms for performance and accuracy on synthetic FatNav

data. We implemented the best three of these in our sequence and tested them

online. We acquired T1 and T2* weighted brain images of healthy volunteers cor-

recting every other image for motion to visualise the effectiveness of online motion

correction. Data were acquired with and without head immobilisation. We also

tested performance while correcting every measurement for motion. Our implemen-

tation uses a 1.23 s 3D FatNav acquisition module and delivers motion updates in

less than 3 s, which is sufficient for motion updates every few k-space lines in typical

scans. Corrected images are crisper with fewer visible motion artefacts. This

improved sharpness is reflected quantitatively by an increase in the variance of the

image Laplacian which is 1.59 x better for corrected vs uncorrected images. Profiles

across the cerebral falx are 33% steeper for corrected vs uncorrected images. Pro-

spective FatNav improves GRE image quality in the brain. Our modular Sequence

Building Block provides a simple method to integrate motion correction in 7T MRI

pulse sequences.
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1 | INTRODUCTION

Ultra-high field (7T) MRI offers exquisite signal-to-noise and sub-millimetre spatial resolution. Clinical applications of 7T MRI are becoming more

common. Yet, motion artefacts remain a serious challenge, especially at 7T [1–3]. A recent analysis of 42,874 motion logs from UK Biobank 3T

fMRI scans revealed that 4% of scans were rejected because of head motion [4]. This cohort was generally healthy adults between 40 and

69 years old. For patients, the situation is more pressing. It is estimated that up to 20% of MRI scans have to be at least partially repeated [5].

Many motion correction tools have been created, often requiring additional hardware [3, 6–9]. Image-based motion correction works well,

but so far on the 7T Terra scanner it is limited to retrospective motion correction [10]. Although retrospective motion correction can substantially

improve image quality, prospective motion correction can be superior, e.g. it allows correction of through-slice motion in slice-by-slice 2D imaging

which is not possible retrospectively. Even for 3D imaging, prospective correction performs better for undersampled scans [11]. We note that

prospective motion correction based on volumetric navigators has been reported for 3T [12] and 7T Philips scanners [13].

We aimed to implement a prospective motion correction method for brain scans on the Siemens 7T Terra. Our ultimate intended target is for

clinical research scans in patients with dementia, who are likely to make intermittent movements during scanning and who in our experience

struggle to comply with marker-based tracking systems. In particular, 7T T2*-weighted imaging or quantitative susceptibility mapping (QSM)

shows strong benefits for detecting small cerebral microbleeds which are biomarkers of neurodegeneration [14]. In Parkinson's disease type II

mixed resting and action tremor is observed in half of the patients, and in half of them the tremor is reemergent with a typical time lag of 5 s–20 s

between the events [15]. For our intended applications, we require motion updates every 5 s to allow correction of motion or reacquisition of

some k-space lines or image volumes without unduly increasing overall scan time. The technique should be modular and flexible enough for easy

implementation in various sequences.

To achieve this goal, we have created a new framework for prospective 3D Fat Navigator (FatNav) [16, 17] motion correction. We

implemented this as a modular Sequence Building Block (a modular component that can be added to pulse sequences on Siemens MRI scanners)

and added it to the vendor's gradient-recalled echo (GRE) sequence. We also modified the vendor's Image Calculation Environment (ICE) online

reconstruction chain to reconstruct navigators online, coregister them to a reference image and send motion updates to the sequence in real-time.

We describe the implementation, an assessment of the performance and accuracy of coregistration codes, performance in synthetic data derived

from human volunteer scans and in vivo head scans.

2 | MATERIALS AND METHODS

2.1 | GRE-FatNav sequence

We created a Sequence Building Block implementing a 3D fat navigator according to the protocol of Gallichan et al [10]. We added this module

to the vendor's GRE sequence, opting to embed fat navigators every N � TR, where N is the number of k-space lines acquired for each measure-

ment (whole scan) (Figure 1), i.e. N = 256 or 192 (for T1 and T2* host images, respectively). Such a choice gives motion updates once every 43 s

for T1-weighted images and once per 167 s for T2*-weighted imaging. Detailed host sequence parameters are specified in Table 1. For the initial

tests, the sequence was programmed to correct for motion in odd-numbered measurements but not in even-numbered measurements which

were always acquired in the original frame of reference. This allowed us to compare corrected vs non-corrected images directly for the human

scans. In these tests, we acquired a whole image between each FatNav but updated the sequence after every other navigator. Further tests were

carried out with more frequent motion updates. The acquisition of each 3D FatNav volume took 1.23 s as described in the retrospective imple-

mentation by Gallichan et al [10]. Other navigator parameters were: 128 � 128 � 88 matrix, 256 � 256 � 176 mm3 FOV, 3.2 ms TR, 1.49 ms TE,

6/8 partial Fourier, 4 � 4 GRAPPA acceleration and 7� nominal FA. A binomial 1–2-1 RF pulse with inter-lobe spacing of 0.5 ms was used for the

fat-selective excitation. The images presented here were acquired with motion updates once per measurement. This added an extra 8.61 s

(i.e. 1.23 s every 43 s) for T1-weighted imaging and 6.15 s (i.e. 1.23 s every 167 s) for T2*-weighted imaging scans.

F IGURE 1 Schematic of product GRE sequence with FatNav navigator embedded every N host k-space lines.
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2.2 | Image reconstruction

Data were reconstructed using a modified version of the vendor's online ICE reconstruction pipeline (Figure 2A). The navigator data were tagged

by the sequence with an “RTFEEDBACK” flag; the Fork Functor (a module in the reconstruction chain) separated them from the host sequence

data so as not to interfere with the unaltered host sequence reconstruction pipeline. The 3D navigator volumes were reconstructed in ICE and

then sent to a registration functor to compute motion parameters. The computed parameters were sent to the sequence and used to adjust the

frame of reference for the acquisition of the next host sequence measurement in our test protocols [18]. The updated rotation matrix and transla-

tion offsets internally update imaging gradients and therefore positioning of the next host image acquisition.

2.3 | Online registration of 3D FatNav volumes

Rapid registration of 3D navigator volumes is a crucial part of navigator-based prospective motion correction. 3D FatNav images, shown for exam-

ple in Figure 3, have relatively low spatial resolution, often include pronounced artefacts and have different typical features compared to a normal

(water) image. These factors make registration of FatNavs challenging [19]. We therefore assessed possible registration algorithms: imregtform

TABLE 1 Sequence parameters for the main (host) sequence.

T1 GRE (2D) T2* GRE (2D)

FOV 300x300 mm 300x300 mm

Matrix 256x256 192x192

TR 168 ms 872 ms

TE 10 ms 20 ms

FA 25� 51�

Slice thickness 5 mm 3 mm

Number of slices 12 10

Number of measurements 7 5

Acquisition time 5 min 14 min

F IGURE 2 (A) Schematic of the modified Siemens ICE reconstruction pipeline. (B) Timing diagram of particular events of motion correction
method. This figure depicts average times for the simpleITK registration algorithm.
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(included in the Image Processing Toolbox, Mathworks Inc, Nattick, MA, USA), simpleITK (using rigid Euler3DTransform, mean squares similarity

metric, gradient descent optimiser and linear interpolator) [20], Greedy [21], the vNav registration algorithm [22] and our own custom registration

algorithm implemented in C++ directly in ICE. The latter is a 3D registration algorithm intended for rapid rigid registration of 3D FatNav volumes.

The algorithm selects smaller sub-volumes and searches for a centroid coordinates and rotation angles using concordance correlation coefficient

(CCC) as a similarity metric [23], which for a pair of images x and y is defined as:

ρC ¼
2sxy

s2x þ s2y þ x�yð Þ2
, ð1Þ

in which sxy is the covariance between pixels in images x and y, s2x and s2y are the variances of pixels in images x and y, respectively and x and y are

the mean values of the pixels in images x and y, respectively.

We also considered using the structural similarity index (SSIM) [24], defined as:

S x,yð Þ¼ f l x,yð Þ,c x,yð Þ,s x,yð Þð Þ, ð2Þ

where l x,yð Þ, c x,yð Þ, s x,yð Þ are comparison functions for luminosity, contrast and structure.

The third metric we took into account was root mean squared error (RMSE):

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

xi�yið Þ2
vuut , ð3Þ

where n is the number of pixels, and xi and yi are corresponding pixels from images x and y. While tested on 330 synthetic images on average the

best performance was achieved with the CCC metric. An example comparing the CCC metric with RMSE and SSIM is shown in Figure 3. There

F IGURE 3 Comparison of behaviour of various similarity metrics under translation and rotations of a rotated and shifted 2D fat navigator
image (“Nav 2”) with respect to a fixed reference scan (“Nav 1”). Red vertical lines indicate the ground truth values based on manual registration.
Abbreviations: RMSE – root mean square error metric, SSIM – structural similarity metric, CCC – concordance correlation coefficient metric.
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are fewer local extrema than with the SSIM metric and the dynamic range is greater (peaks are sharper) compared to the RMS metric. Hence, we

applied only the CCC metric for in vivo tests.

2.4 | Comparison of registration methods using synthetic data

To test the performance of the candidate registration methods, we generated synthetic datasets from 33 previously acquired in vivo 3D FatNav

volumes with a 2x2x2 mm3 voxel size, obtained during 10 independent scans of 3 volunteers. Each 3D FatNav magnitude image was subjected to

uniformly distributed random transformations in ranges ±5, ±10 and ±15 degrees/voxels (both rotations and translations were applied simulta-

neously) were applied giving 330 pairs of images for each range of motion. Translation was performed using imtranslate (Matlab) for translations,

followed by imrotate (Matlab) with cubic interpolation for rotations about the Z, Y and X axes. Any missing pixels in the corners were filled with

noise whose mean and SD were matched to values outside the head in the reference image. The reference image is always the first navigator from

each dataset – this is usually of best quality because it is always acquired without deliberate motion. This yields a synthetic magnitude dataset.

The synthetic datasets were used for testing the speed and accuracy of the registration methods.

2.5 | In vivo validation

The three best (quickest and most accurate) registration algorithms (SimpleITK, Greedy and ICE integrated algorithm – see Figure 4) were

implemented on the scanner with a user-interface option to select one of them before each scan. SimpleITK and Greedy were installed on an

Ubuntu 22.04 LTS Jammy chroot1 image that we mounted and ran on the Measurement and Reconstruction System (MARS) computer (the unit

responsible for the reconstruction of the images).

Three healthy volunteers gave written informed consent and were scanned with T1 and T2* weighted 2D GRE protocols. For initial testing,

motion updates were set to correct every odd measurement; while every even measurement was acquired in the original reference coordinate

frame to allow easy visualisation of the effects of the motion correction. Scan parameters are summarised in Table 1. The volunteer's motion pat-

tern throughout the scan is thus comparable for acquisitions with and without motion correction. All volunteers were scanned with both

F IGURE 4 Comparison of speed and accuracy for registration methods on synthetic data comprising 330 3D FatNav image pairs. Full details
are given in the methods section. Violin plots of (A) registration time, (B) residual motion score after registration. Smaller motion scores mean that
the registration has come closer to the ground truth, i.e. smaller motion scores are better. SimpleITK, greedy and ICE integrated registration
(marked with red boxes) were chosen for further assessment in vivo. White dot in the middle of each violin represents the mean value across
330 subjects.
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sequences and with several combinations of the variable parameters shown in Table 2. In all cases, the participant was instructed to change their

head position before the acquisition of every other navigator and to try to remain still in between in order to preserve a consistent motion pattern

for the corrected and uncorrected host images. The padding used for head immobilisation meant that motion was mainly constrained to nodding

in that scan. In scans acquired without pads head movement was possible in all directions. As a final test scans with motion updates for every

measurement were also acquired. Here two separate acquisitions were carried out: one with motion correction enabled, and another with motion

correction disabled. When motion correction was disabled, we still acquired the FatNav navigator images to determine the motion score. For a fair

comparison, we ensured that the images acquired without motion correction had no greater motion score than corrected ones – that is the range

of motion during corrected acquisition was at least as big as without correction. Timings of key steps within the motion correction algorithm were

recorded for each scan (Figure 2B).

2.6 | Quantitative metrics

The range of motion estimated by FatNavs for each measurement was quantified as the Motion Score metric introduced by Tisdall et al [25]. This

is defined as

Motion score¼ΔRþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

x þΔ2
y þΔ2

z

q
, ð4Þ

in terms of the rotation-related displacement ΔR, and the translation-related displacement Δi along the ith axis. This is equivalent to the worst-

case (maximum) displacement of any point on a 64mm radius sphere, which serves as a simple proxy for an average human head. Higher motion

score metric values are worse; lower values are better.

For comparison of the synthetic data with known ground truth values, we also computed the residual motion score, which was calculated as

above, but for a transformation, Tresidual defined as the detected transformation matrix (Td) multiplied by the inverted ground truth transformation

matrix (T�1
gt ), i.e. Tresidual ¼ Td �T�1

gt .

The accuracy of the motion correction was assessed by a standard metric for image sharpness: the variance of Laplacian of the image [26].

This is effective because a Laplace filter detects edges in the image. Hence, its variance tends to increase when the image is sharper because the

sharper edges have higher Laplacian values while the flat background continues to have a low Laplacian value. Since the actual Laplacian value

depends on what is in the image, we report the ratio of the Laplacian variances of the corrected to uncorrected images.

3 | RESULTS

3.1 | Synthetic data

Comparison of the registration algorithms on synthetic data shows that the mean registration time spans from 0.30 s to 2.93 s and the mean

residual motion score from 2.83 mm to 19.51 mm. (Figure 4 and Table 3). Matlab's imregtform was excluded as the slowest algorithm. The vNav

registration package provides a choice of six registration algorithms and four interpolation options. Initial tests on synthetic data showed that

“Algorithm 3” with trilinear interpolation was the fastest and most accurate, hence this configuration was compared with other registration tools.

Although this comparison showed that vNav is the fastest, it was excluded at this stage because of its lack of flexibility in accepting input data in

the format used within our ICE pipeline. The navigator volume has to be isotropic and each slice is saved in a separate file with a particular naming

convention. We could consider the vNav package for future studies once we have adapted its input reader code for our 3D navigator format. The

most accurate and reasonably fast registrations were provided by the simpleITK and Greedy algorithms. We included our ICE registration imple-

mentation as the third algorithm for in vivo tests because it has the advantage of simplifying deployment of the sequence since no chroot images

are required.

TABLE 2 Variable acquisition parameters.

Variable parameters Options

Deliberate motion Yes/No

Head immobilisation (chin pads) Yes/No

Registration method SimpleITK/Greedy/ICE integrated registration

Motion update frequency Every scan/every other scan
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3.2 | In vivo tests

Figures 5 and 6 compare uncorrected and motion-corrected images acquired in various conditions using ICE-integrated and simpleITK registra-

tion. We compared the effect of deliberate motion during acquisition with and without head immobilisation. The acquisitions of T1 and T2*

weighted images confirm that our motion correction technique can detect and correct small involuntary motion performed by an experienced vol-

unteer. Even after immobilisation of the head with chin pads some small residual motion occurs and can be corrected, giving crisper image as a

result. Deliberate motion without immobilisation is also corrected, but the result is not entirely satisfying for ICE-integrated registration, which

indicates that our algorithm works best in a limited range of motion, below 3.74 mm motion score (Table 4). However, when the subject's head

was immobilised – which is clinically more relevant – even substantially exaggerated motion was corrected properly. Note that the edges of the

brain and the vascular structure on a close-up image are better defined in the corrected images (see Figure 7). Profiles across the cerebral falx

show that signal intensity drops from 75% to 25% across a distance of 2.75 mm without FatNav but this improves to 1.83 mm with FatNav

motion correction. The other two registration methods (simpleITK and Greedy) were able to correct the images with a motion score reaching up

to 7.97 mm (Figure 9).

In a final test, the motion updates were done for every measurement (Figures 8 and 9). The motion scores describing extent of movement

were greater for acquisitions corrected for motion, which means these cases were more difficult to correct. The volunteers were asked to change

pose before each navigator, but it did not prevent occurrence of residual motion, which was likely, because head wasn't immobilised.

TABLE 3 Comparison of the registration algorithms on a synthetic dataset comprising 330 FatNav pairs transformed by uniformly distributed
random transformations.

Registration method Average registration time [s] Average residual motion score [mm]

Imregtform 2.92 14.00

SimpleITK 0.55 2.83

Greedy 1.34 16.81

vNav 0.30 11.61

Ice integrated registration 1.48 19.51

F IGURE 5 Comparison of uncorrected (MoCo OFF - left) and motion-corrected (MoCo ON - right) T1 weighted GRE images (slice 6/12 in
both rows). The subject was a healthy volunteer who was not immobilised. Scans were run without (top row) and with (bottom row) deliberate
motion. This data was acquired with ICE integrated registration. The image shown is the sum of the reference scan (first measurement) plus all
even numbered measurements (not corrected, left column) or plus all other odd-numbered measurements (motion corrected, right column).
Motion scores describing extent of movement were: 0.56 mm (top row) and 6.95 mm (bottom row), the variance of the image Image sharpness
measured by the ratio of the variance of the image Laplacian for corrected vs uncorrected images was: 1.50 (top row) and 0.92 (bottom row).
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The timing diagram (Figure 2B) splits the whole procedure of motion correction into four events. Once the motion parameters are estimated,

the actual sequence update takes a maximum of 2 ms. This small delay occurs when the motion update parameters arrive during acquisition of a

particular k-space line, so the effective motion update is delayed until the next k-space line. The most time-consuming steps are acquisition,

reconstruction and registration of the navigators. Note that registration times logged on the scanner differ from those for synthetic data because

of the different performance of the MARS and the desktop computer used for synthetic data tests. Also on the scanner, simpleITK and Greedy

are both slowed down by data conversion to their required input formats, while the ICE-integrated registration benefits from working directly on

the data in memory. The average registration times recorded during in vivo scans were: 1.29 s, 1.32 s and 1.05 s for simpleITK, Greedy and ICE

integrated registration, respectively.

The acquired navigators contain information about the actual position of the head during imaging which not only allows for calculation of the

motion score but also can be used to improve correction retrospectively in case the prospective update did not eliminate all motion. Such

approach, although with some limitations, can work for the presented here case of 2D host sequence with a 3D navigator [27].

4 | DISCUSSION

The images we obtained confirm the value of prospective 3D FatNav for correcting clinically relevant ranges of head motion in 7T MRI. The test

paradigm with deliberate motion before every other imaging block of interleaved sequence updating every other measurement for motion gives

realistic results and eliminates concerns about the reproducibility of the motion pattern in two separate measurements with and without motion

correction. We used a relatively slow update rate for the acquisition of the presented results to help ensure the volunteers were still for the refer-

ence and test images in each pair.

F IGURE 6 Comparison of not corrected (MoCo OFF - left) and corrected for motion (MoCo ON - right) GRE images of a healthy volunteer
(slice 4/10 – top row and 7/12 – bottom row). The top row shows T2* weighted images acquired without deliberate motion; the bottom row
shows T1 weighted images of a volunteer making deliberate movements. Registration was performed with simpleITK. The images shown are sums
of either even numbered (not corrected) or odd numbered (corrected) scans added to the first (reference) scan. Motion scores describing extent
of movement were: 2.23 mm (top row), 6.55 mm (bottom row), the ratio of the variances of the image Laplacians for corrected vs uncorrected
images was: 1.16 (top row), 1.42 (bottom row).

TABLE 4 Mean motion scores estimated by ICE online registration.

Sequence T1 T1 T2* T2*

Deliberate motion Yes No Yes No

Chin pads No No Yes Yes

Mean motion score [mm] 6.95 0.56 3.74 0.25
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If we need to correct more frequent motion, the current implementation can make updates approximately every 2 x TR. The most time-

consuming element is FatNav acquisition which takes TNavacq = 1.23 s. The ensuing online reconstruction and registration requires approximately

2.5 s. Hence, for sequences with TR � 2.5 s, it is possible to update motion parameters within two k-space lines. However, that would elongate

the total acquisition time by N * TNavacq. Hence, we chose to make a motion update once before each measurement. This seems to be sufficient

for compliant patients, but the update rate could be increased at a cost of total acquisition time if needed.

In all cases tested, prospective FatNav motion correction improved image quality. This applied even for motion substantially larger than

expected in clinical practice. Retrospective manual registration revealed that the most challenging situations were when significant rotation

occurred about an oblique axis. This stems from the implementation of the ICE-integrated registration algorithm which searches around each prin-

cipal axis in turn. This was a trade-off between speed and accuracy. Greedy and simpleITK registration were more robust for larger-scale motions.

However, we note that methods for rapidly correcting modest motion are still valuable [28].

F IGURE 7 Close up comparison of not corrected (MoCo OFF - A) and corrected for motion (MoCo ON - B) T1 weighted GRE images of a
healthy volunteer who was asked not to move but who was not immobilised with pads. Note the improved sharpness of vascular structures in the
cerebellum and the crisper edges of the brain with motion correction. Red dashed line mark the profile section. Horizontal profiles of not
corrected (C) and corrected (B) images. The dip from the middle of the profiles going through cerebral falx was taken to quantify image sharpness
(see results). The motion score was: 0.56 mm, the ratio of the variance of the image Laplacian for corrected vs uncorrected was: 1.35.

F IGURE 8 Comparison of T1 weighted GRE images acquired for two slices with greedy registration (slice 1/12 – top row, and 6/12 – bottom
row). The volunteer was not immobilised and was asked to move deliberately. Images are shown without correction (MoCo OFF - left) and with
motion correction (MoCo on - right). Images are sums of all measurements acquired either without or with motion correction. Motion scores
describing extent of movement were: 4.53 mm (left) and 6.40 mm (right). The ratio of the variance of the image Laplacian for corrected vs
uncorrected was: 0.91 (top) and 1.59 (bottom).
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We believe that ICE-integrated registration is quick and accurate enough for compliant patients. For patient populations who are less compli-

ant (e.g. patients with dementia) it may be preferable to use Greedy or simpleITK registration online.

The corrected T2* weighted images can potentially reveal small changes, like microbleeds which could be smoothed out even by small invol-

untary motion of immobilised patients.

The presented implementation is flexible and modular enough to be implemented in most of the clinically used sequences. We also recently

showed that the same framework can be used to make online B0 correction for MR spectroscopy [18, 29, 30].

A similar implementation of FatNav prospective motion correction for Philips scanner confirms the usefulness of this method for compliant

volunteers [13]. They acquired improved images of cerebellar cortical layers in 0.19 mm resolution. We confirmed this result in lower resolution

showing that prospective FatNavs can improve image sharpness in the cerebellum by correcting residual motion of the volunteer trying to remain

still while scanning.

One limitation of this study is the metric for image sharpness. We chose the variance (between pixels) of the image Laplacian. However, we

observed that for cases showing severe motion artefacts, the artefacts could sometimes contribute so strongly to the variance of the Laplacian

that this obscured the loss of sharpness for the head itself. Hence sometimes FatNav corrected images had lower variance of Laplacian even

though it was clear on visual inspection that they had improved image sharpness and reduced motion artefacts.

Another limitation is that the 3D FatNav acquisition is relatively slow at 1.23 s. Furthermore, it is a relatively high spatial resolution which

increases the time for image reconstruction and coregistration too. We achieved a navigator acquisition to sequence update time of approxi-

mately 4 s which has been reported as being acceptable for retrospective motion correction [31].

We carried out preliminary tests with lower-resolution FatNavs to assess whether they provide a better trade-off between motion update

accuracy and timeliness. We decreased the navigator resolution to 32x32x32, 16x16x16 and 8x8x8 and compared acquisition, reconstruction and

registration times and the accuracy (expressed as residual motion score). The residual motion score increases by less than 10 mm for 32x32x32

and 16x16x16 navigators as shown in Figure SI 1a in the Supplementary Information. With a lower resolution, registration times are below

400 ms for the four registration methods that we tested as shown in Figure SI 1b in the Supplementary Information. The total motion update time

is less than 1 s for 16x16x16 and 8x8x8 navigators as shown in Figure SI 1c in the Supplementary Information. We propose that a 16x16x16 reso-

lution FatNav strikes a good balance between speed and accuracy.

Inserting more than one FatNav per host image might affect the quality of the host images by disturbing the magnetisation steady state. We

inserted three different resolutions (128x128x88, 32x32x32 and 16x16x16) FatNavs (one at a time) into a single slice host image of 128x128 res-

olution every N th line of k-space. The resulting host images are shown in Figure SI 2 in the Supplementary Information. Some ghosting is visible

F IGURE 9 Comparison of two slices of not corrected (left) and corrected for motion (right) T2* weighted GRE images of a not immobilised
healthy volunteer with deliberate motion (slice 4/10 – top row, and 6/10 – bottom row). These images used greedy registration. The images
shown are sums of all measurements acquired either without (MoCo OFF - left) or with motion correction (MoCo ON - right). Motion scores
describing extent of movement were: 5.07 mm (left, not corrected) and 7.97 mm (right, motion corrected). The ratio of the variance of the image
Laplacian for corrected vs uncorrected was: 1.01 (top) and 1.07 (bottom).
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with FatNavs every 4th or every 2nd line of k-space for a single slice host GRE scan. We repeated this test for a multi-slice GRE scan as host

image. Figure SI3 in the Supplementary Information shows that there is a negligible level of ghosting with 16x16x16 FatNavs inserted every 16th

or every 128th line of k-space.

In future work beyond the scope of this study, we hope that our framework can be used with small modifications to implement collapsed 2D

navigators registered to the 3D reference volume. This approach has been reported to decrease navigator acquisition time below 30 ms at 3T

[32, 33].

Further improvement of the accuracy of the presented technique may require addition of the B0 correction; especially for the T2*

sequence [34]. The benefit of FatNav over the vNav implementation presented by Liu et al is that fat-selective excitation does not disturb water

signal. On the other hand, due to the presence of the fat signal mostly at the scalp, it would not be practical to use dual echo B0 mapping based

on FatNavs, and the B0 correction would require additional readouts.

5 | CONCLUSION

We have successfully implemented prospective 3D FatNav motion correction for 7T Terra MRI scanners. The corrections improve image quality

in scans with deliberate motion. To the best of our knowledge, this is the first implementation of self-contained (not using external hardware) pro-

spective motion correction for the Siemens 7T Terra. Our FatNav Sequence Building Block and ICE implementation are available to collaborators

subject to the usual formalities.

ACKNOWLEDGMENTS

This work was supported by Innovate UK [10032205] under the Guarantee Scheme relating to the EU Horizon Europe project MITI [101058229]

and by the European Union's Horizon 2020 research and innovation programme under grant agreement [801075]. This study was supported by

the NIHR Cambridge Biomedical Research Centre (NIHR203312) and an MRC Clinical Research Infrastructure Award for 7T. The views expressed

are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

CONFLICT OF INTEREST STATEMENT

Iulius Dragonu is an employee of Siemens Healthcare LTD, Camberley, UK.

Christopher T. Rodgers receives a research grant from Siemens for a different project.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to

privacy or ethical restrictions.

ETHICS STATEMENT

All volunteers scanned in the study gave written informed consent.

ORCID

Krzysztof Klodowski https://orcid.org/0000-0002-0880-5175

Christopher T. Rodgers https://orcid.org/0000-0003-1275-1197

ENDNOTE
1 Chroot command allows to switch to another root file system on linux platforms. This means that inside chroot directory additional applications with all

necessary dependencies can be installed without interfering with the main OS.

REFERENCES

1. Ladd ME, Bachert P, Meyerspeer M, et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc. 2018;

109:1-50. doi:10.1016/j.pnmrs.2018.06.001

2. Barisano G, Sepehrband F, Ma S, et al. Clinical 7 T MRI: are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol.

2019;92(1094):20180492. doi:10.1259/bjr.20180492

3. Sciarra A, Mattern H, Yakupov R, et al. Quantitative evaluation of prospective motion correction in healthy subjects at 7T MRI. Magn Reson Med.

2022;87(2):646-657. doi:10.1002/mrm.28998

4. Hess AT et al. Head movement in UK BioBank, analysis of 42.874 fMRI motion logs. In: ISMRM Workshop on Motion Detection & Correction; 2022.

5. Andre JB, Bresnahan BW, Mossa-Basha M, et al. Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical

MR examinations. J am Coll Radiol. 2015;12(7):689-695. doi:10.1016/j.jacr.2015.03.007

KLODOWSKI ET AL. 11 of 12

https://orcid.org/0000-0002-0880-5175
https://orcid.org/0000-0002-0880-5175
https://orcid.org/0000-0003-1275-1197
https://orcid.org/0000-0003-1275-1197
info:doi/10.1016/j.pnmrs.2018.06.001
info:doi/10.1259/bjr.20180492
info:doi/10.1002/mrm.28998
info:doi/10.1016/j.jacr.2015.03.007


6. Maclaren J, Herbst M, Speck O, Zaitsev M. Prospective motion correction in brain imaging: a review. Magn Reson Med. 2013;69(3):621-636. doi:10.

1002/mrm.24314

7. Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging. 2015;42(4):887-901.

doi:10.1002/jmri.24850

8. Godenschweger F, Kägebein U, Stucht D, et al. Motion correction in MRI of the brain. Phys Med Biol. 2016;61(5):R32-R56. doi:10.1088/0031-9155/

61/5/R32

9. Zaitsev M, Akin B, LeVan P, Knowles BR. Prospective motion correction in functional MRI. Neuroimage. 2017;154:33-42. doi:10.1016/j.neuroimage.

2016.11.014

10. Gallichan D, Marques JP, Gruetter R. Retrospective correction of involuntary microscopic head movement using highly accelerated fat image naviga-

tors (3D FatNavs) at 7T. Magn Reson Med. 2016;75(3):1030-1039. doi:10.1002/mrm.25670

11. Slipsager JM, Glimberg SL, Højgaard L, et al. Comparison of prospective and retrospective motion correction in 3D-encoded neuroanatomical MRI.

Magn Reson Med. 2022;87(2):629-645. doi:10.1002/mrm.28991

12. Andersen M, Björkman-Burtscher IM, Marsman A, Petersen ET, Boer VO. Improvement in diagnostic quality of structural and angiographic MRI of the

brain using motion correction with interleaved, volumetric navigators. PLoS ONE. 2019;14(5):e0217145. doi:10.1371/journal.pone.0217145

13. Priovoulos N, Andersen M, Dumoulin SO, Boer VO, van der Zwaag W. High-resolution motion-corrected 7.0-T MRI to derive morphologic measures

from the human cerebellum in vivo. Radiology. 2023;307(2):e220989. doi:10.1148/radiol.220989

14. Theysohn JM, Kraff O, Maderwald S, et al. 7 Tesla MRI of microbleeds and white matter lesions as seen in vascular dementia. J Magn Reson Imaging.

2011;33(4):782-791. doi:10.1002/jmri.22513

15. Gironell A, Pascual-Sedano B, Aracil I, Marín-Lahoz J, Pagonabarraga J, Kulisevsky J. Tremor types in Parkinson disease: a descriptive study using a

new classification. Parkinsons Dis. 2018;2018:4327597.

16. Nguyen TD, Nuval A, Mulukutla S, Wang Y. Direct monitoring of coronary artery motion with cardiac fat navigator echoes. Magn Reson Med. 2003;

50(2):235-241. doi:10.1002/mrm.10550

17. Kawaji K, Spincemaille P, Nguyen TD, et al. Direct coronary motion extraction from a 2D fat image navigator for prospectively gated coronary MR

angiography. Magn Reson Med. 2014;71(2):599-607. doi:10.1002/mrm.24698

18. Klodowski K, Halabrin J, Dragonu I, Rodgers C. Prospective 3D FatNav motion correction for 7T Terra. In: ISMRM Annual Meeting; 2022.

19. Klodowski K, Dragonu I, Rodgers C. FatNav based prospective motion correction at 7T Terra. In: ISMRM Workshop on Motion Detection & Correction;

2022.

20. Lowekamp BC, Chen DT, Ibáñez L, Blezek D. The design of SimpleITK. Front Neuroinform. 2013;7:7. doi:10.3389/fninf.2013.00045

21. Yushkevich, P. Greedy. [cited 2023 05.07.2023]; Available from: https://github.com/pyushkevich/greedy

22. Zhang Y, Aganj I, van der Kouwe AJW, Tisdall MD. Accurate high-speed 3D-registration of EPI vNavs for head motion correction. Proc Int Soc Magn

Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2017;25:3944.

23. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255-268. doi:10.2307/2532051

24. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;

13(4):600-612. doi:10.1109/TIP.2003.819861

25. Tisdall MD, Hess AT, Reuter M, Meintjes EM, Fischl B, van der Kouwe AJW. Volumetric navigators for prospective motion correction and selective

reacquisition in neuroanatomical MRI. Magn Reson Med. 2012;68(2):389-399. doi:10.1002/mrm.23228

26. Pech-Pacheco JL, Cristobal G, Chamorro-Martinez J, Fernandez-Valdivia J. Diatom autofocusing in brightfield microscopy: a comparative study. In:

15th International Conference on Pattern Recognition. Vol.3, Proceedings; 2000:314-317.

27. Hucker P, Dacko M, Zaitsev M. Combining prospective and retrospective motion correction based on a model for fast continuous motion. Magn Reson

Med. 2021;86(3):1284-1298. doi:10.1002/mrm.28783

28. Polak D, Hossbach J, Splitthoff DN, et al. Motion guidance lines for robust data consistency-based retrospective motion correction in 2D and 3D MRI.

Magn Reson Med. 2023;89(5):1777-1790. doi:10.1002/mrm.29534

29. Gretsch F, Marques JP, Gallichan D. Investigating the accuracy of FatNav-derived estimates of temporal B(0) changes and their application to retro-

spective correction of high-resolution 3D GRE of the human brain at 7T. Magn Reson Med. 2018;80(2):585-597. doi:10.1002/mrm.27063

30. Deelchand DK, Joers JM, Auerbach EJ, Henry PG. Prospective motion and B(0) shim correction for MR spectroscopy in human brain at 7T. Magn

Reson Med. 2019;82(6):1984-1992. doi:10.1002/mrm.27886

31. Polak D, Splitthoff DN, Clifford B, et al. Scout accelerated motion estimation and reduction (SAMER). Magn Reson Med. 2022;87(1):163-178. doi:10.

1002/mrm.28971

32. Engström M, Mårtensson M, Avventi E, Norbeck O, Skare S. Collapsed fat navigators for brain 3D rigid body motion. Magn Reson Imaging. 2015;33(8):

984-991. doi:10.1016/j.mri.2015.06.014

33. Avventi E, Ryden H, Norbeck O, Berglund J, Sprenger T, Skare S. Projection-based 3D/2D registration for prospective motion correction. Magn Reson

Med. 2020;84(3):1534-1542. doi:10.1002/mrm.28225

34. Liu J, van Gelderen P, de Zwart JA, Duyn JH. Reducing motion sensitivity in 3D high-resolution T(2)*-weighted MRI by navigator-based motion and

nonlinear magnetic field correction. Neuroimage. 2020;206:116332. doi:10.1016/j.neuroimage.2019.116332

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Klodowski K, Sengupta A, Dragonu I, Rodgers CT. Prospective 3D Fat Navigator (FatNav) motion correction for

7T Terra MRI. NMR in Biomedicine. 2025;38(1):e5283. doi:10.1002/nbm.5283

12 of 12 KLODOWSKI ET AL.

info:doi/10.1002/mrm.24314
info:doi/10.1002/mrm.24314
info:doi/10.1002/jmri.24850
info:doi/10.1088/0031-9155/61/5/R32
info:doi/10.1088/0031-9155/61/5/R32
info:doi/10.1016/j.neuroimage.2016.11.014
info:doi/10.1016/j.neuroimage.2016.11.014
info:doi/10.1002/mrm.25670
info:doi/10.1002/mrm.28991
info:doi/10.1371/journal.pone.0217145
info:doi/10.1148/radiol.220989
info:doi/10.1002/jmri.22513
info:doi/10.1002/mrm.10550
info:doi/10.1002/mrm.24698
info:doi/10.3389/fninf.2013.00045
https://github.com/pyushkevich/greedy
info:doi/10.2307/2532051
info:doi/10.1109/TIP.2003.819861
info:doi/10.1002/mrm.23228
info:doi/10.1002/mrm.28783
info:doi/10.1002/mrm.29534
info:doi/10.1002/mrm.27063
info:doi/10.1002/mrm.27886
info:doi/10.1002/mrm.28971
info:doi/10.1002/mrm.28971
info:doi/10.1016/j.mri.2015.06.014
info:doi/10.1002/mrm.28225
info:doi/10.1016/j.neuroimage.2019.116332
info:doi/10.1002/nbm.5283

	Prospective 3D Fat Navigator (FatNav) motion correction for 7T Terra MRI
	Abstract
	1  |  INTRODUCTION
	2  |  MATERIALS AND METHODS
	2.1  |  GRE‐FatNav sequence
	2.2  |  Image reconstruction
	2.3  |  Online registration of 3D FatNav volumes
	2.4  |  Comparison of registration methods using synthetic data
	2.5  |  In vivo validation
	2.6  |  Quantitative metrics

	3  |  RESULTS
	3.1  |  Synthetic data
	3.2  |  In vivo tests

	4  |  DISCUSSION
	5  |  CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	ORCID
	ENDNOTE
	REFERENCES
	SUPPORTING INFORMATION


